Synthesis 2024; 56(06): 966-974
DOI: 10.1055/a-2149-4586
paper
Emerging Trends in Glycoscience

C-5 Epimerisation of d-Mannopyranosyl Fluorides: The Influence of Anomeric Configuration on Radical Reactivity

a   School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
,
b   Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
,
a   School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
,
Vito Ferro
a   School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
› Author Affiliations
We thank the Australian Research Council for financial support (DP220102493). N.W.S. is grateful to The University of Queensland (UQ) for a PhD scholarship.


Abstract

The fluorine-directing effect has so far been exploited to provide short and efficient synthetic routes to rare l-ido sugars. However, the importance of anomeric configuration to its success has remained experimentally unverified. We now report on the synthesis of α- and β-configured per-O-benzoylated mannopyranosyl fluorides and initially show that their reactivity towards photo-bromination is strongly dependent on the anomeric configuration. The stereochemical basis of the fluorine-directing effect is then validated by revealing the striking difference in stereoselectivity observed for the free-radical reductions of the isolated 5-C-bromo sugars. This work importantly provides a synthetic route to a donor-functionalised derivative of l-gulose and reveals new insights into the behaviour of glycosyl radicals.

Supporting Information



Publication History

Received: 10 July 2023

Accepted after revision: 07 August 2023

Accepted Manuscript online:
07 August 2023

Article published online:
14 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Praly J.-P. Adv. Carbohydr. Chem. Biochem. 2000; 56: 65
  • 2 Ghosh T, Nokami T. Carbohydr. Res. 2022; 522: 108677
  • 3 Chen A, Xu L, Zhou Z, Zhao S, Yang T, Zhu F. J. Carbohydr. Chem. 2021; 40: 361
  • 4 Crich D. J. Org. Chem. 2011; 76: 9193
  • 5 Jiang Y, Zhang Y, Lee BC, Koh MJ. Angew. Chem. Int. Ed. 2023; e202305138 DOI: 10.1002/anie.202305138.
  • 6 Shatskiy A, Stepanova EV, Kärkäs MD. Nat. Rev. Chem. 2022; 6: 782
  • 7 Carder HM, Suh CE, Wendlandt AE. J. Am. Chem. Soc. 2021; 143: 13798
  • 8 Oswood CJ, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 93
  • 9 Zhang Y.-A, Gu X, Wendlandt AE. J. Am. Chem. Soc. 2022; 144: 599
  • 10 Wang Y, Carder HM, Wendlandt AE. Nature 2020; 578: 403
  • 11 Mohamed S, Ferro V. Adv. Carbohydr. Chem. Biochem. 2015; 72: 21
  • 12 Paul A, Kulkarni SS. Chem. Rec. 2021; 21: 3224
  • 13 Frihed TG, Bols M, Pedersen CM. Chem. Rev. 2015; 115: 3615
  • 14 Zulueta MM. L, Zhong Y.-Q, Hung S.-C. Chem. Commun. 2013; 49: 3275
  • 15 Mohamed S, Krenske EH, Ferro V. Org. Biomol. Chem. 2016; 14: 2950
  • 16 Blanchard S, Sadilek M, Scott CR, Turecek F, Gelb MH. Clin. Chem. 2008; 54: 2067
  • 17 See NW, Wimmer N, Krenske EH, Ferro V. Eur. J. Org. Chem. 2021; 1575
  • 18 €600/10 g, Biosynth catalogue; the price is based on the maximum 10 g pack size (accessed Aug 31, 2023): https://www.biosynth.com/p/MG00251/6027-89-0-l-gulos
  • 19 Chen J, Stubbe J. Nat. Rev. Cancer 2005; 5: 102
  • 20 World Health Organization Model List of Essential Medicines, 22nd List. World Health Organization; Geneva: 2021
  • 21 Swain M, Brisson J.-R, Sprott GD, Cooper FP, Patel GB. Biochim. Biophys. Acta 1997; 1345: 56
  • 22 Tsegay S, Williams RJ, Williams SJ. Carbohydr. Res. 2012; 357: 16
  • 23 Ness RK, Fletcher HG, Hudson CS. J. Am. Chem. Soc. 1950; 72: 2200
  • 24 Ziegler T, Dettmann R, Duszenko M, Kolb V. Carbohydr. Res. 1996; 295: 7
  • 25 Miethchen R, Kolp G. J. Fluorine Chem. 1993; 60: 49
  • 26 Bock K, Pedersen C. Acta Chem. Scand., Ser. B 1975; 29: 682
  • 27 Masahiko H, Shun-ichi H, Ryoji N. Chem. Lett. 1984; 1747
  • 28 See NW, Xu X, Ferro V. J. Org. Chem. 2022; 87: 14230
    • 29a L’Heureux A, Beaulieu F, Bennett C, Bill DR, Clayton S, LaFlamme F, Mirmehrabi M, Tadayon S, Tovell D, Couturier M. J. Org. Chem. 2010; 75: 3401
    • 29b Lee YJ, Baek JY, Lee B.-Y, Kang SS, Park H.-S, Jeon HB, Kim KS. Carbohydr. Res. 2006; 341: 1708
  • 30 Andersen SM, Heuckendorff M, Jensen HH. Org. Lett. 2015; 17: 944
  • 31 Brimble MA, Kowalczyk R, Harris PW. R, Dunbar PR, Muir VJ. Org. Biomol. Chem. 2008; 6: 112
  • 32 Skelton BW, Stick RV, Stubbs KA, Watts AG, White AH. Aust. J. Chem. 2004; 57: 345
  • 33 Somsák L, Ferrier RJ. Adv. Carbohydr. Chem. Biochem. 1991; 49: 37
  • 34 Long Q, Gao J, Yan N, Wang P, Li M. Org. Chem. Front. 2021; 8: 3332
  • 35 Singh Y, Geringer SA, Demchenko AV. Chem. Rev. 2022; 122: 11701
  • 36 Sati GC, Martin JL, Xu Y, Malakar T, Zimmerman PM, Montgomery J. J. Am. Chem. Soc. 2020; 142: 7235
  • 37 Xu Y, Zhang Q, Xiao Y, Wu P, Chen W, Song Z, Xiao X, Meng L, Zeng J, Wan Q. Tetrahedron Lett. 2017; 58: 2381
  • 38 Doyle LM, O’Sullivan S, Di Salvo C, McKinney M, McArdle P, Murphy PV. Org. Lett. 2017; 19: 5802
  • 39 Sproviero JF. Carbohydr. Res. 1973; 26: 357
  • 40 Michalik M, Hein M, Frank M. Carbohydr. Res. 2000; 327: 185