Planta Med 2022; 88(13): 1175-1189
DOI: 10.1055/a-1576-4148
Biological and Pharmacological Activity
Reviews

Medicinal Plants: Guests and Hosts in the Heterologous Expression of High-Value Products

TU Dortmund University, Biochemical and Chemical Engineering, Technical Biochemistry, Dortmund, Germany
› Author Affiliations
Supported by: Bundesministerium für Bildung und Forschung 03VP06370

Abstract

Medicinal plants play an important dual role in the context of the heterologous expression of high-value pharmaceutical products. On the one hand, the classical biochemical and modern omics approaches allowed for the discovery of various genes encoding biosynthetic pathways in medicinal plants. Recombinant DNA technology enabled introducing these genes and regulatory elements into host organisms and enhancing the heterologous production of the corresponding secondary metabolites. On the other hand, the transient expression of foreign DNA in plants facilitated the production of numerous proteins of pharmaceutical importance. This review summarizes several success stories of the engineering of plant metabolic pathways in heterologous hosts. Likewise, a few examples of recombinant protein expression in plants for therapeutic purposes are also highlighted. Therefore, the importance of medicinal plants has grown immensely as sources for valuable products of low and high molecular weight. The next step ahead for bioengineering is to achieve more success stories of industrial-scale production of secondary plant metabolites in microbial systems and to fully exploit plant cell factoriesʼ commercial potential for recombinant proteins.



Publication History

Received: 16 May 2021

Accepted after revision: 30 July 2021

Article published online:
14 September 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med 2006; 27: 1-93 DOI: 10.1016/j.mam.2005.07.008.
  • 2 Kayser O. Ethnobotany and medicinal plant biotechnology: from tradition to modern aspects of drug development. Planta Med 2018; 84: 834-838 DOI: 10.1055/a-0631-3876.
  • 3 Bandaranayake WM. Quality Control, Screening, Toxicity, and Regulation of herbal Drugs. In: Ahmad I, Aqil F, Owais M, eds. Modern Phytomedicine Turns Medicinal Plants into Drugs. 2006: 25-57
  • 4 Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020; 83: 770-803 DOI: 10.1021/acs.jnatprod.9b01285.
  • 5 Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling plant natural chemical diversity for drug discovery purposes. Front Pharmacol 2020; 11: 397 DOI: 10.3389/fphar.2020.00397.
  • 6 Janssen B, Schäfer B. Galantamine. ChemTexts 2017; 3: 1-21 DOI: 10.1007/s40828-017-0043-y.
  • 7 Chu LL, Montecillo V JA, Bae H. Recent advances in the metabolic engineering of yeasts for ginsenoside biosynthesis. Front Bioeng Biotechnol 2020; 8: 139 DOI: 10.3389/fbioe.2020.00139.
  • 8 Durazzo A, Lucarini M, Santini A. Nutraceuticals in human health. Foods 2020; 9: 370 DOI: 10.3390/foods9030370.
  • 9 Ramzi AB, Baharum SN, Bunawan H, Scrutton NS. Streamlining natural products biomanufacturing with omics and machine learning driven microbial engineering. Front Bioeng Biotechnol 2020; 8: 608918 DOI: 10.3389/fbioe.2020.608918.
  • 10 Nielsen J, Keasling JD. Engineering cellular metabolism. Cell 2016; 164: 1185-1197 DOI: 10.1016/j.cell.2016.02.004.
  • 11 Dastmalchi M, Park MR, Morris JS, Facchini P. Family portraits: the enzymes behind benzylisoquinoline alkaloid diversity. Phytochem Rev 2018; 17: 249-277 DOI: 10.1007/s11101-017-9519-z.
  • 12 Carvalho Â, Hansen EH, Kayser O, Carlsen S, Stehle F. Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Res 2017; 17: fox037 DOI: 10.1093/femsyr/fox037.
  • 13 Dziggel C, Schäfer H, Wink M. Tools of pathway reconstruction and production of economically relevant plant secondary metabolites in recombinant microorganisms. Biotechnol J 2017; 12: 1600145 DOI: 10.1002/biot.201600145.
  • 14 Kim YJ, Lee OR, Oh JY, Jang MG, Yang DC. Functional analysis of 3-hydroxy-3-methylglutaryl coenzyme a reductase encoding genes in triterpene saponin-producing ginseng. Plant Physiol 2014; 165: 373-387 DOI: 10.1104/pp.113.222596.
  • 15 Yang JL, Hu ZF, Zhang TT, Gu AD, Gong T, Zhu P. Progress on the studies of the key enzymes of ginsenoside biosynthesis. Molecules 2018; 23: 589 DOI: 10.3390/molecules23030589.
  • 16 Pan Q, Mustafa NR, Tang K, Choic YH, Verpoorte R. Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 2016; 15: 221-250 DOI: 10.1007/s11101-015-9406-4.
  • 17 Scossa F, Benina M, Alseekh S, Zhang Y, Fernie AR. The integration of metabolomics and next-generation sequencing data to elucidate the pathways of natural product metabolism in medicinal plants. Planta Med 2018; 84: 855-873 DOI: 10.1055/a-0630-1899.
  • 18 Thamm AMK, Qu Y, De Luca V. Discovery and metabolic engineering of iridoid/secoiridoid and monoterpenoid indole alkaloid biosynthesis. Phytochem Rev 2016; 15: 339-361 DOI: 10.1007/s11101-016-9468-y.
  • 19 Ionkova I. Anticancer lignans – from discovery to biotechnology. Mini-Reviews Med Chem 2011; 11: 843-856 DOI: 10.2174/138955711796575425.
  • 20 Shanmugaraj B, I. Bulaon CJ, Phoolcharoen W. Plant molecular farming: A viable platform for recombinant biopharmaceutical production. Plants 2020; 9: 842 DOI: 10.3390/plants9070842.
  • 21 Yao J, Weng Y, Dickey A, Wang KY. Plants as factories for human pharmaceuticals: Applications and challenges. Int J Mol Sci 2015; 16: 28549-28565 DOI: 10.3390/ijms161226122.
  • 22 Kermode AR, Jiang L. Molecular Pharming. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2018
  • 23 Samanani N, Liscombe DK, Facchini PJ. Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant J 2004; 40: 302-313 DOI: 10.1111/j.1365-313X.2004.02210.x.
  • 24 Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. Plant J 2017; 90: 764-787 DOI: 10.1111/tpj.13485.
  • 25 Bergelson J, Roux F. Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana . Nat Rev Genet 2010; 11: 867-879 DOI: 10.1038/nrg2896.
  • 26 Miura K, Ashikari M, Matsuoka M. The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 2011; 16: 319-326 DOI: 10.1016/j.tplants.2011.02.009.
  • 27 Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 2010; 42: 961-967 DOI: 10.1038/ng.695.
  • 28 Matsuba Y, Nguyen TT, Wiegert K, Falara V, Gonzales-Vigil E, Leong B, Schäfer P, Kudrna D, Wing RA, Bolger AM, Usadel B, Tissier A, Fernie AR, Barry CS, Pichersky E. Evolution of a complex locus for terpene biosynthesis in solanum. Plant Cell 2013; 25: 2022-2036 DOI: 10.1105/tpc.113.111013.
  • 29 Kellner F, Kim J, Clavijo BJ, Hamilton JP, Childs KL, Vaillancourt B, Cepela J, Habermann M, Steuernagel B, Clissold L, McLay K, Buell CR, OʼConnor SE. Genome-guided investigation of plant natural product biosynthesis. Plant J 2015; 82: 680-692 DOI: 10.1111/tpj.12827.
  • 30 Rai A, Kamochi H, Suzuki H, Nakamura M, Takahashi H, Hatada T, Saito K, Yamazaki M. De novo transcriptome assembly and characterization of nine tissues of Lonicera japonica to identify potential candidate genes involved in chlorogenic acid, luteolosides, and secoiridoid biosynthesis pathways. J Nat Med 2017; 71: 1-15 DOI: 10.1007/s11418-016-1041-x.
  • 31 Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, Li Y, Meade F, Teodor R, Vaistij FE, Walker C, Bowser TA, Graham IA. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 2012; 336: 1704-1708 DOI: 10.1126/science.1220757.
  • 32 Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D. The seco-iridoid pathway from Catharanthus roseus . Nat Commun 2014; 5: 3606 DOI: 10.1038/ncomms4606.
  • 33 Dastmalchi M, Chen X, Hagel JM, Chang L, Chen R, Ramasamy S, Yeaman S, Facchini PJ. Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy. Nat Chem Biol 2019; 15: 384-390 DOI: 10.1038/s41589-019-0247-0.
  • 34 Quanbeck SM, Brachova L, Campbell AA, Guan X, Perera A, He K, Rhee SY, Bais P, Dickerson JA, Dixon P, Wohlgemuth G, Fiehn O, Barkan L, Lange I, Lange BM, Lee I, Cortes D, Salazar C, Shuman J, Shulaev V, Huhman DV, Sumner LW, Roth MR, Welti R, Ilarslan H, Wurtele ES, Nikolau BJ. Metabolomics as a hypothesis-generating functional genomics tool for the annotation of Arabidopsis thaliana genes of “unknown function”. Front Plant Sci 2012; 3: 15 DOI: 10.3389/fpls.2012.00015.
  • 35 García-Granados R, Lerma-Escalera JA, Morones-Ramírez JR. Metabolic engineering and synthetic biology: synergies, future, and challenges. Front Bioeng Biotechnol 2019; 7: 36 DOI: 10.3389/fbioe.2019.00036.
  • 36 Keasling JD. Synthetic biology and the development of tools for metabolic engineering. Metab Eng 2012; 14: 189-195 DOI: 10.1016/j.ymben.2012.01.004.
  • 37 Cravens A, Payne J, Smolke CD. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun 2019; 10: 1-12 DOI: 10.1038/s41467-019-09848-w.
  • 38 OʼConnor SE. Engineering of secondary metabolism. Annu Rev Genet 2015; 49: 71-94 DOI: 10.1146/annurev-genet-120213-092053.
  • 39 Trenchard IJ, Siddiqui MS, Thodey K, Smolke CD. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab Eng 2015; 31: 74-83 DOI: 10.1016/j.ymben.2015.06.010.
  • 40 Brown S, Clastre M, Courdavault V, OʼConnor SE. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci U S A 2015; 112: 3205-3210 DOI: 10.1073/pnas.1423555112.
  • 41 Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 2008; 26: 1301-1308 DOI: 10.1038/nbt.1506.
  • 42 Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F. Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci U S A 2008; 105: 7393-7398 DOI: 10.1073/pnas.0802981105.
  • 43 Thodey K, Galanie S, Smolke CD. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 2014; 10: 837-844 DOI: 10.1038/nchembio.1613.
  • 44 Li Y, Smolke CD. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat Commun 2016; 7: 1-14 DOI: 10.1038/ncomms12137.
  • 45 Runguphan W, Qu X, OʼConnor SE. Integrating carbon-halogen bond formation into medicinal plant metabolism. Nature 2010; 468: 461-464 DOI: 10.1038/nature09524.
  • 46 Hawkins KM, Smolke CD. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae . Nat Chem Biol 2008; 4: 564-573 DOI: 10.1038/nchembio.105.
  • 47 Nakagawa A, Minami H, Kim JS, Koyanagi T, Katayama T, Sato F, Kumagai H. A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2011; 2: 326 DOI: 10.1038/ncomms1327.
  • 48 Nakagawa A, Minami H, Kim JS, Koyanagi T, Katayama T, Sato F, Kumagai H. Bench-top fermentative production of plant benzylisoquinoline alkaloids using a bacterial platform. Bioeng Bugs 2012; 3: 49-53 DOI: 10.4161/bbug.3.1.18446.
  • 49 Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret JP, Beaudoin GA, Facchini PJ, Martin VJ. Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae . Nat Commun 2014; 5: 3283 DOI: 10.1038/ncomms4283.
  • 50 DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol 2015; 11: 465-471 DOI: 10.1038/nchembio.1816.
  • 51 Chen X, Hagel JM, Chang L, Tucker JE, Shiigi SA, Yelpaala Y, Chen HY, Estrada R, Colbeck J, Enquist-Newman M, Ibáñez AB, Cottarel G, Vidanes GM, Facchini PJ. A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis article. Nat Chem Biol 2018; 14: 738-743 DOI: 10.1038/s41589-018-0059-7.
  • 52 Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD. Complete biosynthesis of opioids in yeast. Science 2015; 349: 1095-1100 DOI: 10.1126/science.aac9373.
  • 53 Nakagawa A, Matsumura E, Koyanagi T, Katayama T, Kawano N, Yoshimatsu K, Yamamoto K, Kumagai H, Sato F, Minami H. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli . Nat Commun 2016; 7: 1-8 DOI: 10.1038/ncomms10390.
  • 54 Guirimand G, Guihur A, Ginis O, Poutrain P, Héricourt F, Oudin A, Lanoue A, St-Pierre B, Burlat V, Courdavault V. The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J 2011; 278: 749-763 DOI: 10.1111/j.1742-4658.2010.07994.x.
  • 55 Guirimand G, Guihur A, Poutrain P, Héricourt F, Mahroug S, St-Pierre B, Burlat V, Courdavault V. Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus . J Plant Physiol 2011; 168: 549-557 DOI: 10.1016/j.jplph.2010.08.018.
  • 56 St-Pierre B, Vazquez-Flota FA, De Luca V. Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 1999; 11: 887-900 DOI: 10.1105/tpc.11.5.887.
  • 57 Ozber N, Watkins JL, Facchini PJ. Back to the plant: overcoming roadblocks to the microbial production of pharmaceutically important plant natural products. J Ind Microbiol Biotechnol 2020; 47: 815-828 DOI: 10.1007/s10295-020-02300-9.
  • 58 Qu Y, Easson MEAM, Simionescu R, Hajicek J, Thamm AMK, Salim V, De Luca V. Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proc Natl Acad Sci U S A 2018; 115: 3180-3185 DOI: 10.1073/pnas.1719979115.
  • 59 Caputi L, Franke J, Farrow SC, Chung K, Payne RME, Nguyen TD, Dang TT, Soares Teto Carqueijeiro I, Koudounas K, Dugé de Bernonville T, Ameyaw B, Jones DM, Vieira IJC, Courdavault V, OʼConnor SE. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 2018; 360: 1235-1239 DOI: 10.1126/science.aat4100.
  • 60 Qu Y, Safonova O, De Luca V. Completion of the canonical pathway for assembly of anticancer drugs vincristine/vinblastine in Catharanthus roseus . Plant J 2019; 97: 257-266 DOI: 10.1111/tpj.14111.
  • 61 Qu Y, Easson ML, Froese J, Simionescu R, Hudlicky T, De Luca V. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci U S A 2015; 112: 6224-6229 DOI: 10.1073/pnas.1501821112.
  • 62 Luo X, Reiter MA, dʼEspaux L, Wong J, Denby CM, Lechner A, Zhang Y, Grzybowski AT, Harth S, Lin W, Lee H, Yu C, Shin J, Deng K, Benites VT, Wang G, Baidoo EEK, Chen Y, Dev I, Petzold CJ, Keasling JD. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 2019; 567: 123-126 DOI: 10.1038/s41586-019-0978-9.
  • 63 Zirpel B, Degenhardt F, Martin C, Kayser O, Stehle F. Engineering yeasts as platform organisms for cannabinoid biosynthesis. J Biotechnol 2017; 259: 204-212 DOI: 10.1016/j.jbiotec.2017.07.008.
  • 64 Hardman JM, Brooke RT, Zipp BJ. Cannabinoid glycosides: in vitro production of a new class of cannabinoids with improved physicochemical properties. bioRxiv 2017; 104349 DOI: 10.1101/104349.
  • 65 Dai Z, Wang B, Liu Y, Shi M, Wang D, Zhang X, Liu T, Huang L, Zhang X. Producing aglycons of ginsenosides in bakersʼ yeast. Sci Rep 2014; 4: 3986 DOI: 10.1038/srep03698.
  • 66 Wang P, Wei W, Ye W, Li X, Zhao W, Yang C, Li C, Yan X, Zhou Z. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discov 2019; 5: 5 DOI: 10.1038/s41421-018-0075-5.
  • 67 Witherup KM, Look SA, Stasko MW, Ghiorzi TJ, Muschik GM, Cragg GM. Taxus spp. needles contain amounts of Taxol comparable to the bark of Taxus brevifolia: analysis and isolation. J Nat Prod 1990; 53: 1249-1255 DOI: 10.1021/np50071a017.
  • 68 Nazhand A, Durazzo A, Lucarini M, Mobilia MA, Omri B, Santini A. Rewiring cellular metabolism for heterologous biosynthesis of Taxol. Nat Prod Res 2020; 34: 110-121 DOI: 10.1080/14786419.2019.1630122.
  • 69 Li J, Mutanda I, Wang K, Yang L, Wang J, Wang Y. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana . Nat Commun 2019; 10: 4850 DOI: 10.1038/s41467-019-12879-y.
  • 70 Yukimune Y, Tabata H, Higashi Y, Hara Y. Methyl jasmonate-induced overproduction of paclitaxel and Baccatin III in Taxus cell suspension cultures. Nat Biotechnol 1996; 14: 1129-1132 DOI: 10.1038/nbt0996-1129.
  • 71 Nowrouzi B, Li RA, Walls LE, dʼEspaux L, Malcı K, Liang L, Jonguitud-Borrego N, Lerma-Escalera AI, Morones-Ramirez JR, Keasling JD, Rios-Solis L. Enhanced production of taxadiene in Saccharomyces cerevisiae . Microb Cell Fact 2020; 19: 200 DOI: 10.1186/s12934-020-01458-2.
  • 72 Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli . Science 2010; 330: 70-74 DOI: 10.1126/science.1191652.
  • 73 Mutanda I, Li J, Xu F, Wang Y. Recent advances in metabolic engineering, protein engineering, and transcriptome-guided insights toward synthetic production of Taxol. Front Bioeng Biotechnol 2021; 9: 632269 DOI: 10.3389/fbioe.2021.632269.
  • 74 Ibrahim A, Odon V, Kormelink R. Plant viruses in plant molecular pharming: Toward the use of enveloped viruses. Front Plant Sci 2019; 10: 803 DOI: 10.3389/FPLS.2019.00803.
  • 75 Murphy DJ. Improving containment strategies in biopharming. Plant Biotechnol J 2007; 5: 555-569 DOI: 10.1111/j.1467-7652.2007.00278.x.
  • 76 Burnett MJB, Burnett AC. Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants, People, Planet 2020; 2: 121-132 DOI: 10.1002/ppp3.10073.
  • 77 Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 2009; 27: 297-306 DOI: 10.1016/j.biotechadv.2009.01.008.
  • 78 Vasilev N, Smales CM, Schillberg S, Fischer R, Schiermeyer A. Developments in the production of mucosal antibodies in plants. Biotechnol Adv 2016; 34: 77-87 DOI: 10.1016/j.biotechadv.2015.11.002.
  • 79 Lim Y, Wong NS, Lee YY, Ku SC, Wong DC, Yap MG. Engineering mammalian cells in bioprocessing–current achievements and future perspectives. Biotechnol Appl Biochem 2010; 55: 175-189 DOI: 10.1042/BA20090363.
  • 80 Marsian J, Lomonossoff GP. Molecular pharming-VLPs made in plants. Curr Opin Biotechnol 2016; 37: 201-206 DOI: 10.1016/j.copbio.2015.12.007.
  • 81 Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L. Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 2010; 8: 564-587 DOI: 10.1111/j.1467-7652.2009.00497.x.
  • 82 Vazquez-Vilar M, Bernabé-Orts JM, Fernandez-Del-Carmen A, Ziarsolo P, Blanca J, Granell A, Orzaez D. A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods 2016; 12: 10 DOI: 10.1186/s13007-016-0101-2.
  • 83 Li J, Stoddard TJ, Demorest ZL, Lavoie PO, Luo S, Clasen BM, Cedrone F, Ray EE, Coffman AP, Daulhac A, Yabandith A, Retterath AJ, Mathis L, Voytas DF, DʼAoust MA, Zhang F. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. Plant Biotechnol J 2016; 14: 533-542 DOI: 10.1111/pbi.12403.
  • 84 Castilho A, Strasser R. Production of functionally active recombinant Proteins in Plants. In: Kermode AR, Jiang L, eds. Molecular Pharming. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2018: 67-89
  • 85 Saberianfar R, Menassa R. Strategies to increase Expression and Accumulation of recombinant Proteins. In: Kermode AR, Jiang L, eds. Molecular Pharming. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2018: 119-135
  • 86 Spiegel H, Stöger E, Twyman RM, Buyel JF. Current Status and Perspectives of the Molecular Farming Landscape. In: Kermode AR, Jiang L, eds. Molecular Pharming. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2018: 1-23
  • 87 Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJ. The expression of a nopaline synthase–human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 1986; 6: 347-357 DOI: 10.1007/BF00034942.
  • 88 Hiatt A, Cafferkey R, Bowdish K. Production of antibodies in transgenic plants. Nature 1989; 342: 76-78 DOI: 10.1038/342076a0.
  • 89 Park KY, Wi SJ. Potential of plants to produce recombinant protein products. J Plant Biol 2016; 59: 559-568 DOI: 10.1007/s12374-016-0482-9.
  • 90 Olinger jr. GG, Pettitt J, Kim D, Working C, Bohorov O, Bratcher B, Hiatt E, Hume SD, Johnson AK, Morton J, Pauly M, Whaley KJ, Lear CM, Biggins JE, Scully C, Hensley L, Zeitlin L. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc Natl Acad Sci U S A 2012; 109: 18030-18035 DOI: 10.1073/pnas.1213709109.
  • 91 Pettitt J, Zeitlin L, Kim DH, Working C, Johnson JC, Bohorov O, Bratcher B, Hiatt E, Hume SD, Johnson AK, Morton J, Pauly MH, Whaley KJ, Ingram MF, Zovanyi A, Heinrich M, Piper A, Zelko J, Olinger GG. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci Transl Med 2013; 5: 199ra113 DOI: 10.1126/scitranslmed.3006608.
  • 92 Zeitlin L, Pettitt J, Scully C, Bohorova N, Kim D, Pauly M, Hiatt A, Ngo L, Steinkellner H, Whaley KJ, Olinger GG. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc Natl Acad Sci U S A 2011; 108: 20690-20694 DOI: 10.1073/pnas.1108360108.
  • 93 Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, Fausther-Bovendo H, Wei H, Aviles J, Hiatt E, Johnson A, Morton J, Swope K, Bohorov O, Bohorova N, Goodman C, Kim D, Pauly MH, Velasco J, Pettitt J, Olinger GG, Whaley K, Xu B, Strong JE, Zeitlin L, Kobinger GP. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 2014; 514: 47-53 DOI: 10.1038/nature13777.
  • 94 Qiu X, Audet J, Lv M, He S, Wong G, Wei H, Luo L, Fernando L, Kroeker A, Fausther Bovendo H, Bello A, Li F, Ye P, Jacobs M, Ippolito G, Saphire EO, Bi S, Shen B, Gao GF, Zeitlin L, Feng J, Zhang B, Kobinger GP. Two-mAb cocktail protects macaques against the Makona variant of Ebola virus. Sci Transl Med 2016; 8: 329ra33 DOI: 10.1126/scitranslmed.aad9875.
  • 95 LeBlanc Z, Waterhouse P, Bally J. Plant-based vaccines: The way ahead?. Viruses 2020; 13: 5 DOI: 10.3390/v13010005.
  • 96 Mahmood N, Nasir SB, Hefferon K. Plant-based drugs and vaccines for COVID-19. Vaccines 2021; 9: 1-16 DOI: 10.3390/vaccines9010015.
  • 97 Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD. High-level semisynthetic production of the potent antimalarial artemisinin. Nature 2013; 496: 528-532 DOI: 10.1038/nature12051.
  • 98 Fox JL. First plant-made biologic approved. Nat Biotechnol 2012; 30: 472 DOI: 10.1038/nbt0612-472.
  • 99 Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucherʼs disease using a plant cell system. Plant Biotechnol J 2007; 5: 579-590 DOI: 10.1111/j.1467-7652.2007.00263.x.
  • 100 Zimran A, Wajnrajch M, Hernandez B, Pastores GM. Taliglucerase alfa: Safety and efficacy across 6 clinical studies in adults and children with Gaucher disease. Orphanet J Rare Dis 2018; 13: 36 DOI: 10.1186/s13023-018-0776-8.
  • 101 Schiermeyer A. Optimizing product quality in molecular farming. Curr Opin Biotechnol 2020; 61: 15-20 DOI: 10.1016/j.copbio.2019.08.012.
  • 102 Wilding KM, Schinn SM, Long EA, Bundy BC. The emerging impact of cell-free chemical biosynthesis. Curr Opin Biotechnol 2018; 53: 115-121 DOI: 10.1016/j.copbio.2017.12.019.
  • 103 Stech M, Merk H, Schenk JA, Stöcklein WF, Wüstenhagen DA, Micheel B, Duschl C, Bier FF, Kubick S. Production of functional antibody fragments in a vesicle-based eukaryotic cell-free translation system. J Biotechnol 2012; 164: 220-231 DOI: 10.1016/j.jbiotec.2012.08.020.
  • 104 Schinn SM, Broadbent A, Bradley WT, Bundy BC. Protein synthesis directly from PCR: Progress and applications of cell-free protein synthesis with linear DNA. N Biotechnol 2016; 33: 480-487 DOI: 10.1016/j.nbt.2016.04.002.
  • 105 Jiang L, Zhao J, Lian J, Xu Z. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology. Synth Syst Biotechnol 2018; 3: 90-96 DOI: 10.1016/j.synbio.2018.02.003.
  • 106 Fischer R, Vasilev N, Twyman RM, Schillberg S. High-value products from plants: The challenges of process optimization. Curr Opin Biotechnol 2015; 32: 156-162 DOI: 10.1016/j.copbio.2014.12.018.
  • 107 Vasilev N, Grömping U, Lipperts A, Raven N, Fischer R, Schillberg S. Optimization of BY-2 cell suspension culture medium for the production of a human antibody using a combination of fractional factorial designs and the response surface method. Plant Biotechnol J 2013; 11: 867-874 DOI: 10.1111/pbi.12079.
  • 108 Vasilev N, Boccard J, Lang G, Grömping U, Fischer R, Goepfert S, Rudaz S, Schillberg S. Structured plant metabolomics for the simultaneous exploration of multiple factors. Sci Rep 2016; 6: 37390 DOI: 10.1038/srep37390.
  • 109 Covello PS. Making artemisinin. Phytochemistry 2008; 69: 2881-2885 DOI: 10.1016/j.phytochem.2008.10.001.
  • 110 Turconi J, Griolet F, Guevel R, Oddon G, Villa R, Geatti A, Hvala M, Rossen K, Göller R, Burgard A. Semisynthetic artemisinin, the chemical path to industrial production. Org Process Res Dev 2014; 18: 417-422 DOI: 10.1021/op4003196.
  • 111 Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MA. High-yield resveratrol production in engineered Escherichia coli . Appl Environ Microbiol 2011; 77: 3451-3460 DOI: 10.1128/AEM.02186-10.
  • 112 Fulzele DP, Heble MR. Large-scale cultivation of Catharanthus roseus cells: Production of ajamalicine in a 20-l airlift bioreactor. J Biotechnol 1994; 35: 1-7 DOI: 10.1016/0168-1656(94)90185-6.
  • 113 Ramachandra Rao S, Ravishankar GA. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 2002; 20: 101-153 DOI: 10.1016/S0734-9750(02)00007-1.
  • 114 Razay G, Wilcock GK. Galantamine in Alzheimerʼs disease. Expert Rev Neurother 2008; 8: 9-17 DOI: 10.1586/14737175.8.1.9.
  • 115 Marco-Contelles J, do Carmo Carreiras M, Rodríguez C, Villarroya M, García AG. Synthesis and pharmacology of Galantamine. Chem Rev 2006; 106: 116-133 DOI: 10.1021/cr040415t.
  • 116 Reichman WE. Current pharmacologic options for patients with Alzheimerʼs disease. Ann Gen Hosp Psychiatry 2003; 2: 1 DOI: 10.1186/1475-2832-2-1.
  • 117 Chen W, Balan P, Popovich DG. Analysis of ginsenoside content (Panax ginseng) from different regions. Molecules 2019; 24: 29-41 DOI: 10.3390/molecules24193491.
  • 118 Hansen EH, Møller BL, Kock GR, Bünner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and bakerʼs yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 2009; 75: 2765-2774 DOI: 10.1128/AEM.02681-08.
  • 119 Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR. Improved vanillin production in bakerʼs yeast through in silico design. Microb Cell Fact 2010; 9: 84 DOI: 10.1186/1475-2859-9-84.
  • 120 Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJ, Pronk JT, Daran JM. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae . Microb Cell Fact 2012; 11: 155 DOI: 10.1186/1475-2859-11-155.
  • 121 Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 2012; 109: E1111-1118 DOI: 10.1073/pnas.1110740109.
  • 122 Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD. High-level semisynthetic production of the potent antimalarial artemisinin. Nature 2013; 496: 528-532 DOI: 10.1038/nature12051.
  • 123 Mazalovska M, Kouokam JC. Transiently expressed mistletoe lectin II in Nicotiana benthamiana demonstrates anticancer activity in vitro . Molecules 2020; 25: 2562 DOI: 10.3390/molecules25112562.
  • 124 Kommineni V, Markert M, Ren Z, Palle S, Carrillo B, Deng J, Tejeda A, Nandi S, McDonald KA, Marcel S, Holtz B. In vivo glycan engineering via the mannosidase I inhibitor (kifunensine) improves efficacy of rituximab manufactured in Nicotiana benthamiana plants. Int J Mol Sci 2019; 20: 194 DOI: 10.3390/ijms20010194.
  • 125 Brodzik R, Glogowska M, Bandurska K, Okulicz M, Deka D, Ko K, van der Linden J, Leusen JH, Pogrebnyak N, Golovkin M, Steplewski Z, Koprowski H. Plant-derived anti-Lewis Y mAb exhibits biological activities for efficient immunotherapy against human cancer cells. Proc Natl Acad Sci U S A 2006; 103: 8804-8809 DOI: 10.1073/pnas.0603043103.
  • 126 Hurtado J, Acharya D, Lai H, Sun H, Kallolimath S, Steinkellner H, Bai F, Chen Q. In vitro and in vivo efficacy of anti-chikungunya virus monoclonal antibodies produced in wild-type and glycoengineered Nicotiana benthamiana plants. Plant Biotechnol J 2020; 18: 266-273 DOI: 10.1111/pbi.13194.
  • 127 Hamorsky KT, Kouokam JC, Jurkiewicz JM, Nelson B, Moore LJ, Husk AS, Kajiura H, Fujiyama K, Matoba N. N-Glycosylation of cholera toxin B subunit in Nicotiana benthamiana: Impacts on host stress response, production yield and vaccine potential. Sci Rep 2015; 5: 8003 DOI: 10.1038/srep08003.
  • 128 Hamorsky KT, Kouokam JC, Bennett LJ, Baldauf KJ, Kajiura H, Fujiyama K, Matoba N. Rapid and scalable plant-based production of a cholera toxin B subunit variant to aid in mass vaccination against cholera outbreaks. PLoS Negl Trop Dis 2013; 7: e2406 DOI: 10.1371/journal.pntd.0002046.
  • 129 Dent M, Hurtado J, Paul AM, Sun H, Lai H, Yang M, Esqueda A, Bai F, Steinkellner H, Chen Q. Plant-produced anti-dengue virus monoclonal antibodies exhibit reduced antibody-dependent enhancement of infection activity. J Gen Virol 2016; 97: 3280-3290 DOI: 10.1099/jgv.0.000635.
  • 130 Kim MY, Jang YS, Yang MS, Kim TG. High expression of consensus dengue virus envelope glycoprotein domain III using a viral expression system in tobacco. Plant Cell Tissue Organ Cult 2015; 122: 445-451 DOI: 10.1007/s11240-015-0781-8.
  • 131 Diamos AG, Hunter JGL, Pardhe MD, Rosenthal SH, Sun H, Foster BC, DiPalma MP, Chen Q, Mason HS. High level production of monoclonal antibodies using an optimized plant expression system. Front Bioeng Biotechnol 2020; 7: 472 DOI: 10.3389/fbioe.2019.00472.
  • 132 Jez J, Castilho A, Grass J, Vorauer-Uhl K, Sterovsky T, Altmann F, Steinkellner H. Expression of functionally active sialylated human erythropoietin in plants. Biotechnol J 2013; 8: 371-382 DOI: 10.1002/biot.201200363.
  • 133 Kytidou K, Beenakker TJM, Westerhof LB, Hokke CH, Moolenaar GF, Goosen N, Mirzaian M, Ferraz MJ, de Geus M, Kallemeijn WW, Overkleeft HS, Boot RG, Schots A, Bosch D, Aerts JMFG. Human alpha galactosidases transiently produced in Nicotiana benthamiana leaves: New insights in substrate specificities with relevance for Fabry disease. Front Plant Sci 2017; 8: 1026 DOI: 10.3389/fpls.2017.01026.
  • 134 DʼAoust MA, Lavoie PO, Couture MM, Trépanier S, Guay JM, Dargis M, Mongrand S, Landry N, Ward BJ, Vézina LP. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 2008; 6: 930-940 DOI: 10.1111/j.1467-7652.2008.00384.x.
  • 135 Kanagarajan S, Tolf C, Lundgren A, Waldenström J, Brodelius PE. Transient expression of hemagglutinin antigen from low pathogenic avian influenza a (H7N7) in Nicotiana benthamiana . PLoS One 2012; 7: e33010 DOI: 10.1371/journal.pone.0033010.
  • 136 Huang Z, LePore K, Elkin G, Thanavala Y, Mason H. High yield rapid production of hepatitis B surface antigen in plant leaf by a viral expression system. Plant Biotechnol J 2008; 6: 202-209 DOI: 10.1111/j.1467-7652.2007.00316.x.
  • 137 Pyrski M, Mieloch AA, Plewiński A, Basińska-Barczak A, Gryciuk A, Bociąg P, Murias M, Rybka JD, Pniewski T. Parenteral–oral immunization with plant-derived HBcAG as a potential therapeutic vaccine against chronic hepatitis B. Vaccines (Basel) 2019; 7: 211 DOI: 10.3390/vaccines7040211.
  • 138 Hanittinan O, Oo Y, Chaotham C, Rattanapisit K, Shanmugaraj B, Phoolcharoen W. Expression optimization, purification and in vitro characterization of human epidermal growth factor produced in Nicotiana benthamiana . Biotechnol Reports 2020; 28: e00524 DOI: 10.1016/j.btre.2020.e00524.
  • 139 Margolin E, Chapman R, Meyers AE, van Diepen MT, Ximba P, Hermanus T, Crowther C, Weber B, Morris L, Williamson AL, Rybicki EP. Production and immunogenicity of soluble plant-produced HIV-1 subtype C envelope gp140 immunogens. Front Plant Sci 2019; 10: 1378 DOI: 10.3389/fpls.2019.01378.
  • 140 Seber Kasinger LE, Dent MW, Mahajan G, Hamorsky KT, Matoba N. A novel anti-HIV-1 bispecific bNAb-lectin fusion protein engineered in a plant-based transient expression system. Plant Biotechnol J 2019; 17: 1646-1656 DOI: 10.1111/pbi.13090.
  • 141 Singh AA, Pooe O, Kwezi L, Lotter-Stark T, Stoychev SH, Alexandra K, Gerber I, Bhiman JN, Vorster J, Pauly M, Zeitlin L, Whaley K, Mach L, Steinkellner H, Morris L, Tsekoa TL, Chikwamba R. Plant-based production of highly potent anti-HIV antibodies with engineered posttranslational modifications. Sci Rep 2020; 10: 62101 DOI: 10.1038/s41598-020-63052-1.
  • 142 Voepel N, Boes A, Edgue G, Beiss V, Kapelski S, Reimann A, Schillberg S, Pradel G, Fendel R, Scheuermayer M, Spiegel H, Fischer R. Malaria vaccine candidate antigen targeting the pre-erythrocytic stage of Plasmodium falciparum produced at high level in plants. Biotechnol J 2014; 9: 1435-1445 DOI: 10.1002/biot.201400350.
  • 143 Tsekoa TL, Lotter-Stark T, Buthelezi S, Chakauya E, Stoychev SH, Sabeta C, Shumba W, Phahladira B, Hume S, Morton J, Rupprecht CE, Steinkellner H, Pauly M, Zeitlin L, Whaley K, Chikwamba R. Efficient in vitro and in vivo activity of glyco-engineered plant-produced rabies monoclonal antibodies E559 and 62-71-3. PLoS One 2016; 11: e0159313 DOI: 10.1371/journal.pone.0159313.
  • 144 Shanmugaraj B, Rattanapisit K, Manopwisedjaroen S, Thitithanyanont A, Phoolcharoen W. Monoclonal antibodies B38 and H4 produced in Nicotiana benthamiana neutralize SARS-CoV-2 in vitro . Front Plant Sci 2020; 11: 589995 DOI: 10.3389/fpls.2020.589995.
  • 145 Siriwattananon K, Manopwisedjaroen S, Kanjanasirirat P, Budi Purwono P, Rattanapisit K, Shanmugaraj B, Smith DR, Borwornpinyo S, Thitithanyanont A, Phoolcharoen W. Development of plant-produced recombinant ACE2-Fc fusion protein as a potential therapeutic agent against SARS-CoV-2. Front Plant Sci 2021; 11: 604663 DOI: 10.3389/fpls.2020.604663.
  • 146 Castilho A, Schwestka J, Kienzl NF, Vavra U, Grünwald-Gruber C, Izadi S, Hiremath C, Niederhöfer J, Laurent E, Monteil V, Mirazimi A, Wirnsberger G, Stadlmann J, Stöger E, Mach L, Strasser R. Generation of enzymatically competent SARS-CoV-2 decoy receptor ACE2-Fc in glycoengineered Nicotiana benthamiana . Biotechnol J 2021; 16: e2000566 DOI: 10.1002/biot.202000566.
  • 147 Rattanapisit K, Shanmugaraj B, Manopwisedjaroen S, Purwono PB, Siriwattananon K, Khorattanakulchai N, Hanittinan O, Boonyayothin W, Thitithanyanont A, Smith DR, Phoolcharoen W. Rapid production of SARS-CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana . Sci Rep 2020; 10: 17698 DOI: 10.1038/s41598-020-74904-1.
  • 148 Lai H, He J, Hurtado J, Stahnke J, Fuchs A, Mehlhop E, Gorlatov S, Loos A, Diamond MS, Chen Q. Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants. Plant Biotechnol J 2014; 12: 1098-1107 DOI: 10.1111/pbi.12217.
  • 149 He J, Peng L, Lai H, Hurtado J, Stahnke J, Chen Q. A plant-produced antigen elicits potent immune responses against West Nile Virus in mice. Biomed Res Int 2014; 2014: 952865 DOI: 10.1155/2014/952865.
  • 150 He J, Lai H, Esqueda A, Chen Q. Plant-produced antigen displaying virus-like particles evokes potent antibody responses against West Nile virus in mice. Vaccines 2021; 9: 1-13 DOI: 10.3390/vaccines9010060.
  • 151 Jugler C, Joensuu J, Chen Q. Hydrophobin-protein a fusion protein produced in plants efficiently purified an anti-West Nile Virus monoclonal antibody from plant extracts via aqueous two-phase separation. Int J Mol Sci 2020; 21: 2140 DOI: 10.3390/ijms21062140.
  • 152 Diamos AG, Pardhe MD, Sun H, Hunter JGL, Kilbourne J, Chen Q, Mason HS. A highly expressing, soluble, and stable plant-made IgG fusion vaccine strategy enhances antigen immunogenicity in mice without adjuvant. Front Immunol 2020; 11 (01) 576012 DOI: 10.3389/fimmu.2020.576012.
  • 153 Yang M, Sun H, Lai H, Hurtado J, Chen Q. Plant-produced Zika virus envelope protein elicits neutralizing immune responses that correlate with protective immunity against Zika virus in mice. Plant Biotechnol J 2018; 16: 572-580 DOI: 10.1111/pbi.12796.