Planta Med 2018; 84(12/13): 855-873
DOI: 10.1055/a-0630-1899
Reviews
Georg Thieme Verlag KG Stuttgart · New York

The Integration of Metabolomics and Next-Generation Sequencing Data to Elucidate the Pathways of Natural Product Metabolism in Medicinal Plants

Federico Scossa
1   Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
2   Consiglio per la Ricerca in Agricoltura e lʼAnalisi dellʼEconomia Agraria, Rome, Italy
,
Maria Benina
3   Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
,
Saleh Alseekh
1   Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
,
Youjun Zhang
1   Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
3   Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
,
Alisdair R. Fernie
1   Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
3   Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 08. Februar 2018
revised 06. April 2018

accepted 08. Mai 2018

Publikationsdatum:
29. Mai 2018 (online)

Abstract

Plants have always been used as medicines since ancient times to treat diseases. The knowledge around the active components of herbal preparations has remained nevertheless fragmentary: the biosynthetic pathways of many secondary metabolites of pharmacological importance have been clarified only in a few species, while the chemodiversity present in many medicinal plants has remained largely unexplored. Despite the advancements of synthetic biology for production of medicinal compounds in heterologous hosts, the native plant species are often the most reliable and economic source for their production. It thus becomes fundamental to investigate the metabolic composition of medicinal plants to characterize their natural metabolic diversity and to define the biosynthetic routes in planta of important compounds to develop strategies to further increase their content. We present here a number of case studies for selected classes of secondary metabolites and we review their health benefits and the historical developments in their structural elucidation and characterization of biosynthetic genes. We cover the cases of benzoisoquinoline and monoterpenoid indole alkaloids, cannabinoids, caffeine, ginsenosides, withanolides, artemisinin, and taxol; we show how the “early” biochemical or the more recent integrative approaches–based on omics-analyses–have helped to elucidate their metabolic pathways and cellular compartmentation. We also summarize how the knowledge generated about their biosynthesis has been used to develop metabolic engineering strategies in heterologous and native hosts. We conclude that following the advent of novel, high-throughput and cost-effective analytical technologies, the secondary metabolism of medicinal plants can now be examined under the lens of systems biology.

 
  • References

  • 1 Hardy K, Buckley S, Collins MJ, Estalrrich A, Brothwell D, Copeland L, Garcia-Tabernero A, Garcia-Vargas S, de la Rasilla M, Lalueza-Fox C, Huguet R, Bastir M, Santamaria D, Madella M, Wilson J, Cortes AF, Rosas A. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 2012; 99: 617-626
  • 2 Krikler DM. The foxglove, “The old woman from Shropshire” and William Withering. J Am Coll Cardiol 1985; 5: A3-A9
  • 3 Somberg J, Greenfield B, Tepper D. Digitalis – historical development in clinical medicine. J Clin Pharmacol 1985; 25: 484-489
  • 4 Brook K, Bennett J, Desai SP. The chemical history of morphine: an 8000-year journey, from resin to de-novo synthesis. J Anesth Hist 2017; 3: 50-55
  • 5 Wurtzel ET, Kutchan TM. Plant metabolism, the diverse chemistry set of the future. Science 2016; 353: 1232-1236
  • 6 Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14: 111-129
  • 7 Buckingham J. Dictionary of natural Products. Abingdon: Taylor & Francis; 1993
  • 8 Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75: 311-335
  • 9 Rishton GM. Natural products as a robust source of new drugs and drug leads: past successes and present day issues. Am J Cardio 2008; 101: 43D-49D
  • 10 Barker A, Kettle JG, Nowak T, Pease JE. Expanding medicinal chemistry space. Drug Discov Today 2013; 18: 298-304
  • 11 Skirycz A, Kierszniowska S, Meret M, Willmitzer L, Tzotzos G. Medicinal bioprospecting of the Amazon rainforest: a modern Eldorado?. Trends Biotechnol 2016; 34: 781-790
  • 12 OʼConnor SE. Engineering of secondary metabolism. Annu Rev Genet 2015; 49: 71-94
  • 13 Dastmalchi M, Park MR, Morris JS, Facchini P. Family portraits: the enzymes behind benzylisoquinoline alkaloid diversity. Phytochem Rev 2018; 17: 249-277
  • 14 Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R. Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 2016; 15: 221-250
  • 15 Thamm AMK, Qu Y, De Luca V. Discovery and metabolic engineering of iridoid/secoiridoid and monoterpenoid indole alkaloid biosynthesis. Phytochem Rev 2016; 15: 339-361
  • 16 Radwan MM, Wanas AS, Chandra S, ElSohly MA. Natural Cannabinoids of Cannabis and Methods of Analysis. In: Chandra S, Lata H, ElSohly MA. eds. Cannabis sativa L. – Botany and Biotechnology. Cham: Springer International Publishing; 2017: 161-182
  • 17 Ashihara H, Mizuno K, Yokota T, Crozier A. Xanthine Alkaloids: Occurrence, Biosynthesis, and Function in Plants. In: Kinghorn AD, Falk H, Gibbons S, Kobayashi JI. eds. Progress in the Chemistry of organic natural Products 105. Cham: Springer International Publishing; 2017: 1-88
  • 18 Kim YJ, Zhang DB, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015; 33: 717-735
  • 19 Yang BY, Xia YG, Pan J, Liu Y, Wang QH, Kuang HX. Phytochemistry and biosynthesis of δ-lactone withanolides. Phytochem Rev 2016; 15: 771-797
  • 20 Xie DY, Ma DM, Judd R, Jones AL. Artemisinin biosynthesis in Artemisia annua and metabolic engineering: questions, challenges, and perspectives. Phytochem Rev 2016; 15: 1093-1114
  • 21 Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR. Taxol biosynthesis and molecular genetics. Phytochem Rev 2006; 5: 75-97
  • 22 Calvin M, Benson AA. The path of carbon in photosynthesis. Science 1948; 107: 476-480
  • 23 Benson A, Calvin M. The dark reductions of photosynthesis. Science 1947; 105: 648-649
  • 24 Benson AA, Calvin M. Carbon dioxide fixation by green plants. Annu Rev Plant Phys 1950; 1: 25-42
  • 25 Hartmann T. From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 2007; 68: 2831-2846
  • 26 Kim J, Buell CR. A revolution in plant metabolism: genome-enabled pathway discovery. Plant Physiol 2015; 169: 1532-1539
  • 27 Fernie AR, Pichersky E. Focus issue on metabolism: metabolites, metabolites everywhere. Plant Physiol 2015; 169: 1421-1423
  • 28 Xu SQ, Brockmoller T, Navarro-Quezada A, Kuhl H, Gase K, Ling ZH, Zhou WW, Kreitzer C, Stanke M, Tang HB, Lyons E, Pandey P, Pandey SP, Timmermann B, Gaquerel E, Baldwin IT. Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proc Natl Acad Sci U S A 2017; 114: 6133-6138
  • 29 Huang RQ, OʼDonnell AJ, Barboline JJ, Barkman TJ. Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes. Proc Natl Acad Sci U S A 2016; 113: 10613-10618
  • 30 Facchini PJ, De Luca V. Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J 2008; 54: 763-784
  • 31 Sun M, Lou W, Chun JY, Cho DS, Nadiminty N, Evans CP, Chen J, Yue J, Zhou Q, Gao AC. Sanguinarine suppresses prostate tumor growth and inhibits survivin expression. Genes Cancer 2010; 1: 283-292
  • 32 Sun M, Chun J, Lou W, Gao A. Sanguinarine is a novel inhibitor of survivin and inhibits the growth of prostate cancer cells. J Urology 2010; 183: E459
  • 33 Ballantyne JC, Shin NS. Efficacy of opioids for chronic pain: a review of the evidence. Clin Journal Pain 2008; 24: 469-478
  • 34 Battersby AR, Harper BJT. Rate study on the incorporation of tyrosine into morphine, codeine and thebaine. Tetrahedron Lett 1960; 1: 21-24
  • 35 Leete E. Biosynthesis of alkaloids. Science 1965; 147: 1000-1006
  • 36 Rueffer M, Elshagi H, Nagakura N, Zenk MH. (S)-Norlaudanosoline synthase – the 1st enzyme in the benzylisoquinoline biosynthetic-pathway. FEBS Lett 1981; 129: 5-9
  • 37 Samanani N, Liscombe DK, Facchini PJ. Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant J 2004; 40: 302-313
  • 38 Morishige T, Tsujita T, Yamada Y, Sato F. Molecular characterization of the S-adenosyl-L-methionine: 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase involved in isoquinoline alkaloid biosynthesis in Coptis japonica . J Biol Chem 2000; 275: 23398-23405
  • 39 Ounaroon A, Decker G, Schmidt J, Lottspeich F, Kutchan TM. (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum – cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J 2003; 36: 808-819
  • 40 Choi KB, Morishige T, Shitan N, Yazaki K, Sato F. Molecular cloning and characterization of coclaurine N-methyltransferase from cultured cells of Coptis japonica . J Biol Chem 2002; 277: 830-835
  • 41 Hagel JM, Facchini PJ. Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat Chem Biol 2010; 6: 273-275
  • 42 Desgagne-Penix I, Khan MF, Schriemer DC, Cram D, Nowak J, Facchini PJ. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biol 2010; 10: 252
  • 43 Desgagne-Penix I, Farrow SC, Cram D, Nowak J, Facchini PJ. Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. Plant Mol Biol 2012; 79: 295-313
  • 44 Winzer T, Kern M, King AJ, Larson TR, Teodor RI, Donninger SL, Li Y, Dowle AA, Cartwright J, Bates R, Ashford D, Thomas J, Walker C, Bowser TA, Graham IA. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science 2015; 349: 309-312
  • 45 Farrow SC, Hagel JM, Beaudoin GAW, Burns DC, Facchini PJ. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nat Chem Biol 2015; 11: 728-732
  • 46 Hoffmann I, Oliw EH. Discovery of a linoleate 9S-dioxygenase and an allene oxide synthase in a fusion protein of Fusarium oxysporum. J Lipid Res 2013; 54: 3471-3480
  • 47 Ye KQ, Ke Y, Keshava N, Shanks J, Kapp JA, Tekmal RR, Petros J, Joshi HC. Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proc Natl Acad Sci U S A 1998; 95: 1601-1606
  • 48 Sung B, Ahn KS, Aggarwal BB. Noscapine, a benzylisoquinoline alkaloid, sensitizes leukemic cells to chemotherapeutic agents and cytokines by modulating the NF-kappa B signaling pathway. Cancer Res 2010; 70: 3259-3268
  • 49 Battersby AR, Foulkes DM, Hirst M, Parry GV, Staunton J. Alkaloid biosynthesis. Part XI. Studies related to formation and oxidation of reticuline in morphine biosynthesis. J Chem Soc C 1968; 210-216
  • 50 Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, Li Y, Meade F, Teodor R, Vaistij FE, Walker C, Bowser TA, Graham IA. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 2012; 336: 1704-1708
  • 51 Nutzmann HW, Huang AC, Osbourn A. Plant metabolic clusters – from genetics to genomics. New Phytol 2016; 211: 771-789
  • 52 Hudlicky T. Recent advances in process development for opiate-derived pharmaceutical agents. Can J Chem 2015; 93: 492-501
  • 53 Thodey K, Galanie S, Smolke CD. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 2014; 10: 837-844
  • 54 Galanie S, Thodey K, Trenchard IJ, Interrante MF, Smolke CD. Complete biosynthesis of opioids in yeast. Science 2015; 349: 1095-1100
  • 55 Nakagawa A, Matsumura E, Koyanagi T, Katayama T, Kawano N, Yoshimatsu K, Yamamoto K, Kumagai H, Sato F, Minami H. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli . Nat Commun 2016; 7: 10390
  • 56 Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret JP, Beaudoin GAW, Facchini PJ, Martin VJJ. Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae . Nat Commun 2014; 5: 3283
  • 57 Bates D, Eastman A. Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Brit J Clin Pharmacol 2017; 83: 255-268
  • 58 Roepke J, Salim V, Wu M, Thamm AMK, Murata J, Ploss K, Boland W, De Luca V. Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc Natl Acad Sci U S A 2010; 107: 15287-15292
  • 59 St-Pierre B, Vazquez-Flota FA, De Luca V. Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 1999; 11: 887-900
  • 60 Guirimand G, Guihur A, Ginis O, Poutrain P, Hericourt F, Oudin A, Lanoue A, St-Pierre B, Burlat V, Courdavault V. The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J 2011; 278: 749-763
  • 61 Guirimand G, Guihur A, Poutrain P, Hericourt F, Mahroug S, St-Pierre B, Burlat V, Courdavault V. Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus . J Plant Physiol 2011; 168: 549-557
  • 62 Vranova E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 2013; 64: 665-700
  • 63 Money T, Wright IG, Mccapra F, Hall ES, Scott AI. Biosynthesis of indole alkaloids. Vindoline. J Am Chem Soc 1968; 90: 4144-4150
  • 64 Miettinen K, Dong LM, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D. The seco-iridoid pathway from Catharanthus roseus . Nat Commun 2014; 5: 3608
  • 65 Salim V, Yu F, Altarejos J, De Luca V. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. Plant J 2013; 76: 754-765
  • 66 Asada K, Salim V, Masada-Atsumi S, Edmunds E, Nagatoshi M, Terasaka K, Mizukami H, De Luca V. A 7-Deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle. Plant Cell 2013; 25: 4123-4134
  • 67 Salim V, Wiens B, Masada-Atsumi S, Yu F, De Luca V. 7-Deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis. Phytochemistry 2014; 101: 23-31
  • 68 Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui YH, OʼConnor SE. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 2012; 492: 138-142
  • 69 Mcknight TD, Roessner CA, Devagupta R, Scott AI, Nessler CL. Nucleotide-sequence of a cDNA-encoding the vacuolar protein strictosidine synthase from Catharanthus roseus . Nucleic Acids Res 1990; 18: 4939
  • 70 Geerlings A, Ibanez MML, Memelink J, van der Heijden R, Verpoorte R. Molecular cloning and analysis of strictosidine beta-d-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus . J Biol Chem 2000; 275: 3051-3056
  • 71 Tatsis EC, Carqueijeiro I, de Bernonville TD, Franke J, Dang TTT, Oudin A, Lanoue A, Lafontaine F, Stavrinides AK, Clastre M, Courdavault V, OʼConnor SE. A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nat Commun 2017; 8: 316
  • 72 Stavrinides A, Tatsis Evangelos C, Foureau E, Caputi L, Kellner F, Courdavault V, OʼConnor SE. Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Chem Biol 2015; 22: 336-341
  • 73 Besseau S, Kellner F, Lanoue A, Thamm AMK, Salim V, Schneider B, Geu-Flores F, Hofer R, Guirimand G, Guihur A, Oudin A, Glevarec G, Foureau E, Papon N, Clastre M, Giglioli-Guivarcʼh N, St-Pierre B, Werck-Reichhart D, Burlat V, De Luca V, OʼConnor SE, Courdavault V. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus . Plant Physiol 2013; 163: 1792-1803
  • 74 Kellner F, Kim J, Clavijo BJ, Hamilton JP, Childs KL, Vaillancourt B, Cepela J, Habermann M, Steuernagel B, Clissold L, McLay K, Buell CR, OʼConnor SE. Genome-guided investigation of plant natural product biosynthesis. Plant J 2015; 82: 680-692
  • 75 Qu Y, Easson ML, Froese J, Simionescu R, Hudlicky T, De Luca V. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci U S A 2015; 112: 6224-6229
  • 76 Meijer AH, Dewaal A, Verpoorte R. Purification of the cytochrome-P-450 enzyme geraniol 10-hydroxylase from cell-cultures of Catharanthus roseus . J Chromatogr 1993; 635: 237-249
  • 77 Collu G, Unver N, Peltenburg-Looman AMG, van der Heijden R, Verpoorte R, Memelink J. Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 2001; 508: 215-220
  • 78 Luijendijk TJC, Stevens LH, Verpoorte R. Purification and characterisation of strictosidine beta-D-glucosidase from Catharanthus roseus cell suspension cultures. Plant Physiol Bioch 1998; 36: 419-425
  • 79 Rischer H, Oresic M, Seppanen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MCE, Inze D, Oksman-Caldentey KM, Goossens A. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci U S A 2006; 103: 5614-5619
  • 80 Murata J, Roepke J, Gordon H, De Luca V. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 2008; 20: 524-542
  • 81 Gongora-Castillo E, Childs KL, Fedewa G, Hamilton JP, Liscombe DK, Magallanes-Lundback M, Mandadi KK, Nims E, Runguphan W, Vaillancourt B, Varbanova-Herde M, DellaPenna D, McKnight TD, OʼConnor S, Buell CR. Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PLoS One 2012; 7: e52506
  • 82 Van Moerkercke A, Fabris M, Pollier J, Baart GJE, Rombauts S, Hasnain G, Rischer H, Memelink J, Oksman-Caldentey KM, Goossens A. CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-seq data. Plant Cell Physiol 2013; 54: 673-685
  • 83 Xiao M, Zhang Y, Chen X, Lee EJ, Barber CJS, Chakrabarty R, Desgagne-Penix I, Haslam TM, Kim YB, Liu EW, MacNevin G, Masada-Atsumi S, Reed DW, Stout JM, Zerbe P, Zhang YS, Bohlmann J, Covello PS, De Luca V, Page JE, Ro DK, Martin VJJ, Facchini PJ, Sensen CW. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 2013; 166: 122-134
  • 84 Verma M, Ghangal R, Sharma R, Sinha AK, Jain M. Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling. PLoS One 2014; 9: e103583
  • 85 de Bernonville TD, Foureau E, Parage C, Lanoue A, Clastre M, Londono MA, Oudin A, Houille B, Papon N, Besseau S, Glevarec G, Atehortua L, Giglioli-Guivarcʼh N, St-Pierre B, De Luca V, OʼConnor SE, Courdavault V. Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics 2015; 16: 619
  • 86 Giddings LA, Liscombe DK, Hamilton JP, Childs KL, DellaPenna D, Buell CR, OʼConnor SE. A stereoselective hydroxylation step of alkaloid biosynthesis by a unique cytochrome P450 in Catharanthus roseus . J Biol Chem 2011; 286: 16751-16757
  • 87 Guirimand G, Courdavault V, Lanoue A, Mahroug S, Guihur A, Blanc N, Giglioli-Guivarcʼh N, St-Pierre B, Burlat V. Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”?. BMC Plant Biol 2010; 10: 182
  • 88 Yu F, De Luca V. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus . Proc Natl Acad Sci U S A 2013; 110: 15830-15835
  • 89 Carqueijeiro I, Noronha H, Duarte P, Geros H, Sottomayor M. Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport. Plant Physiol 2013; 162: 1486-1496
  • 90 Payne RME, Xu DY, Foureau E, Teto Carqueijeiro MI, Oudin A, de Bernonville TD, Novak V, Burow M, Olsen CE, Jones DM, Tatsis EC, Pendle A, Halkier BA, Geu-Flores F, Courdavault V, Nour-Eldin HH, OʼConnor SE. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat Plants 2017; 3: 16208
  • 91 Brown S, Clastre M, Courdavault V, OʼConnor SE. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci U S A 2015; 112: 3205-3210
  • 92 Kennedy J. Mutasynthesis, chemobiosynthesis, and back to semi-synthesis: combining synthetic chemistry and biosynthetic engineering for diversifying natural products. Nat Prod Rep 2008; 25: 25-34
  • 93 Mechoulam R, Hanus LO, Pertwee R, Howlett AC. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci 2014; 15: 757-764
  • 94 Owens B. Drug development: the treasure chest. Nature 2015; 525: S6
  • 95 Pain S. A potted history. Nature 2015; 525: S10
  • 96 Andre CM, Hausman JF, Guerriero G. Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci 2016; 7: 19
  • 97 Grotenhermen F, Muller-Vahl K. Medicinal uses of marijuana and cannabinoids. Crit Rev Plant Sci 2016; 35: 378-405
  • 98 Todd AR. Hashish. Experientia 1946; 2: 55-60
  • 99 Mechoulam R, Shvo Y. Hashish. 1. Structure of cannabidiol. Tetrahedron 1963; 19: 2073-2078
  • 100 Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964; 86: 1646-1647
  • 101 Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat-brain. Mol Pharmacol 1988; 34: 605-613
  • 102 Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346: 561-564
  • 103 Munro S, Thomas KL, Abushaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993; 365: 61-65
  • 104 Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258: 1946-1949
  • 105 Russo EB. Beyond cannabis: plants and the endocannabinoid system. Trends Pharmacol Sci 2016; 37: 594-605
  • 106 van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE. The draft genome and transcriptome of Cannabis sativa . Genome Biol 2011; 12: R102
  • 107 Gagne SJ, Stout JM, Liu EW, Boubakir Z, Clark SM, Page JE. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci U S A 2012; 109: 12811-12816
  • 108 Stout JM, Boubakir Z, Ambrose SJ, Purves RW, Page JE. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant J 2012; 71: 353-365
  • 109 Kajima M, Piraux M. The biogenesis of cannabinoids in Cannabis sativa . Phytochemistry 1982; 21: 67-69
  • 110 Fellermeier M, Eisenreich W, Bacher A, Zenk MH. Biosynthesis of cannabinoids – incorporation experiments with C-13-labeled glucoses. Eur J Biochem 2001; 268: 1596-1604
  • 111 Fellermeier M, Zenk MH. Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett 1998; 427: 283-285
  • 112 Page JE, Boubakir Z. Aromatic prenyltransferase from cannabis. US: National Research Council of Canada, University of Saskatchewan. US patent US20150128301 A1; 2014
  • 113 Sirikantaramas S, Taura F. Cannabinoids: Biosynthesis and biotechnological Applications. In: Chandra S, Lata H, ElSohly MA. eds. Cannabis sativa L. – Botany and Biotechnology. Cham: Springer International Publishing; 2017: 183-206
  • 114 Weiblen GD, Wenger JP, Craft KJ, ElSohly MA, Mehmedic Z, Treiber EL, Marks MD. Gene duplication and divergence affecting drug content in Cannabis sativa . New Phytol 2015; 208: 1241-1250
  • 115 Sirikantaramas S, Morimoto S, Shoyama Y, Ishikawa Y, Wada Y, Shoyama Y, Taura F. The gene controlling marijuana psychoactivity – molecular cloning and heterologous expression of delta(1)-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J Biol Chem 2004; 279: 39767-39774
  • 116 Taura F, Morimoto S, Shoyama Y. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J Biol Chem 1996; 271: 17411-17416
  • 117 Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa . FEBS Lett 2007; 581: 2929-2934
  • 118 Shimizu Y, Ogata H, Goto S. Type III polyketide synthases: functional classification and phylogenomics. Chembiochem 2017; 18: 50-65
  • 119 Marks MD, Tian L, Wenger JP, Omburo SN, Soto-Fuentes W, He J, Gang DR, Weiblen GD, Dixon RA. Identification of candidate genes affecting delta(9)-tetrahydrocannabinol biosynthesis in Cannabis sativa . J Exp Bot 2009; 60: 3715-3726
  • 120 Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 2009; 583: 2061-2066
  • 121 Shen YM, Yoon P, Yu TW, Floss HG, Hopwood D, Moore BS. Ectopic expression of the minimal whiE polyketide synthase generates a library of aromatic polyketides of diverse sizes and shapes. Proc Natl Acad Sci U S A 1999; 96: 3622-3627
  • 122 MacCallum CA, Russo EB. Practical considerations in medical cannabis administration and dosing. Eur J Intern Med 2018; 49: 12-19
  • 123 Burstein S. Cannabidiol (CBD) and its analogs: a review of their effects on inflammation. Bioorgan Med Chem 2015; 23: 1377-1385
  • 124 Flores-Sanchez IJ, Pec J, Fei JN, Choi YH, Dusek J, Verpoorte R. Elicitation studies in cell suspension cultures of Cannabis sativa L. J Biotechnol 2009; 143: 157-168
  • 125 Farag S, Kayser O. Cannabinoids production by hairy root cultures of Cannabis sativa L. Am J Plant Sci 2015; 6: 1874-1884
  • 126 Lange K, Schmid A, Julsing MK. Delta(9)-tetrahydrocannabinolic acid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids. J Biotechnol 2015; 211: 68-76
  • 127 Lange K, Schmid A, Julsing MK. Delta 9-tetrahydrocannabinolic acid synthase: the application of a plant secondary metabolite enzyme in biocatalytic chemical synthesis. J Biotechnol 2016; 233: 42-48
  • 128 Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng CF, Alberti A, Anthony F, Aprea G, Aury JM, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes MC, Crouzillat D, Da Silva C, Daddiego L, De Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joet T, Labadie K, Lan TY, Leclercq J, Lepelley M, Leroy T, Li LT, Librado P, Lopez L, Munoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono, Rigoreau M, Rouard M, Rozas J, Tranchant-Dubreuil C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, de Kochko A, Graziosi G, Henry RJ, Jayarama. Ming R, Nagai C, Rounsley S, Sankoff D, Giuliano G, Albert VA, Wincker P, Lashermes P. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 2014; 345: 1181-1184
  • 129 Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang JJ, Mao SY, Jiao JY, Zhang D, Zhao Y, Zhao YJ, Zhang LP, Liu YL, Liu BY, Yu Y, Shao SF, Ni DJ, Eichler EE, Gao LZ. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 2017; 10: 866-877
  • 130 Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JSS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Berard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma ZR, Zhang YF, Brown S, Bourge M, Golser W, Song XA, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, DʼHont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C. The genome of Theobroma cacao . Nat Genet 2011; 43: 101-108
  • 131 Frischknecht PM, Baumann TW. Stress-induced formation of purine alkaloids in plant-tissue culture of Coffea arabica . Phytochemistry 1985; 24: 2255-2257
  • 132 Hollingsworth RG, Armstrong JW, Campbell E. Pest control: caffeine as a repellent for slugs and snails. Nature 2002; 417: 915-916
  • 133 Uefuji H, Tatsumi Y, Morimoto M, Kaothien-Nakayama P, Ogita S, Sano H. Caffeine production in tobacco plants by simultaneous expression of three coffee N-methyltrasferases and its potential as a pest repellant. Plant Mol Biol 2005; 59: 221-227
  • 134 Friedman J, Waller GR. Caffeine hazards and their prevention in germinating-seeds of coffee (Coffea arabica L). J Chem Ecol 1983; 9: 1099-1106
  • 135 Wang L, Nagele T, Doerfler H, Fragner L, Chaturvedi P, Nukarinen E, Bellaire A, Huber W, Weiszmann J, Engelmeier D, Ramsak Z, Gruden K, Weckwerth W. System level analysis of cacao seed ripening reveals a sequential interplay of primary and secondary metabolism leading to polyphenol accumulation and preparation of stress resistance. Plant J 2016; 87: 318-332
  • 136 García-Flores M, Juárez-Colunga S, García-Casarrubias A, Trachsel S, Winkler R, Tiessen A. Metabolic profiling of plant extracts using direct-injection electrospray ionization mass spectrometry allows for high-throughput phenotypic characterization according to genetic and environmental effects. J Agric Food Chem 2015; 63: 1042-1052
  • 137 Chang KL, Ho PC. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolomics for comparison of caffeinated and decaffeinated coffee and its implications for Alzheimerʼs disease. PLoS One 2014; 9: e104621
  • 138 Wei F, Furihata K, Koda M, Hu F, Miyakawa T, Tanokura M. Roasting process of coffee beans as studied by nuclear magnetic resonance: time course of changes in composition. J Agric Food Chem 2012; 60: 1005-1012
  • 139 Kellogg JJ, Wallace ED, Graf TN, Oberlies NH, Cech NB. Conventional and accelerated-solvent extractions of green tea (Camellia sinensis) for metabolomics-based chemometrics. J Pharmaceut Biomed 2017; 145: 604-610
  • 140 Li P, Dai W, Lu M, Xie D, Tan J, Yang C, Zhu Y, Lv H, Peng Q, Zhang Y, Guo L, Ni D, Lin Z. Metabolomic analysis reveals the composition differences in 13 Chinese tea cultivars of different manufacturing suitabilities. J Sci Food Agric 2018; 98: 1153-1161
  • 141 Kellogg JJ, Graf TN, Paine MF, McCune JS, Kvalheim OM, Oberlies NH, Cech NB. Comparison of metabolomics approaches for evaluating the variability of complex botanical preparations: green tea (Camellia sinensis) as a case study. J Nat Prod 2017; 80: 1457-1466
  • 142 Cheng B, Furtado A, Henry RJ. Long-read sequencing of the coffee bean transcriptome reveals the diversity of full-length transcripts. Gigascience 2017; 6: 1-13
  • 143 Zhang QF, Liu MY, Ruan JY. Integrated transcriptome and metabolic analyses reveals novel insights into free amino acid metabolism in Huangjinya tea cultivar. Front Plant Sci 2017; 8: 291
  • 144 Mukhopadhyay M, Mondal TK, Chand PK. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. Plant Cell Rep 2016; 35: 255-287
  • 145 da Hora Junior BT, Poloni Jde F, Lopes MA, Dias CV, Gramacho KP, Schuster I, Sabau X, Cascardo JC, Mauro SM, Gesteira Ada S, Bonatto D, Micheli F. Transcriptomics and systems biology analysis in identification of specific pathways involved in cacao resistance and susceptibility to witchesʼ broom disease. Mol Biosyst 2012; 8: 1507-1519
  • 146 Dereeper A, Bocs S, Rouard M, Guignon V, Ravel S, Tranchant-Dubreuil C, Poncet V, Garsmeur O, Lashermes P, Droc G. The coffee genome hub: a resource for coffee genomes. Nucleic Acids Res 2015; 43: D1028-D1035
  • 147 Campos NA, Panis B, Carpentier SC. Somatic embryogenesis in coffee: the evolution of biotechnology and the integration of omics technologies offer great opportunities. Front Plant Sci 2017; 8: 1460
  • 148 Weinreb O, Amit T, Youdim MBH. A novel approach of proteomics and transcriptomics to study the mechanism of action of the antioxidant-iron chelator green tea polyphenol (−)-epigallocatechin-3-gallate. Free Radic Biol Med 2007; 43: 546-556
  • 149 Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, Wang XC, Yao MZ, Luo D, Li X, Chen L, Yang YJ. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics 2015; 16: 560
  • 150 Tai Y, Wei C, Yang H, Zhang L, Chen Q, Deng W, Wei S, Zhang J, Fang C, Ho C, Wan X. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera). BMC Plant Biol 2015; 15: 190
  • 151 Taylor AE, Davey Smith G, Munafò MR. Associations of coffee genetic risk scores with consumption of coffee, tea and other beverages in the UK Biobank. Addiction 2018; 113: 148-157
  • 152 James JE, Stirling KP. Caffeine – a survey of some of the known and suspected deleterious effects of habitual use. Brit J Addict 1983; 78: 251-258
  • 153 Program BCDS. Coffee drinking and acute myocardial infarction. Lancet 1972; 300: 1278-1281
  • 154 Jick H, Miettinen OS, Neff RK, Shapiro S, Heinonen OP, Slone D. Coffee and myocardial-infarction. N Engl J Med 1973; 289: 63-67
  • 155 Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. Association of coffee drinking with total and cause-specific mortality. N Engl J Med 2012; 366: 1891-1904
  • 156 Alicandro G, Tavani A, La Vecchia C. Coffee and cancer risk: a summary overview. Eur J Cancer Prev 2017; 26: 424-432
  • 157 Ahmed I, Lee PC, Lill CM, Nielsen SS, Artaud F, Gallagher LG, Loriot MA, Mulot C, Nacfer M, Liu T, Biernacka JM, Armasu S, Anderson K, Farin FM, Lassen CF, Hansen J, Olsen JH, Bertram L, Maraganore DM, Checkoway H, Ritz B, Elbaz A. Lack of replication of the GRIN2A-by-coffee interaction in Parkinson disease. PLoS Genet 2014; 10: e1004788
  • 158 Tanida I, Shirasago Y, Suzuki R, Abe R, Wakita T, Hanada K, Fukasawa M. Inhibitory effects of caffeic acid, a coffee-related organic acid, on the propagation of hepatitis C virus. Jpn J Infect Dis 2015; 68: 268-275
  • 159 Platt DE, Ghassibe-Sabbagh M, Salameh P, Salloum AK, Haber M, Mouzaya F, Gauguier D, Al-Sarraj Y, El-Shanti H, Zalloua PA, Abchee AB. Caffeine impact on metabolic syndrome components is modulated by a CYP1A2 variant. Ann Nutr Metab 2016; 68: 1-11
  • 160 Jaquet M, Rochat I, Moulin J, Cavin C, Bibiloni R. Impact of coffee consumption on the gut microbiota: a human volunteer study. Int J Food Microbiol 2009; 130: 117-121
  • 161 Crocq MA. Alcohol, nicotine, caffeine, and mental disorders. Dialogues Clin Neurosci 2003; 5: 175-185
  • 162 Nag SA, Qin JJ, Wang W, Wang MH, Wang H, Zhang RW. Ginsenosides as anticancer agents: in vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Front Pharmacol 2012; 3: 25
  • 163 Hemmerly TE. Ginseng farm in Lawrence-County, Tennessee. Econ Bot 1977; 31: 160-162
  • 164 Oh JY, Kim YJ, Jang MG, Joo SC, Kwon WS, Kim SY, Jung SK, Yang DC. Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng . J Ginseng Res 2014; 38: 270-277
  • 165 Christensen LP. Ginsenosides: Chemistry, Biosynthesis, Analysis, and potential Health Effects. In: Taylor S. ed. Advances in Food and Nutrition Research, vol. 55. Cambridge: Academic Press; 2008: 1-99
  • 166 Wang CZ, Aung HH, Ni M, Wu JA, Tong RB, Wicks S, He TC, Yuan CS. Red American ginseng: ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots. Planta Med 2007; 73: 669-674
  • 167 Yue PYK, Wong DYL, Wu PK, Leung PY, Mak NK, Yeung HW, Liu L, Cai Z, Jiang ZH, Fan TPD, Wong RNS. The angiosuppressive effects of 20(R)- ginsenoside Rg3. Biochem Pharmacol 2006; 72: 437-445
  • 168 Yu Y, Zhou Q, Hang Y, Bu X, Jia W. Antiestrogenic effect of 20S-protopanaxadiol and its synergy with tamoxifen on breast cancer cells. Cancer 2007; 109: 2374-2382
  • 169 Wang W, Zhao Y, Rayburn ER, Hill DL, Wang H, Zhang R. In vitro anti-cancer activity and structure–activity relationships of natural products isolated from fruits of Panax ginseng . Cancer Chemother Pharmacol 2007; 59: 589-601
  • 170 Wang W, Rayburn ER, Hao M, Zhao Y, Hill DL, Zhang RW, Wang H. Experimental therapy of prostate cancer with novel natural product anti-cancer ginsenosides. Prostate 2008; 68: 809-819
  • 171 Wang W, Wang H, Rayburn ER, Zhao Y, Hill DL, Zhang R. 20(S)-25-methoxyl-dammarane-3 beta,12 beta,20-triol, a novel natural product for prostate cancer therapy: activity in vitro and in vivo and mechanisms of action. Br J Cancer 2008; 98: 792-802
  • 172 Wang W, Rayburn ER, Hang J, Zhao Y, Wang H, Zhang R. Anti-lung cancer effects of novel ginsenoside 25-OCH3-PPD. Lung Cancer 2009; 65: 306-311
  • 173 Kang KS, Kim HY, Yamabe N, Yokozawa T. Stereospecificity in hydroxyl radical scavenging activities of four ginsenosides produced by heat processing. Bioorg Med Chem Lett 2006; 16: 5028-5031
  • 174 Schramek N, Huber C, Schmidt S, Dvorski SEM, Knispel N, Ostrozhenkova E, Pena-Rodriguez LM, Cusido RM, Wischmann G, Eisenreich W. Biosynthesis of ginsenosides in field-grown Panax ginseng . JSM Biotechnol Bioeng 2014; 2: 1033
  • 175 Zhao S, Wang L, Liu L, Liang Y, Sun Y, Wu J. Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Rep 2014; 33: 393-400
  • 176 Wang J, Gao WY, Zhang J, Zuo BM, Zhang LM, Huang LQ. Advances in study of ginsenoside biosynthesis pathway in Panax ginseng C. A. Meyer. Acta Physiol Plant 2012; 34: 397-403
  • 177 Xu R, Fazio GC, Matsuda SPT. On the origins of triterpenoid skeletal diversity. Phytochemistry 2004; 65: 261-291
  • 178 Wang L, Zhao SJ, Cao HJ, Sun Y. The isolation and characterization of dammarenediol synthase gene from Panax quinquefolius and its heterologous co-expression with cytochrome P450 gene PqD12H in yeast. Funct Integr Genomics 2014; 14: 545-557
  • 179 Hu W, Liu N, Tian Y, Zhang L. Molecular cloning, expression, purification, and functional characterization of dammarenediol synthase from Panax ginseng . Biomed Res Int 2013; 2013: 7
  • 180 Jung SC, Kim W, Park SC, Jeong J, Park MK, Lim S, Lee Y, Im WT, Lee JH, Choi G, Kim SC. Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg(3) and Rd. Plant Cell Physiol 2014; 55: 2177-2188
  • 181 Wei W, Wang PP, Wei YJ, Liu QF, Yang CS, Zhao GP, Yue JM, Yan X, Zhou ZH. Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol Plant 2015; 8: 1412-1424
  • 182 Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 2004; 95: 153-157
  • 183 Zheng ZZ, Ming YL, Chen LH, Zheng GH, Liu SS, Chen QX. Compound K-induced apoptosis of human hepatocellular carcinoma MHCC97-H cells in vitro . Oncol Rep 2014; 32: 325-331
  • 184 Lee S, Kwon MC, Jang JP, Sohng JK, Jung HJ. The ginsenoside metabolite compound K inhibits growth, migration and sternness of glioblastoma cells. Int J Oncol 2017; 51: 414-424
  • 185 Yan X, Fan Y, Wei W, Wang PP, Liu QF, Wei YJ, Zhang L, Zhao GP, Yue JM, Zhou ZH. Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Res 2014; 24: 770-773
  • 186 Wu JY, Zhong JJ. Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects. J Biotechnol 1999; 68: 89-99
  • 187 Baque MA, Moh SH, Lee EJ, Zhong JJ, Paek KY. Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnol Adv 2012; 30: 1255-1267
  • 188 Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 2004; 45: 976-984
  • 189 Sivakumar G, Yu KW, Paek KY. Biosafe ginseng: a novel source for human well-being. Eng Life Sci 2005; 5: 527-533
  • 190 Luo S. Callus culture of Panax ginseng . Plant Physiol Commun 1964; 2: 26-38
  • 191 Furuya T, Yoshikawa T, Orihara Y, Oda H. Studies on plant-tissue cultures. 39. Saponin production in cell-suspension cultures of Panax ginseng . Planta Med 1983; 48: 83-87
  • 192 Inomata S, Yokoyama M, Gozu Y, Shimizu T, Yanagi M. Growth-pattern and ginsenoside production of agrobacterium-transformed Panax ginseng roots. Plant Cell Rep 1993; 12: 681-686
  • 193 Choi KT, Ahn IO, Park JC. Production of ginseng saponin in tissue-culture of ginseng (Panax ginseng Ca Meyer). Russ J Plant Physl 1994; 41: 784-788
  • 194 Zhang YH, Zhong JJ, Yu JY. Enhancement of ginseng saponin production in suspension cultures of Panax notoginseng: manipulation of medium sucrose. J Biotechnol 1996; 51: 49-56
  • 195 Zhong JJ, Zhu QX. Effect of initial phosphate concentration on cell growth and ginsenoside saponin production by suspended cultures of Panax notoginseng . Biotechnol Appl Biochem 1995; 55: 241-247
  • 196 Paek KY, Murthy HN, Hahn EJ, Zhong JJ. Large Scale Culture of Ginseng adventitious Roots for Production of Ginsenosides. In: Zhong JJ, Bai FW, Zhang W. eds. Biotechnology in China I: From Bioreaction to Bioseparation and Bioremediation. Berlin, Heidelberg: Springer; 2009: 151-176
  • 197 Gao X, Zhu C, Jia W, Gao W, Qiu M, Zhang Y, Xiao P. Induction and characterization of adventitious roots directly from the explants of Panax notoginseng . Biotechnol Lett 2005; 27: 1771-1775
  • 198 Osbourn AE. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 1996; 8: 1821-1831
  • 199 Augustin JM, Kuzina V, Andersen SB, Bak S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 2011; 72: 435-457
  • 200 Ali MB, Yu KW, Hahn EJ, Paek KY. Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Rep 2006; 25: 613-620
  • 201 Kim DS, Song M, Kim SH, Jang DS, Kim JB, Ha BK, Kim SH, Lee KJ, Kang SY, Jeong IY. The improvement of ginsenoside accumulation in Panax ginseng as a result of gamma-irradiation. J Ginseng Res 2013; 37: 332-340
  • 202 Kim YJ, Lee OR, Oh JY, Jang MG, Yang DC. Functional analysis of 3-hydroxy-3-methylglutaryl coenzyme a reductase encoding genes in triterpene saponin-producing ginseng. Plant Physiol 2014; 165: 373-387
  • 203 Han JY, Kim HJ, Kwon YS, Choi YE. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng . Plant Cell Physiol 2011; 52: 2062-2073
  • 204 Han JY, Kwon YS, Yang DC, Jung YR, Choi YE. Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng . Plant Cell Physiol 2006; 47: 1653-1662
  • 205 Dai Z, Wang B, Liu Y, Shi M, Wang D, Zhang X, Liu T, Huang L, Zhang X. Producing aglycons of ginsenosides in bakersʼ yeast. Sci Rep 2014; 4: 3698
  • 206 Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 2009; 14: 2373-2393
  • 207 Dar NJ, Hamid A, Ahmad M. Pharmacologic overview of Withania somnifera, the Indian ginseng. Cell Mol Life Sci 2015; 72: 4445-4460
  • 208 Rai M, Jogee PS, Agarkar G, dos Santos CA. Anticancer activities of Withania somnifera: current research, formulations, and future perspectives. Pharm Biol 2016; 54: 189-197
  • 209 Falkenberg KD, Jakobs A, Matern JC, Dörner W, Uttarkar S, Trentmann A, Steinmann S, Coulibaly A, Schomburg C, Mootz HD, Schmidt TJ, Klempnauer KH. Withaferin A, a natural compound with anti-tumor activity, is a potent inhibitor of transcription factor C/EBPβ . Biochim Biophys Acta 2017; 1864: 1349-1358
  • 210 Mohan R, Hammers H, Bargagna-Mohan P, Zhan X, Herbstritt C, Ruiz A, Zhang L, Hanson A, Conner B, Rougas J, Pribluda V. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 2004; 7: 115-122
  • 211 Lavie D, Glotter E, Shvo Y. Constituents of Withania somnifera Dun. III. The side chain of Withaferin A*,1 . J Org Chem 1965; 30: 1774-1778
  • 212 Bhat WW, Lattoo SK, Razda S, Dhar N, Rana S, Dhar RS, Khan S, Vishwakarma RA. Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene 2012; 499: 25-36
  • 213 Razdan S, Bhat WW, Rana S, Dhar N, Lattoo SK, Dhar RS, Vishwakarma RA. Molecular characterization and promoter analysis of squalene epoxidase gene from Withania somnifera (L.) Dunal. Mol Biol Rep 2013; 40: 905-916
  • 214 Senthil K, Wasnik NG, Kim YJ, Yang DC. Generation and analysis of expressed sequence tags from leaf and root of Withania somnifera (Ashwgandha). Mol Biol Rep 2010; 37: 893-902
  • 215 Dhar N, Rana S, Bhat WW, Razdan S, Pandith SA, Khan S, Dutt P, Dhar RS, Vaishnavi S, Vishwakarma R, Lattoo SK. Dynamics of withanolide biosynthesis in relation to temporal expression pattern of metabolic genes in Withania somnifera (L.) Dunal: a comparative study in two morpho-chemovariants. Mol Biol Rep 2013; 40: 7007-7016
  • 216 Sabir F, Mishra S, Sangwan RS, Jadaun JS, Sangwan NS. Qualitative and quantitative variations in withanolides and expression of some pathway genes during different stages of morphogenesis in Withania somnifera Dunal. Protoplasma 2013; 250: 539-549
  • 217 Chen LX, He H, Qiu F. Natural withanolides: an overview. Nat Prod Rep 2011; 28: 705-740
  • 218 Rana S, Lattoo SK, Dhar N, Razdan S, Bhat WW, Dhar RS, Vishwakarma R. NADPH-cytochrome P450 reductase: molecular cloning and functional characterization of two paralogs from Withania somnifera (L.) Dunal. PLoS One 2013; 8: e57068
  • 219 Mishra S, Bansal S, Mishra B, Sangwan RS, Jadaun AJS, Sangwan NS. RNAi and homologous over-expression based functional approaches reveal triterpenoid synthase gene-cycloartenol synthase is involved in downstream withanolide biosynthesis in Withania somnifera . PLoS One 2016; 11: e0149691
  • 220 Agarwal AV, Gupta P, Singh D, Dhar YV, Chandra D, Trivedi PK. Comprehensive assessment of the genes involved in withanolide biosynthesis from Withania somnifera: chemotype-specific and elicitor-responsive expression. Funct Integr Genomics 2017; 17: 477-490
  • 221 Agarwal AV, Singh D, Dhar YV, Michael R, Gupta P, Chandra D, Trivedi PK. Virus-induced silencing of key genes leads to differential impact on withanolide biosynthesis in the medicinal plant, Withania somnifera . Plant Cell Physiol 2018; 59: 262-274
  • 222 Singh N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 2011; 8: 208-213
  • 223 Ghosal S, Lal J, Srivastava R, Bhattacharya SK, Upadhyay SN, Jaiswal AK, Chattopadhyay U. Immunomodulatory and CNS effects of sitoindosides IX and X, two new glycowithanolides from Withania somnifera . Phytother Res 1989; 3: 201-206
  • 224 Chengappa KN, Bowie C, Schlicht PJ, Fleet D, Brar JS, Jindal R. Randomized placebo-controlled adjunctive study of an extract of Withania somnifera for cognitive dysfunction in bipolar disorder. J Clin Psychiatry 2013; 74: 1076-1083
  • 225 Choudhary D, Bhattacharyya S, Bose S. Efficacy and safety of ashwagandha (Withania somnifera (L.) Dunal) root extract in improving memory and cognitive functions. J Diet Suppl 2017; 14: 599-612
  • 226 Dhuley JN. Effect of ashwagandha on lipid peroxidation in stress-induced animals. Ethnopharmacol 1998; 60: 173-178
  • 227 Durg S, Dhadde SB, Vandal R, Shivakumar BS, Charan CS. Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: a systematic review and meta-analysis. J Pharm Pharmacol 2015; 67: 879-899
  • 228 Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Jain SC, Thakur SS, Ravindranath V. Withania somnifera reverses Alzheimerʼs disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci U S A 2012; 109: 3510-3515
  • 229 Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN, Islam F. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 2005; 24: 137-147
  • 230 Devi PU, Akagi K, Ostapenko V, Tanaka Y, Sugahara T. Withaferin A: A new radiosensitizer from the Indian medicinal plant Withania somnifera . Int J Radiat Biol 1996; 69: 193-197
  • 231 Prakash J, Gupta SK, Dinda AK. Withania somnifera root extract prevents DMBA-induced squamous cell carcinoma of skin in Swiss albino mice. Nutr Cancer 2002; 42: 91-97
  • 232 Stan SD, Hahm ER, Warin R, Singh SV. Withaferin A causes FOXO3a- and bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo . Cancer Res 2008; 68: 7661-7669
  • 233 Ghosh K, De S, Mukherjee S, Das S, Ghosh AN, Sengupta S. Withaferin A induced impaired autophagy and unfolded protein response in human breast cancer cell-lines MCF-7 and MDA-MB-231. Toxicol In Vitro 2017; 44: 330-338
  • 234 Hsieh PW, Huang ZY, Chen JH, Chang FR, Wu CC, Yang YL, Chiang MY, Yen MH, Chen SL, Yen HF, Lübken T, Hung WC, Wu YC. Cytotoxic withanolides from Tubocapsicum anomalum . J Nat Prod 2007; 70: 747-753
  • 235 Abdeljebbar LH, Benjouad A, Morjani H, Merghoub N, El Haddar S, Humam M, Christen P, Hostettmann K, Bekkouche K, Amzazi S. Antiproliferative effects of withanolides from Withania adpressa . Therapie 2009; 64: 121-127
  • 236 Lee SW, Pan MH, Chen CM, Chen ZT. Withangulatin I, a new cytotoxic withanolide from Physalis angulata . Chem Pharm Bull (Tokyo) 2008; 56: 234-236
  • 237 Biswal BM, Sulaiman AM, Ismail HC, Zakaria H, Jalil Abdul MI, Muhammad KI. AOS14 Phase II clinical study of combination chemotherapy with herb Withania somnifera (ashwagandha) in breast cancer. Eur J Cancer 2012; 48: S8-S9
  • 238 Biswal BM, Sulaiman SA, Ismail HC, Zakaria H, Musa KI. Effect of Withania somnifera (ashwagandha) on the development of chemotherapy-induced fatigue and quality of life in breast cancer patients. Integr Cancer Ther 2013; 12: 312-322
  • 239 Ho WE, Peh HY, Chan TK, Wong WSF. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther 2014; 142: 126-139
  • 240 Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 2011; 17: 1217
  • 241 White NJ. Qinghaosu (artemisinin): the price of success. Science 2008; 320: 330
  • 242 Nosten F, White NJ. Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg 2007; 77: 181-192
  • 243 World Health Organization. Global Health Observatory. Available at: http://www.who.int/gho/malaria/en/ Accessed May 23, 2018
  • 244 Banek K, Lalani M, Staedke SG, Chandramohan D. Adherence to artemisinin-based combination therapy for the treatment of malaria: a systematic review of the evidence. Malar J 2014; 13: 7
  • 245 Lalloo DG, Shingadia D, Bell DJ, Beeching NJ, Whitty CJM, Chiodini PL. UK malaria treatment guidelines 2016. J Infect 2016; 72: 635-649
  • 246 Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, Dacheux M, Khim N, Zhang L, Lam S, Gregory PD, Urnov FD, Mercereau-Puijalon O, Benoit-Vical F, Fairhurst RM, Ménard D, Fidock DA. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 2015; 347: 428
  • 247 Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G, Stahelin RV, Rizk SS, Njimoh DL, Ryan Y, Chotivanich K, Nguon C, Ghorbal M, Lopez-Rubio JJ, Pfrender M, Emrich S, Mohandas N, Dondorp AM, Wiest O, Haldar K. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 2015; 520: 683
  • 248 Duke MV, Paul RN, Elsohly HN, Sturtz G, Duke SO. Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int J Plant Sci 1994; 155: 365-372
  • 249 Akhila A, Thakur RS, Popli SP. Biosynthesis of artemisinin in Artemisia annua . Phytochemistry 1987; 26: 1927-1930
  • 250 Nair MSR, Basile DV. Bioconversion of arteannuin B to artemisinin. J Nat Prod 1993; 56: 1559-1566
  • 251 Sangwan RS, Agarwal K, Luthra R, Thakur RS, Singh-Sangwan N. Biotransformation of arteannuic acid into arteannuin-B and artemisinin in Artemisia annua . Phytochemistry 1993; 34: 1301-1302
  • 252 Ma DM, Wang Z, Wang L, Alejos-Gonzales F, Sun MA, Xie DY. A genome-wide scenario of terpene pathways in self-pollinated Artemisia annua . Mol Plant 2015; 8: 1580-1598
  • 253 Bouwmeester HJ, Wallaart TE, Janssen MHA, van Loo B, Jansen BJM, Posthumus MA, Schmidt CO, De Kraker JW, König WA, Franssen MCR. Amorpha-4, 11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 1999; 52: 843-854
  • 254 Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006; 440: 940
  • 255 Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 2006; 580: 1411-1416
  • 256 Teoh KH, Polichuk DR, Reed DW, Covello PS. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua . Botany 2009; 87: 635-642
  • 257 Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, Olson DJH, Ross ARS, Covello PS. The molecular cloning of artemisinic aldehyde Δ11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua . J Biol Chem 2008; 283: 21501-21508
  • 258 Simonnet X, Quennoz M, Carlen C. New Artemisia annua hybrids with high artemisinin content. Acta Horticulturae 2008; 769: 371-373
  • 259 Nicolas D, Xavier S, Myriam G. The genetics of artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars. Curr Med Chem 2001; 8: 1795-1801
  • 260 Cockram J, Hill C, Burns C, Arroo RRJ, Woolley JG, Flockart I, Robinson T, Atkinson CJ, Davies MJ, Dungey N, Greenland AJ, Smith LLMJ, Bentley S. Screening a diverse collection of Artemisia annua germplasm accessions for the antimalarial compound, artemisinin. Plant Genet Resour 2012; 10: 152-154
  • 261 Chen M, Yan T, Shen Q, Lu X, Pan Q, Huang Y, Tang Y, Fu X, Liu M, Jiang W, Lv Z, Shi P, Ma YN, Hao X, Zhang L, Li L, Tang K. Glandular trichome-specific WRKY 1 promotes artemisinin biosynthesis in Artemisia annua . New Phytol 2017; 214: 304-316
  • 262 Tang K, Shen Q, Yan T, Fu X. Transgenic approach to increase artemisinin content in Artemisia annua L. Plant Cell Rep 2014; 33: 605-615
  • 263 Ikram NKBK, Simonsen HT. A review of biotechnological artemisinin production in plants. Front Plant Sci 2017; 8: 1966
  • 264 Zhang L, Jing F, Li F, Li M, Wang Y, Wang G, Sun X, Tang K. Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol Appl Biochem 2009; 52: 199-207
  • 265 Banyai W, Kirdmanee C, Mii M, Supaibulwatana K. Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell Tissue Organ Cult 2010; 103: 255-265
  • 266 Ma C, Wang H, Lu X, Wang H, Xu G, Liu B. Terpenoid metabolic profiling analysis of transgenic Artemisia annua L. by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Metabolomics 2009; 5: 497-506
  • 267 Chen Y, Shen Q, Wang Y, Wang T, Wu S, Zhang L, Lu X, Zhang F, Jiang W, Qiu B, Gao E, Sun X, Tang K. The stacked over-expression of FPS, CYP71AV1 and CPR genes leads to the increase of artemisinin level in Artemisia annua L. Plant Biotechnol Rep 2013; 7: 287-295
  • 268 Lu X, Shen Q, Zhang L, Zhang F, Jiang W, Lv Z, Yan T, Fu X, Wang G, Tang K. Promotion of artemisinin biosynthesis in transgenic Artemisia annua by overexpressing ADS, CYP71AV1 and CPR genes. Ind Crops Prod 2013; 49: 380-385
  • 269 Shen Q, Yan T, Fu X, Tang K. Transcriptional regulation of artemisinin biosynthesis in Artemisia annua L. Sci Bull 2016; 61: 18-25
  • 270 Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 2012; 5: 353-365
  • 271 Lv Z, Wang S, Zhang F, Chen L, Hao X, Pan Q, Fu X, Li L, Sun X, Tang K. Overexpression of a novel NAC domain-containing transcription factor gene (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua . Plant Cell Physiol 2016; 57: 1961-1971
  • 272 Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 2003; 21: 796
  • 273 Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4, 11-diene. Metab Eng 2009; 11: 13-19
  • 274 Fuentes P, Zhou F, Erban A, Karcher D, Kopka J, Bock R. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. Elife 2016; 5: e13664
  • 275 Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Jiang H, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013; 496: 528
  • 276 Peplow M. Synthetic biologyʼs first malaria drug meets market resistance. Nature 2016; 530: 389-390
  • 277 Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia . J Am Chem Soc 1971; 93: 2325-2327
  • 278 Wani MC, Horwitz SB. Nature as a remarkable chemist: a personal story of the discovery and development of taxol. Anticancer Drugs 2014; 25: 482
  • 279 Ogden L. Taxus (yews) – a highly toxic plant. Vet Hum Toxico 1988; 30: 563-564
  • 280 McElroy C, Jennewein S. Taxol® biosynthesis and production: from forests to fermenters. In: Schwab W, Lange B, Wust M. eds. Biotechnology of Natural Products. Cham: Springer; 2018: 145-185
  • 281 Weaver BA. How taxol/paclitaxel kills cancer cells. Mol Biol Cell 2014; 25: 2677-2681
  • 282 Onrubia M, Cusido R, Ramirez K, Hernandez-Vazquez L, Moyano E, Bonfill M, Palazon J. Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivatives. Curr Med Chem 2013; 20: 880-891
  • 283 Gersmann H, Aldred J. Medicinal tree used in chemotherapy drug faces extinction. Available at: https://www.theguardian.com/environment/2011/nov/10/iucn-red-list-tree-chemotherapy Accessed May 23, 2018
  • 284 Onrubia M, Pollier J, Vanden Bossche R, Goethals M, Gevaert K, Moyano E, Vidal-Limon H, Cusidó RM, Palazón J, Goossens A. Taximin, a conserved plant-specific peptide is involved in the modulation of plant-specialized metabolism. Plant Biotechnol J 2014; 12: 971-983
  • 285 Ramírez-Estrada K, Altabella T, Onrubia M, Moyano E, Notredame C, Osuna L, Vanden Bossche R, Goossens A, Cusido RM, Palazon J. Transcript profiling of jasmonate-elicited Taxus cells reveals a β-phenylalanine-CoA ligase. Plant Biotechnol J 2016; 14: 85-96
  • 286 The IUCN Red List of Threatened Species, Taxus brevifolia. Available at: https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T34041A2841142.en Accessed May 23, 2018
  • 287 Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ. Total synthesis of taxol. Nature 1994; 367: 630
  • 288 Yukimune Y, Tabata H, Higashi Y, Hara Y. Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 1996; 14: 1129-1132
  • 289 Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli . Science 2010; 330: 70-74
  • 290 Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. Plant J 2017; 90: 764-787
  • 291 Medicinal Plant Genomics Resource. Available at: http://medicinalplantgenomics.msu.edu/ Accessed May 23, 2018
  • 292 Zhao DY, Hamilton JP, Pham GM, Crisovan E, Wiegert-Rininger K, Vaillancourt B, DellaPenna D, Buell CR. De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. Gigascience 2017; 6: 1-7
  • 293 Hoopes GM, Hamilton JP, Kim J, Zhao D, Wiegert-Rininger K, Crisovan E, Buell CR. Genome assembly and annotation of the medicinal plant Calotropis gigantea, a producer of anti-cancer and anti-malarial cardenolides. G3 (Bethesda) 2018; 8: 385-391
  • 294 Orcae. Online Resource for Community Annotation of Eukaryotes. Available at: http://bioinformatics.psb.ugent.be/orcae/ Accessed May 23, 2018
  • 295 Sterck L, Billiau K, Abeel T, Rouze P, van de Peer Y. ORCAE: online resource for community annotation of eukaryotes. Nat Methods 2012; 9: 1041
  • 296 Transcriptome Characterization, Sequencing, and Assembly of Medicinal Plants Relevant to Human Health. Available at: https://apps.pharmacy.uic.edu/depts/pcrps/MedTranscriptomePlants/ Accessed May 23, 2018
  • 297 Lau W, Sattely ES. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 2015; 349: 1224-1228
  • 298 Li FS, Weng JK. Demystifying traditional herbal medicine with modern approaches. Nat Plants 2017; 3: 17109
  • 299 Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK. Structural insights into µ-opioid receptor activation. Nature 2015; 524: 315
  • 300 Gigant B, Wang CG, Ravelli RBG, Roussi F, Steinmetz MO, Curmi PA, Sobel A, Knossow M. Structural basis for the regulation of tubulin by vinblastine. Nature 2005; 435: 519-522
  • 301 Gaquerel E, Kuhl C, Neumann S. Computational annotation of plant metabolomics profiles via a novel network-assisted approach. Metabolomics 2013; 9: 904-918
  • 302 Naake T, Gaquerel E. MetCirc: navigating mass spectral similarity in high-resolution MS/MS metabolomics data. Bioinformatics 2017; 33: 2419-2420
  • 303 Morreel K, Saeys Y, Dima O, Lu FC, Van de Peer Y, Vanholme R, Ralph J, Vanholme B, Boerjan W. Systematic structural characterization of metabolites in arabidopsis via candidate substrate-product pair networks. Plant Cell 2014; 26: 929-945
  • 304 Li DP, Baldwin IT, Gaquerel E. Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis. Proc Natl Acad Sci U S A 2015; 112: E4147-E4155