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INTRODUCTION

Human skin is a major target of oxidative stress because it is fre-

quently exposed to toxic environments such as ultraviolet light, 
chemicals, and ionizing radiation [1]. Oxidative stress disturbs 
the normal redox balance and results in the production of reac-
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tive oxygen species (ROS). ROS causes damage to the cells and 
modifies signal transduction. ROS causes pathological condi-
tions such as cancer, arteriosclerosis, neurodegenerative diseas-
es, and inflammation [2,3]. Therefore, for detoxification of 
ROS, cells use various strategies, such as generation of antioxi-
dants and expression of ROS-detoxifying enzymes. 

The nuclear factor related factor (Nrfs) family plays an impor-
tant role in protecting the cells against oxidative damage. The 
Nrf gene consists of three components, Nrf1, Nrf2, and Nrf3. 
Among them, the nuclear factor E2-related factor (Nrf2) is in-
volved in important skin cell pathways for protecting cells 
against oxidative stress, and it is also involved in skin adaptation 
to microenvironmental stress [4]. Nrf2 is primarily regulated by 
Kelch-like ECH-associated protein 1 (Keap1) [5]. Keap1 is a 
potent cytosolic repressor of Nrf2, and Keap1 has the ability to 
sequester Nrf2 in the cytoplasm by forming the Keap1/Nrf2 
complex [6]. Nrf2 is considered to act as a tumor oncogene be-
cause it is overexpressed in many cancers [4,7,8]. However, its 
role in skin cancer in vivo has been little studied. Herein, we 
studied the expression of Nrf2 and Keap1 proteins in normal 
skin tissues and malignant skin tissues in vivo.

METHODS

Cell lines and tissue samples
The human malignant melanoma cell line G361 (CRL 1424, 
Rockville, MD, USA) was obtained from the American Type 

Culture Collection. The cells were cultured in Dulbecco’s Modi-
fied Eagle’s Medium (DMEM) containing 10% fetal calf serum, 
100 U/mL penicillin, 100 mg/mL streptomycin at 37°C, 5% 
CO2. The Institutional Review Board of Hanyang University 
Hospital reviewed and approved this research protocol involv-
ing the use of tissue samples. For the study, a total of 6 normal 
skin tissues and 18 malignant skin tumor tissues including 6 
malignant melanomas (MM), 6 squamous cell carcinomas 
(SCC), and 6 basal cell carcinomas (BCC) were obtained from 
patients who underwent excisional surgery between July 2009 
and December 2011 at the Department of Plastic Surgery of the 
Hanyang University Guri Hospital in Korea (Table 1). The 
specimens were immediately frozen in liquid nitrogen after exci-
sion, and stored at -80°C. All of the skin cancers were diagnosed 
by conventional pathological examination.

Immunohistochemical staining
The stored, paraffin-embedded specimens, including 6 MM, 6 
SCC, and 6 BCC were used. Paraffin samples were deparaf-
finized in xylene, rehydrated in 10 mM citrate buffer (pH 6.0), 
and heated in a microwave oven for 15 minutes to restore anti-
gens. To suppress endogenous peroxidase within the tissues, the 
samples were treated with 3% peroxide for 5 minutes, and then 
with a blocking solution for 30 minutes. Slides were incubated 
with the primary rabbit anti-Nrf2 antibody (SC-13032, Santa 
Cruz Biotechnology Inc., Santa Cruz, CA, USA) in a humid 
chamber for 60 minutes. Tissue staining was visualized with 

Case Sex/Age (yr) Type Site Stage Metastasis Treatment Recurrence

1 Male/71 BCC Nose T1N0M0 – Surgery –
2 Male/80 BCC Forehead T1N0M0 – Surgery –

3 Female/91 BCC Ear T1N0M0 – Surgery –

4 Male/79 BCC Hand T1N0M0 – Surgery –

5 Female/76 BCC Nose T1N0M0 – Surgery –

6 Female/60 BCC Cheek T1N0M0 – Surgery –

7 Male/61 SCC Cheek T1N0M0 – Surgery –

8 Female/56 SCC Scalp T2N0M0 – Surgery +

9 Female/48 SCC Thigh T3N2M1 + Radiation therapy +

10 Male/63 SCC Hand T1N0M0 – Surgery –

11 Female/71 SCC Temple T1N0M0 – Surgery –

12 Male/81 SCC Cheek T1N0M0 – Surgery –

13 Male/60 MM (NM) Scalp T3N1M1 + Chemotherapy +

14 Female/73 MM (NM) Cheek T2N0M0 – Surgery –

15 Male/78 MM (ALM) Foot T2N0M0 – Surgery –

16 Female/80 MM (NM) Cheek T1N0M0 – Surgery –

17 Female/76 MM (NM) Thigh T2N0M0 – Surgery –
18 Male/58 MM (ALM) Thumb T1N0M0 – Surgery –

BCC, basal cell carcinoma; SCC, squamous cell carcinoma; MM, malignant melanoma; NM, nodular melanoma; ALM, acral lentiginous melanoma.

Table 1. Clinical characteristics of malignant skin cancers
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3,3’-Diaminobenzidine (ScyTek, Logan, UT, USA) substrate 
chromogen solution.

Western blot analysis
The human MM cell line G361 served as a positive control for 
Nrf2 expression. The tissue samples were homogenized in WCE 
buffer (25 mM HEPES [pH 7.7], 0.3 M NaCl, 1.5 mM MgCl2, 
0.2 mM ethylene diamine tetraacetic acid [EDTA], 0.1% Triton 
X-100, 0.5 mM dithiothreitol [DTT], 20 mM glycerophosphate, 
0.1 mM Na3VO4, 2 g per mL leupeptin, 2 g per mL aprotinin, 1 
mM phenylmethylsulfonyl fluoride [PMSF], and a protease in-
hibitor cocktail tablet [Boehringer Mannheim, Mannheim, Ger-
many]). The tissue suspension was rotated at 4°C for 10 min-
utes. Supernatants were collected, kept at -70°C and used for 
western blotting. Proteins from the tissue were separated by 
SDS-PAGE using NuPAGE 4-12% bis-Tris gels (Invitrogen, 
NP0335Box) and then transferred to Immobilon-P membrane. 
The membrane was blocked using 5% BSA in TBS-T (20 mM 
Tris, pH 7.6, 130 mM NaCl, and 0.1% Tween20) solution. 
Then, the membrane was reacted with the primary antibody, 
rabbit anti-Nrf2 antibodies (SC-13032, Santa Cruz Biotechnol-
ogy Inc.) diluted to 1:1,000 concentration at 4°C for 16 hours, 
and washed well with washing buffer and TBST buffer (10 mM 
Tris-Cl, pH 8.0, 150 mM NaCl, 0.05% Tween 20) 4 times for 10 
minutes, 10 minutes, 15 minutes, and 15 minutes, and then re-
acted with anti-mouse IgG (SC-2005, Santa Cruz Biotechnolo-
gy Inc.)-horseradish peroxidase-linked species-specific whole 
antibody diluted to 1:10,000 for 1 hour. After the reaction with 
antibody, the membrane was washed well 4 times for 10 min-
utes, 10 minutes, 15 minutes, and 15 minutes. Proteins on the 
membrane were detected using the enhanced chemilumines-
cence solution kit (Amersham, Bucks, UK). The membrane was 
stripped and reblotted with anti-actin antibody (Catalog num-
ber A5441, Sigma, St. Louis, MI, USA). For the western blot 
analysis of Keap1, the primary antibody used was the anti-Keap1 
antibody (60027-1-Ig, Proteintech Group, Chicago, IL, USA) 
and the secondary antibody used was the donkey anti-goat IgG-
HRP (SC-2020, Santa Cruz Biotechnology Inc.).

Small interfering RNA transfection
Small interfering RNA (SiRNA) transfection was performed for 
detection of the accurate Nrf2 band. RNA interference of Nrf2 
was performed using an Nrf2-specific siRNA duplex. Mock, 
control-scrambled-siRNA and Nrf2-specific siRNA were pur-
chased from Invitrogen (Catalog number 1299001, Invitrogen, 
Grand Island, CA, USA). The human malignant melanoma cell 
line, G361, was maintained in DMEM supplemented with 5% 
fetal bovine serum (FBS), 1 mM glutamine, 100 units of peni-

cillin/mL and 100 µg of streptomycin/mL. Briefly, cells were 
seeded in a 6-well plate and transfected at 40% confluency with 
siRNA duplex using lipofectamine RNAiMAX (Invitrogen) ac-
cording to the manufacturer’s recommendations. The adequacy 
of transfection was analyzed by western blot.

Assessment of western blot
The relative abundance of protein expression was analyzed us-
ing Phosphor-Imager software (TINA, from Raytest, Strauben-
hardt, Germany). The measured score of the expression in skin 
cancer tissues and normal skin tissues was compared.

Statistical analysis
The data from the Raytest TINA software were analyzed using 
the nonparametric Mann-Whitney U test. A P < 0.05 was con-
sidered to be statistically significant.

RESULTS

Immunohistochemical examination
Immunohistochemical study demonstrated that the Nrf2 pro-
tein was apparently expressed in normal skin tissues. However, 
Nrf2 was underexpressed in BCC, SCC, and MM (Fig. 1).

Western blot analysis
Western blot analysis revealed that Nrf2 was definitely expressed 
in normal human skin tissues. In MM, SCC, and BCC tissues, 
Nrf2 expression was decreased significantly (Fig. 2). The Keap1 
protein was not expressed in all malignant skin tumors and nor-
mal skin tissues (Fig. 3).

The relative protein expression using western blotting was 
plotted in a graph. The relative protein expression of Nrf2 ac-
cording to the Mann-Whitney U test was analyzed. The median 
score of Nrf2 was found to be 0.526 (interquartile range, 0.460− 
0.560) in BCC and 0.692 (interquartile range, 0.602−0.754) in 
normal skin. The median score of Nrf2 was 0.552 (interquartile 
range, 0.407−0.609) in SCC and 0.853 (interquartile range, 
0.781−0.867) in normal skin. The median score of Nrf2 was 
0.665 (interquartile range, 0.566−0.695) in MM and 0.721 (in-
terquartile range, 0.660−0.751) in normal skin (Fig. 4). There 
were significant differences in Nrf2 protein expression between 
malignant skin tumors and normal skin tissues (P < 0.05). 

SiRNA transfection
To confirm the accurate band level of molecular weight of Nrf2 
among multiple bands in malignant skin cancers, we used the 
G361 cells as positive control, which were obtained after trans-
fection with Nrf2-specific siRNA. The molecular weight of 
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Nrf2 protein was analyzed as 66 kDa. Transfection of Nrf2-siR-
NA pointed the Nrf2 protein levels (Fig. 5). 

DISCUSSION

Oxidative stress provokes cellular responses that induce the ex-
pression of genes which encode various cytoprotective proteins. 
Fortunately, the skin tissue has its own antioxidant systems, and 
one of them is Nrf2. Nrf2 maintains intracellular redox balance 

by controlling the transcription of target genes. Therefore, Nrf2 
acts as a key cellular sensor for oxidative stress, and it is a critical 
transcriptional regulator for eliminating oxidative damage, and 
it protects the cells from transforming into cancer cells [9,10]. 
However, Nrf2 not only protects normal cells but also cancer 
cells from cellular stress, and promotes the survival of both nor-
mal and cancer cells, which indicates the dual roles of Nrf2 in 
both cancer prevention and promotion [2,9,10]. 

Keap1 is a cytoplasmic, actin-binding protein that is found to 

Nrf2 protein was definitely expressed 
in normal skin but it was underex-
pressed in basal cell carcinoma, squa-
mous cell carcinoma, and malignant 
melanoma. Brown color spots were 
positively stained cells. (A) Normal skin 
(immunohistochemical stain, ×100). 
(B) Basal cell carcinoma (immunohisto-
chemical stain, ×100). (C) Squamous 
cell carcinoma (immunohistochemical 
stain, ×100). (D) Malignant melanoma 
(immunohistochemical stain, ×100). 
(E) Normal skin (immunohistochemical 
stain, ×200). (F) Basal cell carcinoma 
(immunohistochemical stain, ×200). 
(G) Squamous cell carcinoma (immu-
nohistochemical stain, ×200). (H) Ma-
lignant melanoma (immunohisto-
chemical stain, ×200). Nrf2, nuclear 
factor E2-related factor.

Fig. 1. Immunohistochemical staining for Nrf2 protein expression
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Western blot showed that Nrf2 was expressed in normal human 
skin tissues, but Nrf2 expression was decreased in basal cell carci-
noma, squamous cell carcinoma and malignant melanoma speci-
mens. Nrf2, nuclear factor E2-related factor; BCC, basal cell carci-
noma; SCC, squamous cell carcinoma.

Fig. 2. Western blot analysis of Nrf2 
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Western blot showed that the Keap1 protein was not expressed in 
all malignant skin tumors and normal skin tissues. Keap1, Kelch-like 
ECH-associated protein 1; BCC, basal cell carcinoma; SCC, squa-
mous cell carcinoma.

Fig. 3. Western blot analysis of Keap1 
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The relative protein expression of Nrf2 according to the Mann-
Whitney U test was analyzed. (A) The median score of Nrf2 was 
found to be 0.526 (interquartile range, 0.460−0.560) in BCC and 
0.692 (interquartile range, 0.602−0.754) in normal skin. (B) The me-
dian score of Nrf2 was 0.552 (interquartile range, 0.407−0.609) in 
SCC and 0.853 (interquartile range, 0.781-0.867) in normal skin. (C) 
The median score of Nrf2 was 0.665 (interquartile range, 0.566-
0.695) in MM and 0.721 (interquartile range, 0.660-0.751) in nor-
mal skin. Nrf2, nuclear factor E2-related factor; BCC, basal cell car-
cinoma; SCC, squamous cell carcinoma; NM, nodular melanoma.

Fig 4. The relative protein expression 
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The exact molecular weight of Nrf2 was confirmed by mock, con-
trol scrambled siRNA and Nrf2-siRNA transfection in the G361cell 
line. Black arrow was absent compared with siRNA control and 
G361 siRNA transfection. Nrf2, nuclear factor E2-related factor; 
siRNA, small interfering RNA.

Fig. 5. Small interfering RNA against Nrf2

Moc
k

β-actin

188

98

62

49

38

Si-
RN

A 
tra

ns
fec

tio
n

Si-
RN

A 
co

nt
rol

be a potent cytosolic repressor of Nrf2 [6]. As a key regulator of 
Nrf2, Keap1 sequesters Nrf2 in the cytoplasm by forming the 
Nrf2/Keap1 complex, preventing its entry into the nucleus un-
der normal conditions. Previously, Keap1 was known as the pri-
mary redox sensor [11]. The redox signal encoded by Keap1 is 
subsequently transmitted to Nrf2, which causes the release of 
Nrf2 from Keap1. However, recent studies have reported that 
the relay of the redox signal from Keap1 to Nrf2 may not hap-
pen in vivo. Studies reported the dysfunction of Keap1 in lung 
cancer and gallbladder cancer, which elevated the levels of Nrf2 
[12,13]. Recently, Bryan et al. reported that Nrf2 translocated 
into the nucleus via the Keap1 dependent or independent path-
way [5]. In fact, our study demonstrated that Keap1 was not ex-
pressed in skin cancers as well as in normal skin in vivo. This 
finding suggests that the Nrf2/Keap1 system may be dysregu-
lated in human skin cancers, and Nrf2 is translocated into the 
nucleus via the independent pathway in skin cancers.

Nrf2 has been reported to be upregulated in various types of 
cancers, including primary head and neck cancers [8], lung 
[12], gallbladder [13], liver [14], stomach [15], breast [16], 
and endometrial cancers [17], and this indicates an oncogenic 
role of Nrf2 in cancers. There are a few reports on skin cancers. 
Pi et al. [18] showed that Nrf2 was involved in arsenic-induced 
malignant transformation of human keratinocytes. Kim et al. [9] 
reported that enhanced Nrf2 expression was observed in cuta-
neous SCCs, and Nrf2 act as an oncogene in SCC. They ana-
lyzed the Nrf2 protein expression only by immunohistochemis-
try. However, in our study, Nrf2 was under-expressed in cutane-

ous SCCs. In contrast to the study by Kim et al. [9], we evaluat-
ed the Nrf2 protein level by immunohistochemical examination 
and verified it by Western blot analysis. In our study, Nrf2 ex-
pression was definitely detected in normal skin tissue, but ex-
pression of Nrf2 was definitely decreased in malignant skin can-
cers. Kwak et al. [19] showed that Nrf2-knockout mice were 
more prone to tumor formation when they were exposed to car-
cinogens. Xu et al. [20] reported that Nrf2-null mice developed 
significantly more number of skin tumors than did wild-type 
mice. In our study, decreased expression of Nrf2 may be related 
to skin carcinogenesis because Nrf2 was identified as a principal 
regulator of oxidant defense that is related to cancer formation. 

ROS play a pivotal role in survival of all living organisms, be-
cause dysregulated ROS can lead to molecular damage, DNA 
mutation, apoptosis, cell transformation, and cancer. Many 
studies on oxidative stress and carcinogenesis have been report-
ed [21,22]. Among them, various antioxidant proteins are high-
ly expressed or underexpressed. Therefore, the protective 
mechanisms against ROS are vital for cell survival, and one of 
the protective systems is Nrf2. The main biologic function of 
Nrf2 is antioxidant defense [23]. We believe that down-regula-
tion of Nrf2 is related to skin cancers. We also demonstrated 
that skin cancers and normal skin tissues did not express the 
Keap1 protein. Further studies are needed to better understand 
the mechanism of signal transduction and regulation of Nrf2 in 
skin cancers.
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