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Review Article

ABSTRACT
Musculoskeletal malignancies consist of a heterogenous group of mesenchymal tumors, often with high inter- and intratumoral heterogeneity. 
The early and accurate diagnosis of these malignancies can have a substantial impact on optimal treatment and quality of life for these patients. 
Several new applications and techniques have emerged in molecular imaging, including advances in multimodality imaging, the development 
of novel radiotracers, and advances in image analysis with radiomics and artificial intelligence. This review highlights the recent advances in 
molecular imaging modalities and the role of non-invasive imaging in evaluating tumor biology in the era of precision medicine.
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INTRODUCTION

The number of new cancer cases in 2011–2015 was 
439.2/100,000 persons/year, with approximately 163.5 
cancer‑related deaths/100,000 persons/year.[1] Cancers arise 
from complex biochemical cellular processes secondary to 
alterations in normal DNA, often resulting in uncontrolled 
rapid cellular proliferation. Tumor biomarkers are essential 
in the diagnosis, risk‑stratification, and treatment planning of 
tumors. With the continual growing emphasis on genomics, 
proteomics, and radiomics, as well as advances in molecular 
imaging, personalized precision medicine is becoming a 
tangible reality. This manuscript aims to provide an overview 
of molecular imaging for musculoskeletal (MSK) malignancies, 
highlighting the role it may play in the era of precision medicine.

TUMOR HETEROGENEITY, GENOMIC BIOMARKERS, AND 
MOLECULAR IMAGING

Cancers consist of a heterogeneous collection of cell with 
various mutations, leading to different biologic properties, 
including degrees of differentiation and growth rate.[2,3] 
This heterogeneity serves as a strong internal mechanism 
for tumor cells to escape various oncologic treatments. 
Cancer cell heterogeneity can be categorized as intertumoral 

and intratumoral. Intertumoral heterogeneity alludes to 
various biological properties among different lesions of 
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an identical malignancy. Intertumoral heterogeneity arises 
from a combination of intrinsic and extrinsic mechanisms, 
including genetic and epigenetic mutations and influences 
of the tumor microenvironment, causing varying biology 
of the same tumor type between patients or even different 
lesions within the same patient.[4] Intratumoral heterogeneity 
refers to the microheterogeneity within a tumor, in part 
secondary to imperfect rapid DNA replication in rapidly 
growing cancers. This leads to a diverse population of 
cancer cell types within a single lesion, creating difficulties 
in interpreting limited tissue sampling of a malignancy, 
such as a biopsy, and determining appropriate therapeutic 
management.[5,6]

Genetic mutations in tumors can consist of oncogenes (such 
as c‑myc, fos, Ha‑ras, Ki‑ras, sis, met, SAS MFH, and 
MDM2), tumor suppressor genes  (such as p53, Rb, NF1, 
and APC), and tumor‑specific translocations  (such as 
CHOP‑FUS  [TLS], EWS‑FLI1, EWS‑ATF1, SYT‑SSX, and 
PAX3‑FKHR).[3,7,8] Traditional medical management of 
tumors typically involves obtaining a single sample of a 
tumor and determining the appropriate therapeutic option 
from that encapsulating diagnosis. Precision medicine aims 
to capture both the inter‑ and intratumoral heterogeneity 
within a patient to create a personalized treatment plan. 
Molecular imaging noninvasively images the complex 
biochemical and genetic processes of cancers. This 
imaging consists of various physiologic imaging techniques 
targeting components such as peptides, antibodies, 
proteins, affibodies, aptamers, and nanoparticles, 
predominantly in the field of nuclear medicine, as well as 
analysis of quantitative data from cross‑sectional imaging, 
such as computed tomography (CT), magnetic resonance 
imaging  (MRI), and ultrasound  (US). Utilizing various 
imaging techniques, molecular imaging provides a realistic 
method to better quantify tumor heterogeneity throughout 

a patient.[9‑11] Molecular imaging not only provides 
an insight into initial personalized cancer treatment 
decisions, but also allows for continual monitoring during 
treatment. This may lead to the detection of new cancer 
mutations during treatment, which could prompt changes 
in therapy before other signs of tumor progression.[12-15] 
With continuing improvements in molecular imaging 
techniques and devices, recognition of new genetic and 
molecular targets, and new methods of analyzing and 
quantifying data with artificial intelligence, there is an 
increasing role of molecular imaging in the diagnosis and 
treatment of MSK malignancies [Figure 1].

PHYSIOLOGIC IMAGING

Bone scintigraphy
Nuclear medicine bone scintigraphy, most commonly with 
the use of 99mTc‑methylene diphosphonate  (MDP), is a 
functional measurement of bone metabolism. It can play 
a significant role in the evaluation of osseous metastases 
and cancer staging, and help distinguish metabolically-
inactive treated bone metastases from active disease. The 
specificity, sensitivity, and accuracy for bone scintigraphy 
for the detection of osseous metastases are 80.9%–96%, 
67%–95.2%, and 60%–80.3%, respectively.[16] Bone scintigraphy 
can be performed with either a singlestatic phase to identify 
regions of bone with high osteoblast activity, or as a dynamic 
threephase study, with additional perfusion and blood 
pool phases to help distinguish inflammatory conditions 
and changes in blood supply. With a high sensitivity, bone 
scans are useful in identifying new metastatic lesions. 
However, the study is limited due to radiotracer uptake up 
by a variety of other disease processes, including metabolic 
bone diseases, infections, traumatic injury, and inflammatory 
conditions. [17-20]

Figure 1: From omics to molecular imaging and precision medicine
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Single‑photon emission tomography
Single‑photon emission computed tomography  (SPECT) 
scans are spatial three‑dimensional acquisitions of 
radionuclides. With multiplanar reconstruction, SPECT 
allows for better contrast resolution and improvement 
lesion localization. In addition, SPECT can be fused with 
CT to allow for concurrent anatomical and functional 
imaging, resulting in improved specificity, sensitivity, 
and spatial resolution for MSK malignancies.[21‑23] In 
particular, SPECT‑CT has been shown to reduce equivocal 
interpretations compared to SPECT or planar scintigraphy 
in MSK malignancies.[21,24-28]

Positron emission tomography
The development and advances in positron emission 
tomography  (PET) have revolutionized functional imaging. 
With the use 18F‑fluorodeoxyglucose  (18F‑FDG) to evaluate 
tumor metabolism, and various other radiopharmaceuticals 
targeting specific molecular targets, PET has now plays a 
big role in the accurate staging and monitoring of MSK 
malignancies, and can also serve as a predictor for treatment 
outcomes [Figures 2‑4].[29‑32]

Sarcomas are one of the less common malignancies, and 
despite current treatments, patients have poor outcomes 
and life expectancy.[33,34] 18F‑FDG uptake in sarcomas has 

Figure 2:  A 44‑year‑old man  with carcinoma of unknown primary. The bone 99mTc‑methylene diphosphonate scintigraphy demonstrated several skeletal 
lesions throughout the body, 99mTc‑prostate‑specific membrane antigen scintigraphy and 18F‑fluorodeoxyglucose positron emission tomography images 
showed avid lesions only in the pelvis, and 99mTc‑octreotide scintigraphy demonstrated no activity, highlighting the intertumoral heterogeneity

Figure 3: A 29‑year‑old man with poorly differentiated neuroendocrine tumor (Ki‑67 = 28%). 99mTc‑octreotide scintigraphy and post‑177Lu‑DOTATATE therapy 
images showed intense uptake within the skeletal lesions, predicting a good response to 177Lu‑DOTATATE therapy in patients with somatostatin‑expressing 
neuroendocrine tumors. However, 18F‑fluorodeoxyglucose positron emission tomography‑computed tomography images demonstrated numerous 
18F‑fluorodeoxyglucose‑avid lesions throughout the skeleton and marrow, representing a poor prognosis
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been shown to be reflective of tumor biology and has a valid 
predictor for tumor aggressiveness and patient outcomes.[30,35] 
In addition, PET has a growing role in the evaluation of 
intra- and intertumoral heterogeneity.[36] Piperkova et  al. 
demonstrated advantages of 18F‑FDG PET‑CT for the initial 
staging, restaging, and evaluation of the treatment response 
for bone and soft‑tissue sarcomas.[31] PET studies fused with 
cross-sectional imaging, PET-CT or PET-MRI, allow for more 
accurate disease localization, detection, and as a guide for 
biopsies.[37] Furthermore, 18F‑FDG PET‑CT has been shown to 
better differentiate soft-tissue and osseous malignancies from 
benign lesions compared to PET or CT alone.[38-41]

In addition to 18F‑FDG, several novel PET radiotracers have 
shown promising results. 18F‑Fluoroestradiol, which targets 
estrogen receptors  (ER) has been shown to have a high 
sensitivity for the detection of ER-positive skeletal metastases 
and is useful for quantifying in vivo ER expression without 
the need for biopsy.[42] Similar results have been seen for 
identifying osseous metastases of thyroid malignancy 
with 124I.[43] 18F‑Fluorothymidine  (FLT), a radiotracer which 
measures tumor proliferation, has shown promise in imaging 
bone and soft‑tissue sarcomas. 18F‑FLT can help differentiate 

between high‑ and low‑grade sarcomas and may be useful in 
evaluating changes in tumor biology over time and assessing 
intratumoral heterogeneity.[44] Furthermore, the use of 
dual tracer “cocktail scans” are actively being investigated. 
lagaru et  al. have shown increased detection of osseous 
metastases with combined 18F‑NaF and 18F‑FDG PET‑CT 
compared to the modalities individually.[45-48]

Radiomics and artificial intelligence
Radiomics utilizes quantifiable data from imaging modalities to 
provide insight into tumor biology and heterogeneity. In the era 
of “‑omics” this data can be combined with genetic and other 
data to obtain a comprehensive understanding of a patient’s 
tumor biology. In addition, radiomics can aid in the diagnosis 
of tumor cell type, potentially negating the need for tissue 
biopsy in some cases and providing a better understanding of 
intratumoral heterogeneity, which is an intrinsic limitation of 
limited tissue sampling.[49-53] Imaging features analyzed with 
radiomics have been shown to have prognostic implications 
for a diversity of tumors.[54-57] In patients with soft‑tissue 
sarcomas of the extremities, Vallières et al. demonstrated an 
association between extracted texture features from 18F‑FDG 
PET‑CT and a propensity for developing lung metastases.[58] 
Radiomic MRI features have also been shown to help distinguish 
intermediate‑  and high‑grade soft‑tissue sarcomas.[59] 
Associations such as these aid in risk assessment at diagnosis 
and may help guide first‑line therapy choices.

As this field continues to grow, and imaging databases 
become larger, new trends may arise from mining 
these large datasets. A  current major limitation to the 
clinical applications of radiomics is the lack of effective 
autosegmentation techniques, with the majority of current 
studies performed with either manual or semi‑automated 
segmentation. However, since machine learning techniques 
are becoming more sophisticated, the possibility of seamless 
autosegmentation in clinical practice is becoming more 
realistic.[51‑55] Indeed, these algorithms and programs may 
soon be able to rapidly synthesize the imaging data with 
other clinical data points to provide even more diagnostic 
and prognostic information, allowing for more personalized 
treatment planning.[60-64]

CONCLUSION

Musculoskeletal malignancies have a wide array of intra‑ and 
inter‑tumoral heterogeneity. With continued advances in 
molecular imaging, noninvasive methods of understanding 
tumor biology show promising results. This may aid in the 
diagnosis, prognosis, and treatment planning and monitoring 
of musculoskeletal malignancies.

Figure   4:  An 8‑year‑old boy with Stage IV neuroblastoma. 
18F‑fluorodeoxyglucose positron emission tomography‑computed 
tomography images demonstrated faint‑18F‑fluorodeoxyglucose‑avid lesions 
throughout the skeleton (standardized uptake value <2), while 68Ga‑DOTATATE 
positron emission tomography‑computed tomography showed numerous 
68Ga‑DOTATATE‑avid lesions in the same region  (standardized uptake 
value >10)
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