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Introduction

Noise‑induced hearing loss (NIHL) is the most common form 
of sensorineural hearing damage caused by exposure to noise. 
Stimulation with sound of high intensity alters outer hair cell 
plasma membrane fluidity. Prestin, the motor protein in the 
outer hair cells, generates electromotility and the absence of 
prestin results in the lack of electromotility and hearing loss.[1‑3] 
Otolin‑1 is a secreted glycoprotein; its mRNA expression is 
restricted to the vestibular maculae, semicircular canal cristae, 
organ of Corti, and marginal cells of the stria vascularis.[4] Its 
functions include interaction with other inner ear proteins such 
as prestin to maintain inner ear function,[5] so they can serve 
as circulatory biomarkers for NIHL.

Overstimulation of tissues by noise causes excess production of 
reactive oxygen species (ROS), which oxidize cellular targets 
such as proteins and DNA. The 8‑hydroxy‑2’‑deoxyguanosine 

(8‑OHdG) DNA damage caused by ROS – that leads to 
transversion mutation – is the most common form of oxidative 
damage to DNA. DNA damage to cochlear hair cells is 
essential for the development of NIHL. The activity of ROS 
is antagonized by protective enzymes as human 8‑OHdG 
DNA glycosylase 1 (hOGG1) – an important enzyme in the 
base excision repair pathway that eliminates 8‑oxoG. Previous 
studies have suggested that the Ser326Cys polymorphism in 
exon 7 of hOGG1 gene may affect the enzyme activity so it 
may be NIHL susceptibility genes.[6]

Therefore, we have undertaken this study to investigate the role 
of prestin and otolin‑1 in cochlear dysfunction in NIHL, test the 
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association of hOGG1 polymorphisms with NIHL in patients 
compared with normal hearing individuals, and to evaluate 
8‑OHdG as a sensitive biomarker for oxidative DNA damage.

Materials and Methods

This study included 300 NIHL patients referred to Manfalout 
hospital from Mankabad Industry City between January 
2000 and January 2016 and 200 normal hearing volunteer 
workers (both were matched by age, sex, and occupational 
exposures). All patients had their hearing tested at presentation 
(postexposure tinnitus and hearing loss were the main 
presenting symptoms) and 1 month after treatment. They 
had not been exposed to physical or chemical factors causing 
hearing loss (e.g., organic solvents, heat, and drugs or diseases 
that affect hearing). They did not use hearing protection. This 
study protocol was approved by Assiut University Ethical 
Committee, and a written informed consent was obtained 
from all participants.

History taking included demographic characteristics, the 
exposure level (mean 87.1 ± 7.7 dB measured using noise level 
meter [Simpson 890]), and the duration of noise exposure in 
months (mean 18.6 ± 7.6, Table 1), smoking habits of each 
patient (most of them were mild smokers as smoking is not 
allowed in their work, the average number was 3 cigarettes 
per day), hearing protection use, history of ototoxic drug 
use, physical and chemical factor exposure, family history 
of deafness, work history, and disease history. Five hundred, 
1000, 2000, 3000, 4000, and 6000 pure‑tone air hearing 
threshold tests (Amplaid audiometer) were carried out in a 
sound‑attenuating chamber with a background noise level of 
<25 dB (a noisy environment was avoided 48 h before the 
test). For each test frequency, the initial presentation level 
was 30 dB HL after which the intensity was decreased in 
5 dB steps until the participant failed to respond. Ascending 
runs using 5 dB increase were repeated three times, and the 
threshold was detected as the lowest level at which responses 

were obtained on 2 out of 3 ascending runs.[7] Hearing loss 
was classified as mild (average threshold 25–40 dB), moderate 
(41–60 dB), severe (61–80 dB), and profound (>80 dB, usually 
resulting from a known cause other than noise and removed 
from the noisy environment and the study as they were lost 
in the follow‑up).[7]

Ten milliliter venous blood was taken into tubes containing 
ethylenediaminetetraacetic acid, centrifuged for 10 min at 
3000 rpm and plasma was stored at − 80°C until assay. The 
level of prestin was determined by ELISA (MyBioSource, 
California, San Diego, USA, Cat No: MBS282125). This 
assay employs a two‑site sandwich ELISA. A specific antibody 
has been precoated onto a microplate. Samples and standards 
are pipetted into the wells. After removing any unbound 
substances; a biotin‑conjugated antibody is added. After washing, 
streptavidin‑conjugated horseradish peroxidase is added. 
Following a wash to remove the unbound avidin‑enzyme reagent, 
a substrate solution is added and color develops. The intensity 
of the color was measured at 450 nm (by Beckman Coulter DU 
7400 Spectrophotometer). Otolin‑1 was measured using ELISA 
kit (MyBiosource.com, San Diego, USA, Cat No: MBS9312379) 
similar to the previous technique, and the optical density in the 
wells of the ELISA microplate was measured at 450 nm.

The level of 8‑OhdG was determined by enzyme‑linked 
immunosorbent technique (Abcam, Kendall Square, 
Cambridge, USA, Cat No: ab. 201734). Briefly, the monoclonal 
antibody for 8‑OHdG was precoated onto microplates. 
Standards and samples were added to the wells, after washing 
with phosphate‑buffered saline; biotinylated anti‑8‑OHdG 
antibodies were added. After washing the excess antibodies 
away, horseradish peroxidase‑conjugated streptavidin was 
added; final washing with PBS, 3,3’,5,5’‑tetramethylbenzidine 
substrate solution was pipetted into the wells and the color 
intensity was measured at a wavelength of 450 nm.

For DNA extraction, DNA extraction kit (Qiagen, Cat 
No. ID: 69504) was used. Polymerase chain reaction 
(PCR)‑restriction fragment length polymorphism was 
used to detect the hOGG1 gene polymorphisms. The 
PCR primers were 5’‑GGAAGGTGCTTGGGGAAT‑3’ 
f  a nd  5 ’ ‑ACTGTCACTAGTCTCACCAG‑3 ’ r , 
B‑actin: 5’‑ATCATGTTTGAGACCTTCAACA‑3’f, 
5’‑CATCTCTTGCTCGAAGTCCA‑3’r. The initial denaturation 
was at 95°C for 3 min., followed by 35 cycles at 94°C for 
30 seconds then annealing was at 52°C for 30 s. The final 
extension was at 72°C for 5 min. The products were digested 
by the Fnu4HI restriction enzyme (Waltham, MA, USA) for 
12 h separated on 2% agarose gel containing ethidium bromide. 
The three possible genotypes were 200 bp for Ser/Ser genotype, 
both 100 bp and 200 bp fragments for Ser/Cys genotype, while 
only 100 bp fragments for Cys/Cys genotype [Figure 1].

Statistical analysis
The statistical analysis was performed using the statistical  
package for the Social Sciences, Version 13 (SPSS, Inc., 
Chicago, IL, USA). The mean and standard deviation were 

Table 1: The values  (mean ± standard variation) of the 
clinical characteristics and main outcome measures in 
patients and controls

Variables Patients 
(n=300)

Controls 
(n=200)

P

Age (years) 40.5±5.2 40.3±3.9 0.9
Male/female (%) 93.2 92.3 0.6
Smoker/nonsmoker (%) 77.3 68.3 0.5
Exposure time (months) 18.6±7.6 18.2±7.4 0.4
Exposure level (dB[A]) 87.1±7.7 87.0±7.6 0.8
Prestin level (pg/mL) 169.0±88.4 100.9±16.7 0.04*
Prestin level (pg/mL) after 
1 month

114.0±99.2 ‑ 0.04*

Otolin‑1 level (pg/mL) 200.8±93.5 70.9±15.1 0.02*
Otolin‑1 level (pg/mL) after 
month

199.8±94.2 ‑ 0.36

8‑OHdG (pg/mL) 160.8±16.7 52.3±10.1 0.00**
8‑OHdG: 8‑hydroxy‑2’‑deoxyguanosine
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calculated. Statistical significance was compared using 
ANOVA. Prestin, otolin‑1, and 8‑OHdG concentrations of 
control‑ and noise‑exposed patients were compared with 
a t‑test. Pearson correlation coefficient was determined to 
assess the correlation between various variables. Continuous 
data were analyzed by independent‑sample two‑sided t‑tests. 
Categorical data were computed by two‑sided Chi‑square 
tests. Multivariate logistic regressions were used to compute 
odds ratios (ORs), 95% confidence intervals (95% CIs), and to 
test the associations of various genotypes with noise damage. 
Adjusted ORs and 95% CIs were computed by multivariate 
logistic regression adjusted for age, sex, and smoking status. 
The sensitivity and the specificity of the studied parameters 
are shown in Table 2. P < 0.05 was considered statistically 
significant.

Results

The demographic characteristics
The demographic characteristics are shown in Table 1. There 
were no significant differences in the distribution of age, sex, 
smoking, time of exposure, and level between the patients 
and the controls as the majority of the smokers were light 
smokers (the average was three cigarettes per day as it was 
not allowed during work). Prestin, otolin‑1, and 8‑OHdG 
levels were significantly increased in patients compared with 
controls following noise exposure [P < 0.05, Table 1]. After 
1 month, the mean prestin concentrations were 55% lower 
in the patients than that was measured right after the noise 
exposure. A one‑tailed t‑test showed this difference to be 
significant (t = 4.3, P = 0.02). The sensitivity and specificity 
of the different studied parameters are shown in Table 2; 
prestin showed the highest levels compared with the other 
parameters.

Comparison of the three human 8‑oxoG DNA glycosylase 
1 genotypes
No significant differences were detected among the three 
genotypes regarding age (P = 0.3), sex (P = 0.09), body mass 
index (P = 0.1), regarding noise exposure duration in months 
(P = 0.04), family history (P = 0.2), and smoking (0.0585 
as smoking was not allowed during work and most of the 
patients were mild smokers [<5 cig/day]). There was a statistically 

significant difference in the level of Prestin (both at diagnosis 
and after one month), Otolin-1 and 8-OHdG among the three 
genotypes. Cys/Cys genotype showed significantly higher levels 
than the others genotypes (q = 2.3, q = 3.1, P < 0.05), while no 
significant difference was observed between Ser/Cys genotype 
and Ser/Ser genotype (q = 1.3, P > 0.05, Table 3). Significant 
positive correlations were detected between prestin level and 
the severity of NIHL (r = 0.971**), otolin‑1 level (r = 0.776**), 
8–OhdG (r = 0.556**), and Cys/Cys genotype (r = 0.828**). 
Significant positive correlations were detected between otolin‑1 
level and the severity of NIHL (r = 0.776**), 8–OhdG (r = 
0.866**), and Cys/Cys genotype (r = 0.778**). Significant 
positive correlations were detected between 8‑OhdG level and 
the severity of NIHL (r = 0.627**), and Cys/Cys genotype 
(r = 0.968**), P < 0.01 for all.

Gene polymorphism and noise‑induced hearing loss 
severity
The percentage of severe cases in Cys/Cys genotype was 
74.1% and was 61.1% and 54.9% in Ser/Ser genotype and 

Figure 1: Analysis of human 8‑oxoG DNA glycosylase 1 Ser326Cys 
gene polymorphism detected by polymerase chain reaction‑restriction 
fragment length polymorphism

Table 2: The sensitivity and the specificity of the main 
outcome measures

Parameter Sensitivity 
(%)

Specificity 
(%)

Area under 
the curve

Prestin level (pg/mL) 94.3 88.5 0.9
Otolin‑1 level (pg/mL) 79.2 72.4 0.8
8‑OHdG (pg/mL) 86.1 86.7 0.8
8‑OHdG: 8‑hydroxy‑2’‑deoxyguanosine

Table 3: The outcome measures of the patients and 
control in different human 8‑oxoG DNA glycosylase1 
genotypes

Index (mean±SD) Ser/Ser 
(n=121)

Ser/Cys 
(n=117)

Cys/Cys 
(n=62)

P

Age (years) 61.7±11.2 60.3±9.3 60.7±9.8 0.31
Male/female ratio 86/35 85/32 50/12 0.09
BMI (kg/m2) 21.4±8.1 22.3±7.1 23.3±7.1 0.13
Noise exposure 
duration (months)

67.7±13.9 73.1±14.3 70.2±13.1 0.04

Positive family 
history (%)

25 (21) 21 (18) 15 (18) 0.2

Smoking, n (%) 33 (25) 27 (23) 17 (21) 0.059
Genotype 
(hOGG1/β‑actin)

45.7±18.9 44.7±17.4 35.5±13.9 0.01

Prestin level (pg/mL) 
at diagnosis

150.0±76.3 152.6±68.3 199.4±40.3 0.03

Prestin level (pg/mL) 
1 month later

144.0±66.2 112.2±78.1 179.2±42.13 0.02

Otolin‑1 
level (pg/mL)

190.7±43.2 193.7±53.4 223.7±43.5 0.01

Otolin‑1 level 
(pg/mL) 1 month 
later

191.8±41.1 192.4±33.8 221.5±33.3 0.01

8‑OHdG (pg/mL) 152.6±14.3 153.8±11.7 162.4±13.2 0.04
8‑OHdG: 8‑hydroxy‑2’‑deoxyguanosine, SD: Standard deviation, 
BMI: Body mass index, hOGG1: Human 8‑oxoG DNA glycosylase 1
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A major contributing mechanism of NIHL is through oxidative 
stress metabolic damage. The hair cells respond to noise by 
generating ROS that can overcome the cellular antioxidant 
mechanism causing DNA oxidative damage and consequently 
hair cell death and hearing damage.[18] Oxygen free radicals attack 
the guanine of DNA and lead to the production of an oxidative 
adduct: 8‑OhdG leading to DNA mutation.[19] hOGG1 is a DNA 
repair enzyme; it can specifically remove 8‑OHdG and repair 
the damage. Previous studies have confirmed that the activity 
of hOGG1 is affected by the hOGG1 gene polymorphisms.[20,21] 
In the present study, the percentage of severe cases in Cys/Cys 
genotype was higher and that of mild cases was lower associated 
with an increase in the serological indices compared with the 
other genotypes. Many researchers reported that hOGG1 Cys326 
is a weaker polymorphism as compared to hOGG1 Ser326 in 
the ability to repair DNA mutation.[22] The overall differences 
observed among the three genotypes may be due to the fact 
that hOGG1 is a specific 8‑OHdG excision repair enzyme, and 
that mutation polymorphisms lead to the loss of the cells ability 
to repair 8‑OhdG[23,24] as a correlation between the hOGG1 
Ser326Cys polymorphism and the amount of 8‑OHdG was 
observed in the patients. These findings agree with the lower 
levels of the serological indices, especially 8‑OhdG found in 
the Cys/Cys genotype than in the Ser/Ser genotype and Ser/Cys 
genotypeIt is proved that the hOGG1 gene polymorphisms affect 
the hOGG1 promoting the initiation and progression of NIHL.[25]

Conclusion

Based on these results, serum prestin and otolin‑1can be used 
in identifying individuals at high occupational risk, especially 
of the Cys/Cys genotype, monitoring ototoxic agents such 
as cancer chemotherapy and the possibility of the return of 
function in response to therapy after a sudden hearing loss. 
In chronic cases as presbycusis, they may correlate with the 
degree of dysfunction and response to treatment. The combined 
use of serological and functional indices could increase the 
ability to diagnose and manage hearing loss.
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Ser/Cys genotypes, respectively. Mild cases constituted 25.8% 
of Cys/Cys genotype whereas they were 47.0% and 38.8% in 
Ser/Ser and Ser/Cys genotypes, respectively [Figure 2].

Discussion

The present study demonstrated that after exposure to high 
levels of noise, prestin and otolin‑1 levels were significantly 
higher than that of control levels. It is a proof of the concept 
for a blood biomarker specific for inner ear noise‑induced 
injury in human for the first time. The current diagnostic tools 
remain limited in early detection of hearing loss.

The development of a serological marker will help treat the 
condition, before the hearing is permanently affected by noise. 
Normal appearance of cochlea does not necessarily mean intact 
function.[8] An outer hair cell biomarker as prestin and otolin‑1, 
which can be measured in the blood, could serve as effective 
markers assessing the efficacy of new therapy designed to 
protect the cochlea against NIHL and gaining insights into 
inner ear function.

In this study, prestin concentrations in normal individuals 
were detected because of the normal turnover in the 
outer hair cells membrane.[3] Here, the circulating prestin 
concentration in controls was used as an estimate of baseline 
levels. The NIHL is associated with increased prestin level 
in the remaining outer hair cells as detected in the current 
study and prestin in residual cells decreases 1–4 weeks later. 
Hence, prestin level shows changes after NIHL[9‑14] about 
time and so similar changes in circulating prestin level may 
be detected. Shortly after damage, the outer hair cells undergo 
apoptosis, and prestin concentration is expected to rise, but 
as the apoptotic mechanisms stop, prestin concentrations 
drop reflecting a decrease in the number of surviving outer 
hair cells as the current study revealed so it can be used as a 
marker of acute and chronic hair cell damage that may affect 
the management. The presence of otolin‑1 in the blood of 
controls is in agreement with the notion that there is turnover 
in otoconia and so otolin‑1 level could be the product of 
increased turnover with degeneration in NIHL in patients as 
detected in the current study.[15‑17]

Figure 2: Association between human 8‑oxoG DNA glycosylase 1 gene 
polymorphism and the severity of noise‑induced hearing loss
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