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of all visits to the emergency room and the second of all 
causes of hospitalization; of those cases, 17.8% was referred 
to the main‑hospital with a mortality rate of 2.7%.[2] The 
Department of Neurosurgery at Dr. Hasan Sadikin Hospital 
(RSHS), Bandung, Indonesia, received 1212 cases within 
the 11 months of 2000 or more than 100 cases/month. The 
incidence was increased by 11.6% (1352) in 2006. In August 
2007, 258 out of 462 accident cases were TBI (44.2%).[3]

TBI can be classified as primary, which occurs immediately 
following a trauma and continues to evolve during the 
subsequent hours and days after the initial insult in what is 
referred to as a secondary injury.[4] Improved outcomes might 
be achieved by preventing or reducing the secondary injury. 
Limiting a secondary injury results in lower mortality rates, 
improved functional outcome scores, shorter hospital stay, 
and decreased charges.[5,6]

Several pathogenetic mechanisms of secondary damage, 
including derangements in cerebral blood flow, excitotoxicity, 

Introduction

Traumatic brain injury (TBI) remains a major cause of death 
and disability with an estimated annual occurrence of 
1.4 million cases in the United States.[1] In Panti Nugroho 
Pakem Hospital, Yogyakarta, Indonesia, TBI cases were 
reported in the first quarter of year 2005, which ranked fifth 
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in rat model.
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reactive oxygen species (ROS), inflammation, and apoptosis 
have been described.[7] Two signaling pathways for the 
initiation of apoptosis are well known: One is mediated by a 
dead receptor, which is called an “extrinsic pathway,” and the 
other, the “intrinsic pathway,” is mediated by mitochondria.[8,9] 
In both pathways, the induction of apoptosis leads to the 
activation of initiator caspases: Caspase‑8 for the extrinsic 
pathway, and caspase‑9, which is activated at the apoptosome 
for the intrinsic pathway, which finally activates caspase’s 
executor, caspase‑3.[10]

The N‑methyl‑D‑aspartate (NMDA) receptor is a heteromeric 
ligand gated ion channel that interacts with multiple 
proteins.[11,12] NMDA receptors are composed of association of 
subunits that belong to two families: A single gene product 
(NR1) with eight splice variants and four different NR2 subunits 
(NR2A, B, C, D) produced by a different gene.[13] Within the 
brain, the NR1, NR2A and NR2B subunits are more prominent 
in cortical areas and the hippocampus than in white matter 
and cerebellum.[14] On the other hand, the NR2B subunits are 
expressed at the highest levels in the hippocampus, cerebral 
cortex, and olfactory bulb.[15] Recently, Liu et al., reported 
that activation of NR2B‑ containing NMDA receptor results in 
excitotoxicity and increasing neuronal apoptosis.[16] These events 
are very important to promote a brain cell protection.

The exposure of oxidative stress such as free radicals has been 
suggested as a major cause of neural cell death following 
TBI.[17,18] The brain’s antioxidant mechanisms include 
superoxide dismutase (SOD) which converts free radicals to 
hydrogen peroxide (H

2
O

2
), and glutathione peroxidase which 

further metabolized H
2
O

2
 to H

2
O and O

2
.[19] Oxidative stress is 

harmful due to its high fatty acid content and proportionately 
large share of total body oxygen consumption.[20] SOD over 
expression has a protective effect against ischemic injury.[21,22] 
Endogenous glutathione is up regulated in the brain in 
response to TBI to compensate the damage.[23] We speculated 
that exogenous glutathione would be needed to prevent a 
secondary TBI damage and inhibit apoptosis.

The aim of the present study was to examine the effect of 
glutathione administration on the expressions of mRNA NR2B 
and caspase‑3 as indicators of early apoptosis‑sign after a brain 
injury on a TBI rat model. We hypothesized that glutathione 
administered shortly after brain injury has a protective 
effect against the long‑term sequelae of TBI by inhibiting the 
expression of NR2B and caspase‑3.

Materials and Methods

Animal studies
Specific pathogen‑free adult male Wistar rats were obtained 
from Bandung Institute of Technology with standard of Animal 
Care Committee, Bandung, Indonesia. They were maintained 
on a standard laboratory feed in a 12‑hour (h) light/dark 

cycle. This study was approved by the Animal Research Ethics 
Board of Universitas Padjadjaran, Bandung, Indonesia. After a 
one‑week period of environmental adaptation, the rats (n=30) 
weighing~400 gm were divided into five groups: (A) Control: 
Without TBI and without treatment, (B) Placebo: With TBI and 
administration of NaCl 0.9% soon after TBI, (C) Glutathione 0 
h: With TBI, administration of glutathione 10.8 mg soon after 
TBI, (D) Glutathione 3 h: TBI, administration of glutathione 10.8 
mg 3 h after TBI, and (E) Glutathione 6 h: With TBI, glutathione 
10.8 mg 6 h after TBI and euthanized 3 h later (n=6). Some 
parts of the brain were stored in RNA‑later for subsequent 
RNA isolation and other parts of the brains were fixed in 10% 
formalin, 4 μm sections and processed for tissue staining.

Traumatic brain injury rat model
Male rats were anesthetized with pentotal intraperitoneally 
40 mg/kg body weight. After a midline skin incision, a 5‑7 
mm craniotomy was made from 3 mm right posterior of the 
bregma and 2 mm right lateral to the midline. The animals 
were then subjected to TBI using a small iron bar, receiving a 
contact velocity of 571.17 Newton/mm2. The contact velocity 
is equal to a mild TBI.[24] After the injury, the craniotomy was 
closed and the rats were returned to their cages.

Drug (Glutathione) administration
A total of 10.8 mg (0.018×600 mg) of glutathione (Tationil® 
600 mg/4 ml from Roche, Italy) was injected intraperitoneally. 
For rats weighing~400 grams, this equals to 600 mg of 
glutathione for human (70 kg).

RNA isolation and cDNA synthesis
Total RNA was extracted from fresh brain tissue using an 
RNeasy Mini kit (Qiagen, Hilden, Germany) according to the 
manufacturer’s instructions. The quantity of isolated RNA was 
measured using an ND‑1000 Spectrophotometer (NanoDrop Tech 
Inc., Rockland DE). Template cDNA was synthesized from 13.5 μg 
of total RNA with an Omniscript Reverse Transcriptase kit (Qiagen, 
Hilden, Germany), Random Primer (hexadeoxyribonucleotide 
mixture, Takara, Shiga, Japan) and Ribonuclease Inhibitor (Porcine 
liver, Takara, Japan). Total RNA was reverse‑transcribed with four 
units of Omniscript Reverse Transcriptase in a reaction volume 
of 20 μl (60 min at 37°C, 5 min at 93°C, and finally put on ice). 
The cDNA samples were stored at −30°C until analysis.

Reverse transcription‑polymerase chain reaction
Reverse transcription‑polymerase chain reaction (RT‑
PCR) was performed with a one step system (Promega 
BioSci., San Luis, CA, USA) using NR2B primers described 
previously;[25] forward: GGTAGCCATGAACGAGACTG and reverse: 
TTCACGAAGTCCTGGTAGCC. RT‑PCR mix were subjected to RT 
for 45 min at 45oC, followed by inactivation of RT enzyme at 
94oC (2 min) and PCR (40 cycles) consisted of 94oC (30 sec), 
60oC (1 min), and 68oC (2 min) with final extension at 68oC 
(10 min). The products were then run on a 3% agarose gel. 
Densitometry was performed by using Adobe Photoshop 
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(Apple Inc., Cupertino, CA, USA) acquisition and analysis by 
the Quantity One (BioRad Inc., Melville, NY, USA).

Immunohistochemistry for caspase‑3
Immunohistochemical staining of anti‑caspase‑3 antibody 
was performed by streptoavidin‑biotin as described 
previously.[26] Sections of four μm thick were deparaffinized 
and incubated with fresh 0.3% hydrogen peroxide in 
methanol for 30 min at room temperature. The specimens 
were then incubated with anti‑caspase‑3 antibody (Biocare 
Medical, Concord, CA, USA) as the primer antibody at a 
1:100 dilution. The specimens were counterstained with 
H and E. Negative controls were prepared by substituting 
normal mouse serum for each primary antibody: No 
detectable staining was evident. The degree of staining 
was scored as we previously described.[26] The sections were 
evaluated by two investigators without the knowledge of 
the pathological background.

Statistical analysis
Statistical analysis was performed using the Stat View software 
(ver. 5.0, SAS Institute Inc., NC, USA). The differences were 
considered statistically significant when P value was <0.05 
(ANOVA).

Results

We examined the effects of glutathione treatment on a TBI 
rat model at the molecular level. Isolated RNA from the rats’ 
brains’ was then subjected to RT‑PCR to observe NR2B gene at 
341 base‑pair (bp). NR2B, as shown in [Figures 1 and 2], was 
observed slightly in control brains (Group A, 96.25±20). In 
contrast, strong expressions were observed in placebo group 
(Group B, 328.14±24), as shown in [Figure 3], and gradually 
decreased in three other treated groups (Group C, 229.9±41; 
Group D, 178.5±41; and Group E, 136.14±63), as shown in 
[Figures 2 and 3]. The results showed that NR2B gene expression 
gradually decrease from placebo group to glutathione treated 
groups (P<0.001; [Figure 3]) in a time‑dependent manner, 

it might be due to neurotoxicity‑decreased (represented by 
decreased NR2B as glutamate receptors) effect which lead to 
the inhibition of brain cell death. Our results suggested that 
glutathione as a potent antioxidant had a brain cell protection 
in TBI.

Furthermore, we observed caspase‑3 expression in the 
cytoplasm of brain cells [Figures 4 and 5]. Expression of 
caspase‑3 was not observed in control brains (Group A). By 
comparison, strong expression of caspase‑3 was observed in 
placebo group (Group B, 66.7% was strong positive >80%), 
as shown in [Figure 4] and gradually decreased in three other 
treated groups (Group C, 50% was strong positive >80%; 
Group D, 16.7%; and Group E, 16.7%) as shown in [Figure 5].  
The results showed that caspase‑3 protein expressions 
gradually decrease from placebo group to glutathione treated 
groups (P=0.025; Table 1). The expressions of caspase‑3 on 
a TBI rat model treated with glutathione were significantly 
lower than the expressions observed among those in the 
placebo group; the presence of this antigen was found to be 
strongly associated with glutathione treatment (P=0.025; 
Table 1). Glutathione administered shortly after brain injury 
as a single dose of 10.8 mg prevented the increase in cell death 
(represented by decreased caspase‑3 as hall mark of apoptosis) 
in traumatized brain hemispheres.

Figure 1: RT‑PCR results of the NR2B gene expression. PCR products identified following RT‑PCR of NR2B gene expression. The presence of 
341 base pair (bp) fragment represents expression of NR2B in group A and group B (a)

Table 1: Distribution of caspase-3 protein expression 
in TBI rat model treated with Glutathione
Variable Group P  

value*A B (%) C (%) D (%) E (%)
Caspase-3 expression 0.025
Strong; >80% 0 4 (66.7) 3 (50) 1 (16.7) 1 (16.7)
Strong; 50-80% 0 2 (33.3) 1 (16.7) 0 2 (33.3)
Strong; 20-50% 0 0 2 (33.3) 2 (33.3) 3 (50)
Strong; <20% 6 0 0 3 (50) 0
Total 6 6 6 6 6
* Chi-square test; TBI - Traumatic brain injury
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Discussion

Our study demonstrated a temporal sequence of event 
following TBI, which included a mark increase of NR2B and 
caspase‑3 expression levels in placebo group of TBI rat model, 
indicating that peroxidation of lipid membrane as well as 
oxidative stress produced by head trauma induced damage 
of Deoxyribonucleic acid (DNA) and proteins.[27] The oxidative 
stress played a key role in mediating secondary brain injury 
induced cell death by TBI.[24,28] When the tissues are exposed 

to oxidative stress, they increase the activity and expression 
of antioxidant enzymes as a compensatory mechanism against 
free radical‑mediated damage. Nevertheless, the increased 
activity of the antioxidant enzymes may be inadequate to 
counteract the potential damage in many conditions of 
oxidative stress.[29] Moreover, antioxidant enzyme activities 
have been found to be diminished under highly elevated 
oxidative stress conditions as a result of molecular damage. 
On the other hand, over expression of the glutathione enzyme 
as one of the antioxidant and anti peroxidase which strongly 
decrease the cell death from brain injury.[30]

The brain is particularly vulnerable to oxidative injury because 
of its high rate of oxygen consumption and intense production 
of reactive radicals. NMDA receptor (NMDAR), a glutamate 
receptor, mediates neural plasticity and synaptic transmission 
in the mammalian central nerves system and also neuronal cell 
death.[31,32] Recently, NR2B receptor was shown to have different 
roles in supporting neuron survival and mediating neuronal cell 
death and hence had the impacts on neurotoxicity of brain.[16]  
Liu et al., reported that the activation of NR2B‑containing 
NMDA receptor resulted in excitatoxicity and an increasing 
neuronal apoptosis.[16] Shahib et al., showed that the increase 
of NR2B expression is needed at certain level otherwise it might 
induce apoptosis.[25]

Figure 2: Expression of NR2B in group B, C, D and E, respectively (b)

Figure 3: Densitometric estimation of NR2B in each group (c). For 
group‑explanation see Materials and Methods. Line 1: DNA ladder 
marker 100 bp. Lanes 2‑6: Six rats brain tissue in each group
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Nerve cell damage that is caused by the rupture of brain blood 
vessels is the result of excessive release of glutamate from nerve 
cells and glial (marked by increased of the NR2B expression) and 
not because of hypoxic or ischemic mechanism.[33] Glutamate 
then activates at least three types of NMDA receptor (NR2B, 
Kainate, and AMPA). These receptos could increase intracellular 
Ca2+ level.[34] Since NMDA is paired with Ca2+ channel, activation 
of both will be followed by an influx of Ca2+, sodium, water, and 
chloride into the intracellular‑space causing cellular swelling or 

cytotoxic‑edema.[35,36] The increasing level of intracellular Ca+ 
will increase H

2
O

2
 (peroxide) as well. The above events will 

produce nitric oxide, ROS, cofactor caspases from mitochondria 
that activate caspase‑3 as the executor caspase and eventually 
cause cell death.[37,38] The excessive release of glutamate induced 
exitatory which effect leads to a decrease in endogenous 
glutathione. Additional exogenous glutathione which acts as an 
antioxidant and anti peroxide will slow brain cell death process 
and prevent further damage in viable brain cells.

Figure 4: Immunohistochemistry results of the caspase‑3 protein expression. The brown color represents a positive staining of caspase‑3. 
Expression of caspase‑3 in group A and group B (a)

Figure 5: Expression of caspase‑3 in each group B, C, D and E, respectively (b). For group‑explanation see Materials and Methods
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Conclusion

In conclusion, this study showed that glutathione administered 
as a single dose of 10.8 mg prevents the brain oxidative damage 
induced by TBI in the rats by inhibiting the expression of NR2B 
and caspase‑3 expression. Our results suggest that glutathione 
must be administered shortly after brain injury since the 
therapeutic time window in brain injury is very narrow (between 
3 to 6 hours). The outcome of this study is expected to encourage 
the progress of traumatic brain injury studies in Indonesia. 
Further studies will be needed to elucidate the adjuvant 
glutathione therapy mechanism in the clinical setup of TBI.
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