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the differential diagnosis of intracranial vascular stenosis.[2] In 
the case of the arteriosclerotic stenosis, the WLR is reported 
to increase reflecting the increased wall thickness due to 
the atheromatous lipid deposition.[3] In contrast, in the case 
of moyamoya disease, intracranial arteries are reported to 
constrict without increase or decrease of the WLR.[4]

To calculate the WLR, the thickness of the vessel wall should 
be obtained. The development of magnetic resonance imaging 
made it possible to measure the thickened wall of atheromatous 

Introduction

The wall-to-lumen ratio (WLR) is the ratio of vascular wall 
thickness to luminal diameter, which is one of the important 
parameters in the field of vascular medicine because it 
indicates the character of vascular wall as well as the degree 
of vascular stenosis.[1] For example, the WLR is useful to narrow 
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Background: The wall‑to‑lumen ratio (WLR) is an important parameter in vascular medicine because it indicates the 
character of vascular wall as well as the degree of stenosis. Despite the advances in medical imaging technologies, it is 
still difficult to measure the thin‑walled normal intracranial arteries, and the reports on the WLR of normal intracranial 
artery are limited. It might be possible to calculate the WLR using the indocyanine green (ICG) angiography, which is 
used to observe intracranial vessels during microsurgery.

Purpose: To evaluate the WLR of normal intracranial arteries using ICG angiography.

Materials and Methods: From the three cases in which ICG angiography was recorded with a ruler during microsurgery, 
20 measurement points were chosen for the analysis. The ICG was injected intravenously with a dose of 0.2 mg/kg, and 
the vessels were inspected at high magnification using an operating microscope equipped with near‑infrared illumination 
system. The vessel outer diameter and the luminal diameter were measured using the images before and after the ICG 
arrival based on the pixel ratio method using a ruler as reference, respectively. The WLR was calculated as 0.5 × (vessel 
outer diameter − vessel luminal diameter).

Results: The WLR (mean ± standard deviation) of normal intracranial arteries was 0.086 ± 0.022. The WLR tended to 
be high in small arteries.

Conclusion: The WLR of normal intracranial arteries calculated using ICG angiography was consistent with the WLR 
reported in the previous reports based on human autopsy.
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intracranial arteries.[5-9] However, it is still difficult to measure 
the thickness of normal thin-walled intracranial arteries. 
This is the reason why the existing reports on the WLR of 
normal intracranial arteries are limited to those based on the 
measurements from autopsies of rats and humans.[10-14]

During the microsurgery of various intracranial diseases, we 
can inspect intracranial arteries closely, and the outer diameter 
of intracranial arteries can be measured. In addition, we can 
also inspect the inner lumen of intracranial arteries at high 
magnification using indocyanine green (ICG) angiography, 
which is now widely applied to assess the flow dynamic 
changes during microsurgery.[15-18] Thus, the WLR of intracranial 
arteries could be obtained from the archived video recording 
of ICG angiography during microsurgery.

The aim of the present study is to evaluate the WLR value of the 
normal intracranial arteries without atheromatous changes 
using ICG angiography during microsurgery.

Materials and Methods

Subjects
This study was approved by the Ethics Committee of our 
institute (No. 2231-2, approved on 9/30/2013). The patients in 
this study provided written informed consent.

Between January 2014 and August 2014, there were 27 cases 
with ICG angiography during microsurgery. Reviewing the 
archived video recordings of these cases, we found three cases 
in which a ruler, which was necessary as a reference to calculate 
the diameters of arteries, was recorded simultaneously during 
ICG angiography. All three cases, with a mean age of 64.3 years 
old, were operated on unruptured cerebral artery aneurysms. 
They had no particular previous disease and no predisposing 
factors of atherosclerosis.

Indocyanine green angiography
ICG angiography uses intravenously administered ICG as 
a dye and observes cerebral vessels at high magnification 
under the operating microscope equipped with near-infrared 
illumination system. ICG angiography was done at least 
twice in each case before and after the surgical clips were 
applied to the aneurysms. ICG was injected intravenously 
with a dose of 0.2 mg/kg. All operations were performed 
using an operating microscope equipped with a near-infrared 
illumination system (OME-9000; Olympus, Tokyo, Japan). 
During ICG angiography, the operating microscope was not 
moved. ICG angiography was recorded continuously using 
a high-definition recording system (AG-MDC10G; Panasonic, 
Japan).

Measuring vessel outer diameter and vessel 
luminal diameter
The images with a ruler on the same plane as the measurement 
point appearing in the surgical fields were selected from the 

videos, and they were exported to an image editing software 
(Photoshop®; Adobe Systems Incorporated, San Jose CA, USA). 
Healthy-looking segments of the arteries without visible 
atheromatous plaques were chosen as the measurement points 
of the vessel diameters. Six or seven measurement points 
were chosen from each case. The images before the ICG arrival 
with sufficient light illuminations were used to measure the 
vessel outer diameter, and the images after the ICG arrival 
with sufficient fluorescence under the near-infrared light 
were used to measure the vessel luminal diameter based on 
the pixel ratio method [Figure 1a and b]. Three neurosurgeons 
(D.N., M.S., and S.N.) confirmed that the vessels were 
healthy (e.g., the absence of arteriosclerosis). Measurement 
segments were supposed to be identical between the images 
before and after the ICG arrival since the operating microscope 
was not moved during the ICG angiography.

Calculating wall-to-lumen ratio
The WLR is the ratio of vascular wall thickness to luminal 
diameter. Thus, the WLR was calculated according to the 
equation below, based on the vascular outer diameter, and 
the vascular luminal diameter measured as described above.

WLR = ×
1

2

vessel outer diameter - vessel luminal diameter

vessel luminal diameter

Statistical analysis
Statistical analysis and graphic display of data were performed 
by using GraphPad software (version 5.00 for Windows; 
GraphPad Software, San Diego, CA). All values are reported 
as mean ± standard error (standard deviation [SD]). Analysis 
of variance with multiple comparison Tukey test was used to 
compare the variables affecting the WLR.

Results

The outer diameter and the luminal diameter were measured, 
and the WLR was calculated at 20 points in the three 
cases [Table 1]. The measurement points included 16 middle 
cerebral artery (MCA) branches lying on insula, two anterior 
temporal arteries, and two lenticulostriate arteries. The 
vascular outer diameters ranged from 0.76 mm to 4.04 mm, 
with an average of 2.52 mm, and the vascular luminal diameters 

Figure 1: (a) Measurement of the vascular outer diameter using an 
intraoperative image. *The measurement point for vascular outer 
diameter. (b) Measurement of the vascular luminal diameter using 
indocyanine green angiography in the same scale as that in Figure 1a. 
*The measurement point for vascular luminal diameter
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measured using the ICG angiography ranged from 0.64 mm to 
3.55 mm, with an average of 2.17 mm. The WLR (mean ± SD) 
was 0.086 ± 0.022. The WLR of the MCA branch lying on 
insula was 0.093 ± 0.011, that of the anterior temporal 
artery was 0.136 ± 0.0011, and that of the lenticulostriate 
artery was 0.079 ± 0.004. According to the Levene’s test, a 
distribution of the widths of the WLR by artery has a normal 
distribution (P = 0.12). The WLR of the anterior temporal artery 
was slightly larger than the other two (P < 0.001) [Figure 2a]. 
The WLR of the small artery (<2 mm in diameter) was 
0.116 ± 0.023, that of the medium-sized artery (2–3 mm) 
was 0.070 ± 0.010, and that of the large artery (more than 
3 mm) was 0.088 ± 0.012. According to the Levene’s test, 
a distribution of the widths of the WLR by arterial size 
has a normal distribution (P = 0.19). The WLR of the small 
artery was slightly larger than the other two (P < 0.001). 
The small artery group included two anterior temporal 
arteries and two lenticulostriate arteries [Figure 2b]. The 
systolic and diastolic blood pressures at the time of ICG 
angiography were 95–105 mmHg (99 mmHg in average) and 
50–58 mmHg (54 mmHg in average), respectively.

Discussion

In the present study, the WLR of the healthy-looking intracranial 
artery was measured by using ICG angiography during 
microsurgical clipping of unruptured cerebral aneurysms. 
The WLR of healthy-looking that is, normal intracranial artery 
was 0.086 ± 0.022. Several studies demonstrated that lumen 

diameter of intracranial arteries can be measured precisely by 
using ICG. This is the first report that ICG is used to measure 
WLR.

The existing reports on the WLR of normal intracranial arteries 
are broadly classified into two groups. In one group, the studies 
were based on rats;[10-13] whereas in the other group, the studies 
were based on human autopsies.[11,14] The WLR was calculated 
based on the measurements of cross-sectional arteries 
mounted on histological slides in these studies. Currently, 
many articles refer these studies as to the WLR of normal 
intracranial arteries.[19-21] According to the study based on rat,[10] 
the WLR of normal intracranial artery is 0.08, whereas the WLR 
of hypertensive intracranial artery is increased up to 0.14. 
According to the study based on human autopsy, the WLR of 
normal intracranial vessels ranges between 0.05 and 0.12.

The vessels subjected to our study had approximately 
0.7–4.0 mm of outer diameter, which covers the general diameter 
of major intracranial arteries. The small arteries (<2 mm in 
diameter) tend to have slightly larger WLR in our study. Similar 
findings are described in one of the previous papers reporting 
the WLR tends to be high when the vessel diameter is small.[11] 
Our results could be well-applied to medium-sized or large 
intracranial arteries. This method may help neurovascular 
surgeon to choose the correct treatment area for aneurysms 
clipping or graft anastomosis.

The present study has several limitations to be discussed. 
At first, our results are based on low number of cases. The 
correlation between the vascular diameter and the WLR 
would presumably be clearer with a larger number of cases. 
The second limitation is that the measurements are based on 
the images exported from the video recordings. The vessel 
diameters are determined with the pixel ratio method using 
a ruler in the operative field as reference. The differences in 

Table 1: Vessel diameter and wall-to-lumen ratio
Measurement 
point

Outer 
diameter (mm)

Luminal 
diameter (mm)

WLR

M2 2.18 1.86 0.087
M2 3.01 2.52 0.099
LSA 0.76 0.64 0.096
M2 3.47 3.00 0.079
M2 3.04 2.53 0.099
ATA 1.00 0.81 0.118
M2 2.99 2.63 0.070
M2 3.04 2.50 0.109 
M2 2.23 1.93 0.076
M2 2.89 2.56 0.065
LSA 0.77 0.64 0.099
M2 3.45 2.93 0.088
M2 2.23 1.93 0.077
M2 3.51 3.02 0.081
ATA 1.01 0.77 0.154
M2 4.04 3.55 0.069
M2 2.77 2.45 0.064
M2 3.00 2.59 0.079
M2 2.08 1.89 0.050
M2 2.95 2.59 0.071
M2 – Middle cerebral artery branches lying on the insula; LSA – Lenticulostriate 
artery; ATA – Anterior temporal artery; WLR – Wall-to-lumen ratio

Figure 2: (a) Bar graph of normal wall‑to‑lumen ratio by vessel 
area. Analysis of variance with multiple comparison Tukey test was 
used to compare the variables of vessel area. *P < 0.05, ns: Not 
significant. (b) Bar graph of normal wall‑to‑lumen ratio by vessel size. 
Analysis of variance with multiple comparison Tukey test was used to 
compare the variables of vessel size. *P < 0.05, **P < 0.001, ns: Not 
significant. LSA: Lentriculostriate artery, ATA: Anterior temporal artery, 
M2: Branches of middle cerebral artery lying on insula
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depth between the ruler and the measured arteries might 
have influenced the measurements of the vessel diameter. 
Thus, we chose the measurement points in the vicinity of 
the rulers. It should also be mentioned about the limitation 
of the ICG angiography, the limited observation angle, 
and the inability to observe the lumens of vessels with 
arteriosclerosis-related calcification.[22] As anticipated, the 
operative field in measurements of the vascular diameters was 
narrow, and the vascular observation angle was available only 
in one direction in the present study. However, there were no 
patients whose vascular luminal diameters were not visualized 
by ICG video angiography because of calcification because we 
chose healthy subject vessels. In spite of these limitations, 
the WLR calculated in the present study was consistent with 
the previous reports that adopt different measuring methods. 
This might indicate that the WLR calculation using the ICG 
angiography had a sufficient precision to visualize the lumens 
of intracranial arteries.

Conclusion

The WLR of normal intracranial arteries calculated using ICG 
angiography was 0.086 ± 0.022, which was consistent with 
the previously reported WLR based on the human autopsy.
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