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and are designated as nonsyndromic or syndromic 
cases, respectively. Nonsyndromic clefts make about 
70% of all reported oro‑facial clefts.[1,2] Syndrome 
associated clefts occur in several hundreds of 
mendelian (autosomal dominant, autosomal recessive, 
or X‑linked) chromosomal conditions,[3] that may at 
times include mental retardation, myopia and cardiac 
anomalies[4‑8] as additional clinical manifestation. Of 
the above two, nonsyndromic clefts of the lip and 
palate  (CL, CP, CLP) occurs in every 1/500-1/2500 
of live births[9,10] and hence is considered as the most 
common of all congenital defects.

The cause of development of CL, CP and CLP is 
believed to be multi‑factorial in nature and may 
include both environmental factors and genetic 

INTRODUCTION

The development of the maxillary division of 
oro‑facial region is regulated by a cascade of 
signaling molecules, the expression and/or activation 
of which is tightly regulated. Disturbances in the 
signaling cascade due to function impairing defects 
in developmental genes may cause failure of meeting 
and fusion of the developing primordium. The extent 
of manifestation though may vary among the affected 
children and may include either cleft lip (CL) or cleft 
palate (CP) (isolated CL or CP) or cleft lip with cleft 
palate (CLP),[1] that may involve one or both halves 
of the facial region and are classified as unilateral or 
bilateral clefts.[2] Oro‑facial cleft may either occur as an 
isolated event or as a part of other clinical symptoms 
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defects.[11] Two major environmental factors that the 
developing embryos get exposed to are byproducts 
of tobacco smoke and alcohol binging by expectant 
mothers especially during the early trimester. Both of 
these agents have been found to be associated with the 
development of oro‑facial clefts in infants.[12‑23] Besides 
the above, oro‑facial cleft has also been observed 
in the fetus of mothers undergoing phenytoin 
drug therapy for epileptic conditions or who were 
consuming dietary supplement, retinoic acid.[21,22] 
Though the exact the mechanism of development 
of oro‑facial clefts in embryos exposed to these 
environmental and dietary factors remains yet to 
be understood, association between functional 
impairment of molecules responsible for detoxification 
of environmental agents and drugs and oro‑facial 
clefts have been observed in infants. For example, 
significant over transmission of G590A variant of 
NAT2 gene coding N‑acetyltransferase 2 enzyme that 
activates and deactivates arylamine and hydrazine 
drugs and carcinogens have been observed in subjects 
with oro‑facial clefts relative to controls.[23,24] On the 
other hand, genetic alteration in developmental 
regulators of palatal shelf such as TGFA, TGFβ,[25,26] 
MSX1,[27] IRF6,[28,29] PVR, PVRL1, PVRL2,[30,31] TBX22,[32] 
FGFR1,[33] ABCA4,[34,35] MAFB1,[34,35] and ARHGAP29 
have also been observed in several subjects with 
oro‑facial clefts.

Of the above developmental regulators, ARHGAP29 
gene encodes for a GTPase‑activating protein (GAP) 
that has a strong affinity to the small GTP‑binding 
protein RhoA than Rac1 or CDC42.[36] By binding 
to the active form of RhoA, the GTPase function of 
ARHGAP29 converts RhoA‑GTP to RhoA‑GDP.[37] 
Expression of ARHGAP29 is seen in the mandibular 
and maxillary processes of developing mouse embryo 
at E10.5 and the shelves of the secondary palate 
at E13.5.[37] Nonsense mutation with consequent 
premature truncation of the protein has been identified 
within the coding region of exon 1 of ARHGAP29 gene 
in oro‑facial cleft subjects from other races.[37] Studies 
from the Indian Genome Variation Consortium have 
suggested that most of the populations in the Indian 
subcontinent are distinct from HapMap populations, 
and that the genetic basis of diseases in the Indian 
population may be different due to differences in 
the risk allele frequency and pattern of linkage 
disequilibrium.[38] This prompted us to design the 
present study, in which, the exon 1 of ARHGAP29 
gene was investigated in a small group of Indian 
subjects with CL, CP or CLP, who belonged to a 
defined South Indian Dravidian race.

MATERIALS AND METHODS

Study design and subjects
A cross‑sectional study was designed and 60 subjects 
with either NS‑CL or CP or CLP, but otherwise 
medically able were included in the study after 
obtaining informed consent. As controls, an equal 
number of race matched healthy volunteers were 
included. Subjects with syndromic CL or CP or CLP, 
and those who were not willing to be a part of the 
study were excluded.

DNA extraction and polymerase chain reaction
About 200 µl of peripheral blood was processed 
to extract chromosomal DNA with Gen‑Elute 
Blood DNA Extraction Kit  (Sigma‑Aldrich, USA) 
according to the manufacturer’s protocol. The exon 
1 region of ARHGAP29 was amplified with intronic 
primers  (sequence information available upon 
request) flanking splice donor and acceptor sites. 
The gene region was amplified under following 
conditions: Initial denaturation at 94°C for 5  min, 
followed by 35 cycles of denaturation at 94°C for 45 s, 
primer annealing at 55°C for 45 s, primer extension at 
72°C for 1 min, with a final extension at 72°C for 5 min. 
The PCR amplicons were confirmed in comparison 
to DNA size markers and were subsequently eluted 
with Genelute DNA gel elution kit (Sigma Aldrich, 
cat# NA1111) and subjected to direct sequencing 
with same set of primers that were used for PCR 
amplification.

RESULTS

In order to determine the occurrence of mutation 
in exon 1 of ARHGAP29 gene in Indian subjects 
with either NS‑CL or CP or CLP, and thus to 
understand the risk potential of mutant ARHGAP29 
in the development of CL/CP/CLP, we screened the 
chromosomal DNA from 60 CL/CP/CLP subjects 
along with equal number of healthy volunteers. 
DNA from peripheral blood was amplified with 
exon 1 specific primers, and the PCR amplicons 
were subjected to direct sequencing after gel 
purification. Analysis of the sequencing data showed 
a nonsense mutation, c. 94A>T, in a subject with 
NS‑CLP that resulted in the substitution of lysine 
amino acid with stop codon at codon position 32 in 
exon 1  (AAG32TAG). However, the mutation was 
identified to be heterozygous as both wild type AAG, 
and mutant TAG codons were present at codon 
position 32 [Figure 1].
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DISCUSSION

A total of 60 subjects with NS‑CL, CP or CLP and 60 
normal subjects were analyzed for the presence of the 
mutation in ARHGAP29 gene. Both groups of subjects 
were selected from Tamil speaking Dravidians from 
the Southern region of India, in order to minimize 
race dependent genetic variations as genetic diversity 
has been observed in the population from different 
parts of India.[38] Though the development of NS‑CP/
CL/CLP is believed to be due to gene–environment 
interaction, the present study was focused only 
on the genetic aspect as no records of the subject’s 
prenatal period or that of respective mother’s 
were available. Direct sequencing analysis of PCR 
amplicons of exon 1 coding region of ARHGAP29 
identified a single mutation in a subject with NS‑CLP. 
The mutation caused substitution of lysine amino 
acid at codon 32 with a premature stop codon in one 
copy of ARHGAP29, as the mutant codon occurred 
along with wild‑type lysine codon (indicated by two 
arrows in mutant ARHGAP29 panel in Figure 1). The 
identification of K32STOP mutation in only one of 
60 CL, CP or CLP subjects who were investigated in 
the present study indicates that the mutation may be 
a rare event in CL, CP or CLP from this region. By 
analyzing 1440 and 360 subjects with CL, CP or CLP 
from Philippines and US respectively, Leslie et  al. 
identified a nonsense (c. 62_63delCT) and a missense 

mutation  (c. 76A>G) in two independent subjects 
from Philippines, and a missense mutation  (c. 
137A>G) in a subject from the US.[37] Considering 
the occurrence of c. 94A>T mutation in a single 
NS‑CLP subject from a sample size of 60 analyzed in 
the present study, it may be inferred that the relative 
prevalence of this mutation may be higher than those 
observed by Leslie et al. This claim, however, requires 
to be confirmed by analyzing a higher sample size by 
including subjects from similar racial background.

Both nonsense mutations, c. 94A>T identified by 
us, and c. 62_63delCT causes premature truncation 
of the ARHGAP29 protein. While c. 94A>T creates 
an in‑frame stop codon, c. 62_63delCT causes a 
frame‑shift that consequently results in the premature 
occurrence of stop codon after twenty misread codons. 
Both mutations, however, are expected to cause loss 
of function of ARHGAP29 protein. In contrast, the 
two missense mutations, c. 76A>G and c. 137A>G 
that causes substitution of threonine with alanine at 
codon 26 (T26A) and lysine with arginine at codon 
46 (K46R) respectively are expected to have a benign 
effect on the function of ARHGAP29.[37]

The identification of c. 94A>T mutant allele of 
ARHGAP29 in heterozygous condition along with 
wild‑type allele suggests that the mutation event 
causes haplo‑insufficiency. It is important to note that 

Figure 1: Chromatogram of wild type and mutant sequences within exon 1 of ARHGAP29 gene. Note that the mutant sample carries both wild 
type nucleotide “A” (indicated by a green arrow) and mutant nucleotide “T” (indicated by a red arrow) at first position of codon 32
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the deletion mutation  (c. 62_63delCT) reported by 
Leslie et al. was homozygous in nature.[37] Although 
biallelic inactivation of genes has often been described 
as a cause for development and progression of 
diseases, haplo‑insufficiency of genes has also 
been observed in several disease conditions. For 
example, haplo‑insufficiency has been observed in 
cancerous lesions,[39‑41] neurodegenerative disorders,[42] 
myopathies,[43] inflammatory conditions,[44] and 
developing tissues leading to birth defects including 
syndromes such as Frias syndrome (haplo‑insufficiency 
o f  B M P 4 ) , [ 4 5 ]  a n d  C N S  m a l f o r m a t i o n 
syndrome  (haplo‑insufficiency of NFIA).[46] These 
findings clearly suggest that the heterozygous c. 94A>T 
mutation identified in the present study may present 
haplo‑insufficiency effect during the development of 
oro‑facial cleft region. As expression of ARHGAP29 
transcript is detected strongly in medial and lateral 
nasal processes and to a lesser extent in the mandibular 
and maxillary processes at E10.5 and shelves of the 
secondary palate at E13.5,[37] the haplo‑insufficiency 
effect of c. 94A>T mutant ARHGAP29 may have acted 
as one of the causative factor in the development of 
NS‑CLP as the etiology of NS‑CL/CP/CLP is believed 
to be polygenic. However, a knock‑in experiment to 
recreate the above heterozygous condition along with 
other reported mutations in transgenic mice is essential 
to validate the above observation.

CONCLUSION

The present study has identified for the first time 
a novel nonsense mutation c. 94A>T in the gene 
ARHGAP29 in a South Indian Dravidian subject 
with NS‑CLP. The occurrence of a mutation in one of 
60 subjects with NS‑CL/CP/CLP suggests that the 
mutation event may be rare.
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