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1. Introduction
Recently, several publications have re-
newed the interest in the assessment of in-
dividual hormone profiles along the men-
strual cycle. This led to new analyses of 
these profiles in attempts to better under-
stand the cycle [1].

During the menstrual cycle, hormone 
levels may vary dramatically between 
women and between successive cycles of 
the same woman. While simplifications are 
helpful for a basic physiological knowledge, 
it is interpreting individual hormone pro-
files that is required to diagnose and treat 
cycle abnormalities. Indeed, up to recently, 
the description of hormone curves have fo-

cused on averages and ignored profile di-
versity. The literature did not recourse yet 
to more complex and/or recent methods 
such as the functional principal-compo-
nent-based methods [2], the functional 
data analysis using smoothing splines [3], 
or the second-order growth mixture model 
[4]. It could be interesting to test these 
methods. However, hormone profiles are 
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Summary
Background: Even in normally cycling 
women, hormone level shapes may widely 
vary between cycles and between women. 
Over decades, finding ways to characterize 
and compare cycle hormone waves was diffi-
cult and most solutions, in particular polyno-
mials or splines, do not correspond to physio-
logically meaningful parameters.

Objective: We present an original concept to 
characterize most hormone waves with only 
two parameters. 
Methods: The modelling attempt considered 
pregnanediol-3-alpha-glucuronide (PDG) and 
luteinising hormone (LH) levels in 266 cycles 
(with ultrasound-identified ovulation day) in 
99 normally fertile women aged 18 to 45. The 
study searched for a convenient wave descrip-
tion process and carried out an extended 
search for the best fitting density distribution. 
Results: The highly flexible beta-binomial dis-
tribution offered the best fit of most hormone 

waves and required only two readily avail-
able and understandable wave parameters: 
location and scale. In bell-shaped waves 
(e.g., PDG curves), early peaks may be fitted 
with a low location parameter and a low 
scale parameter; plateau shapes are ob-
tained with higher scale parameters. 
I-shaped, J-shaped, and U-shaped waves 
(sometimes the shapes of LH curves) may be 
fitted with high scale parameter and, re-
spectively, low, high, and medium location 
parameter. These location and scale parame-
ters will be later correlated with feminine 
physiological events. 
Conclusion: Our results demonstrate that, 
with unimodal waves, complex methods 
(e.g., functional mixed effects models using 
smoothing splines, second-order growth mix-
ture models, or functional principal-compo-
nent-based methods) may be avoided. The 
use, application, and, especially, result inter-
pretation of four-parameter analyses might 
be advantageous within the context of femi-
nine physiological events.
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frequently simpler than the complex curve 
forms these methods are able to deal with. 
Besides, complex or recent models would 
use or require a rather high number of pa-
rameters that one could not be able to in-
terpret biologically.

In our view, hormone profiles are char-
acterized by the occurrence of one or sev-
eral waves. Each wave exhibits specific 
characteristics: i) Amplitude reflects the 
hormone concentration (e.g., follicular 
stimulating hormone (FSH) shows one 
peak during the early pre-ovulatory phase 
and another peak immediately before ovu-
lation; the amplitudes of these two peaks 
vary between women and between cycles 
of a given woman [5, 6]); ii) Wavelength re-
flects the duration of the hormone change 
(e.g., the length of the luteinizing hormone 
(LH) peak may range from a single day to 
about a week [7, 8]); iii) Timing relative to 
the other hormone waves (e.g., during the 
luteal phase, the onset of the progesterone 
plateau may occur immediately before or 
after ovulation [9, 10]); iv) Profile, which 
may have a triangular, arch, or plateau 
form [1]. Describing a hormonal profile 
requires that each of these four character-
istics be taken into account.

Different methods have been already 
proposed to describe wave characteristics 
within the context of longitudinal latent 
class analysis. The statistical methods used 
to describe biological marker profiles may 
be separated into three categories: 1) crude 
descriptions of the profile without any 
smoothing or interpolation (these descrip-
tions are made within the context of clas-
sifying longitudinal data, referred to as par-
titional clustering, using non-parametric 
algorithms like k-means [11]); 2) interpo-
lation, using a polynomial or a spline re-
gression over time [12–15]; 3) profile 
identification through a comparison with a 
given geometrical form (triangle, rectangle, 
plateau, or arch) or growth function [16] 
(this shape identification was previously 
applied to two-dimensional images but not 
to curves or waves).

To sum up, most previously published 
methods in the field were unable to provide 
readily useful and easily understandable 
descriptions of the cycle hormonal waves. 
Actually, non-parametric methods and in-
terpolations are not “friendly” methods be-

cause they require a great number of pa-
rameters (usually more than six) most of 
which are devoid of physiological meaning. 
Ideally, much less parameters should be 
sought for to allow their correspondence 
with clear feminine physiological events.

In the field of hormone waves, stan-
dardization may provide insights into hor-
mone dynamics. Regarding wave ampli-
tude, the daily hormonal concentration has 
been sometimes expressed as a proportion 
of its maximum [17]; this will be referred 
to as “standardization on the Y scale”. Re-
garding wavelength, a standardization of 
time may be used to map several hormone 
profiles and compare them over a given 
time period (e.g., a theoretical 28-day cycle 
duration); this will be referred to as “stan-
dardization on the X scale”. Regarding 
relative timing, most published studies 
have chosen to change the origin of time 
and use the day of maximum concen-
tration as the reference day. However, using 
this reference conveys no information on 
the early or late occurrence of the hormon-
al peak within the menstrual cycle (today, 
the reference and gold standard is the day 
of ovulation as determined by ultra-
sounds). This relative timing will be re-
ferred to as “position.”

2. Objective

In the present article, we introduce a new 
method that describes hormonal waves as 
density distributions. After standardization 
on the X and Y scales, the method is shown 
able to reflect two main wave character-
istics: position and profile.

3. Methods
3.1 Participants and Data

The participants were recruited between 
1996 and 1997 from eight Fertility Aware-
ness Clinics located in France, Italy, Ger-
many, Belgium, and Spain. This is the lar-
gest dataset with ultrasound detection of 
the ovulation day and daily measurements 
of hormone levels: it includes data on 107 
normally fertile women aged 18 to 45 ob-
served over an average of three cycles per 
woman; that is, data on 326 cycles.

The exclusion criteria were: a consistent 
history of anovulatory cycles, sub-fertility 
or active hormonal treatment for sub-fer-
tility in the past three months, use of hor-
monal contraception or hormonal replace-
ment therapy in the past three months, and 
abnormal cycle lengths.

During each cycle, a daily measurement 
of four hormones was performed: FSH, 
LH, urinary estrone-3-glucuronide (E1G), 
and urinary pregnanediol-3-alpha-glucu-
ronide (PDG). The creatinine concen-
tration was used to adjust for urine dilu-
tion. In addition, the day of ovulation was 
estimated using serial ultrasound scans.

Other data collected included age, age at 
menarche, parity, past oral contraceptive 
use, and lifestyle habits such as smoking, 
diet, and physical activity (hours/week), 
sleep duration (hours/day), and stress lev-
els (subjective assessment). Height and 
weight were measured and the body mass 
index (BMI) calculated.

Herein, we have limited the analysis to 
those cycles with ultrasound-identified 
ovulation day; i.e., 283 among the 326 
cycles. The seventeen cycles with a luteal 
phase of more than 17 days were arbitrarily 
considered to be possible pregnancies, and 
excluded from this analysis. Thus, 266 
cycles out of 326 (82%) were used for this 
analysis, provided by 99 women out of 107 
(93%). In addition, the hormonal profiles 
described were limited to PDG and LH. 

3.2 Statistical Analysis

3.2.1 Describing Amplitude and 
Wavelength
Amplitude (the hormone concentration at 
its maximum) and wavelength (the length 
of post-ovulatory phase) were calculated. 
These two parameters will be further ana-
lysed for their predictive potential by char-
acteristics of the women or by other char-
acteristics of the cycle.

Then, standardization on the Y scale 
(amplitude) was carried out: PDG and LH 
levels of each cycle were rescaled within the 
range of the cycle-specific minimum and 
maximum. The standardization on the X 
scale (wavelength) will be considered dur-
ing the description of the wave using a den-
sity distribution.
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3.2.2 Describing Hormonal Waves 
Using Density Distributions

The profiles of the standardized hormonal 
wave were modelled as a density distribu-
tion. To describe waves using density dis-
tributions, there are two options:
1. The day is used as the explained variable 

and the day-specific hormone level as a 
frequency weight.

2. Preparing an artificial dataset whose 
density reflects perfectly the shape.

In practice, the first option was imple-
mented for many known distributions in a 
generalized additive model for location, 
scale, and shape; namely gamlss library in 
R software. 

When the first option is not imple-
mented in the algorithm, a second option 
may be used through a wrapper (▶ Online 
Appendix 1).

▶ Figure 1 illustrates the above process 
of describing the profile of urinary PDG 
concentration during the luteal phase in 
one of the 266 cycles under study using the 
wrapper.

Note that, in this paper, the creation of 
an artificial dataset was avoided because 
the weight parameter is available in gamlss. 
In the process of the work, we tested both 
options to check whether our process is 
correct and obtained the same results.

3.2.3 Fitting Hormonal Waves to 
Various Distributions

Different distributions were applied: nor-
mal, Cauchy, Weibull… as well as binomial 
and beta-binomial.

The hormonal level being non-null at 
the beginning and the end of the wave, a 
two-side truncated version of these dis-
tributions was chosen for one of them, the 
normal distribution, to illustrate the benefit 
of truncation and compare with the beta-
binomial. The first and last days of the 
wave of each cycle were used as fixed trun-
cation parameters.

The binomial distributions, especially 
the beta-binomial, have naturally non-null 
lower and upper densities: there was thus 
no need to use truncation for them. The 
first day of the wave was rescaled to zero 

and the length of the wave to the binomial 
denominator.

However, as mentioned below, discrete 
distributions would be more obvious.

▶ Table 1 lists the main distribution 
characteristics likely to be obtained upon 
changing some parameters. Some are sym-
metric (bell-shaped) and some asymmet-
ric; some are right-skewed and some left-
skewed. Moreover, with specific parame-
ters, some are decreasing, increasing, or 
even U-shaped.

3.2.4 Applying the Method to 
 Describe PDG and LH Profiles

This series of distributions was applied to 
the PDG and LH profiles of each cycle. The 
mean square of the residuals (MSE) was 
used as the loss function [18]. The best dis-
tribution was the one that minimized the 
loss function. A part of this loss function 
was reflecting daily oscillations; i.e., the 
measurement errors. Another part was due 
to the bias in the shape estimation. We 
chose MSE as low function because of its 
independence from the true underlying 

Figure 1 Applying the three-step process to describe a PDG hormonal curve. (a) The PDG hormonal curve. (b) The corresponding artificial dataset. (c) The 
observed (continuous line) vs. the fitted (dashed line) profile.
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density functions f(yi|θi) conditional on 
θi=(θ1i, θ2i)=(μ1i,σi). The latter two parame-
ters are the location and scale parameters. 
For k=1, 2, let gk(.) be known monotonic 
link functions relating the location and 
scale parameters to the explanatory vari-
ables by 

gk(θk)=  
 

where θk are vectors of length n, Xk is the 
design matrix of predictors, βk the vector of 
corresponding effects, Zjk the design matrix 
of the hierarchy (days within cycles within 
women), and γjk the vector of random ef-
fects. The link function applied for the lo-
cation and scale parameters of the beta-bi-
nomial distribution were respectively the 
logit and the log functions.

The implementation of this model in R 
was presented by Stasinopoulos and Rigby 
[20].

Using weights as an artifice to fit the 
wave required dividing the weights by their 
sum at cycle level to maintain the correct 
number of degrees of freedom.

An abstract of the code is provided in 
▶ Online Appendix 2.

3.3 Ethical Considerations

In accordance with the French legislation 
in force at the time of this study, an obser-
vational study that did not change the rou-
tine management of patients did not need 
to be declared or submitted to the opinion 
of a research ethics board.

 
 
Formel_01 (vollständig)) 

Distribution

Normal

Cauchy

Weibull

Logistic

Gamma

Neg. binomial

Log normal

Chi-squared

Poisson

Truncated normal

β- binomial a

a See ▶ Online Appendix 3

Shapes

Symmetric 
(bell-shaped)

√

√

√

√

√

√

√

√

Right-
skewed

√

√

√

√

√

√

√

√

√

Left-
skewed

√

√

√

Decreasing

√

√

√

√

Increasing

√

√

U-shaped

√

Table 1 Diversity of shapes likely to be described by various distributions upon using specific par-
ameter values.

Table 2 Comparison of fitting process and performance between the truncated-normal (Notr) and the beta-binomial (BB) distributions.

Criterion

More than 20 iterations to reach convergence a

Mean Square Error (10–4)b

Durbin-Watson statistic b

a Proportion and chi-square test
b Mean (SEM) and Student t-test

PDG (bell shaped)

BB

0/266 (0%)

4.86 (0.68)

1.97 (0.04)

Notr

37/266 (14%)

5.23 (0.66)

1.74 (0.04)

P value

<0.01

<0.01

<0.01

LH (monotonically decreasing)

BB

0/266 (0%)

23.45 (1.58)

2.95 (0.04)

Notr

242/266 (91%)

29.52 (1.78)

1.69 (0.04)

P value

<0.01

<0.01

<0.01

distribution and to allow comparisons of 
fits obtained using the various density dis-
tributions. For MSE, the lowest value is the 
best.

The Durbin-Watson statistic was used 
as second criterion, the auto-correlation of 
residuals being a direct sign of bias in the 
shape estimation. The highest value of the 
Durbin-Watson statistic being the best, a 
low value is an effect of auto-correlation of 
the residuals; i.e., of the bias in the shape 
estimation.

We compared the speeds of conver-
gence, the MSEs, and the Durbin-Watson 
statistics between the distributions and 
provide ▶ Table 2 in the case of two-side 
truncated normal distribution and beta-bi-
nomial distribution.

3.2.5 Identification of Predictors of 
Wave Shape Using a Generalized Ad-
ditive Model for Location and Scale

A generalized additive model for location 
and scale was directly fitted to the dataset 
for each selected distribution. For illus-
tration, we used the beta-binomial dis-
tribution and introduced factors as poten-
tial predictors of location and scale as well 
as a random intercept to take into account 
the hierarchical structure of the data (days 
within cycles and cycles within women). 
This model was originally described by 
Rigby and Stasinopoulos [19]. Here, we use 
it in a form limited to location and scale 
parameters. The model assumes indepen-
dent observations yi for i=1,2,…, n with 
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4. Results
4.1 Diversity of Shapes Identified 
by the Beta-binomial Distribution
The beta-binomial distribution offers a 
high number of shapes upon changing only 
two parameters: μ and σ. ▶ Figure 2 illus-
trates some shapes obtained with various 
values of μ and σ. ▶ Figure 3 shows that a 
great diversity of PDG or LH hormonal 
profiles may be accommodated using the 
beta-binomial distribution.

The two-side truncated normal dis-
tribution provided very closely fitted 
waves. Nevertheless, this option had some 
limitations. As shown in ▶ Table 2, the 
convergence of the algorithm was much 
slower, the loss function was higher, and 
the Durbin-Watson statistic was in favour 
of more bias. The location and scale pa-

rameters were quite similar to those of the 
beta-binomial for bell-shaped waves but 
differed dramatically for other shapes. In 
the latter case, these parameters were no 
more interpretable.

4.1.1 Diversity of PDG and LH 
 Profiles

We applied the beta-binomial distribution 
to each PDG and LH profile of 266 cycles. 
We obtained for each the amplitude, the 
wavelength, parameter μ, and parameter σ 
of the beta-binomial distribution. We de-
scribed the PDG waves and LH waves dur-
ing the luteal phase using the beta-binomial 
distribution according to various μ and σ 
values. For either PDG or LH, we consider-
ed three groups for μ values using the ter-
ciles (33rd and 66th percentiles of values dis-

tribution) and three groups for σ values. We 
obtained thus nine value supergroups. These 
nine groups were built to present all the 
waves in their diversity and show the power 
of the classification obtained using the beta-
binomial distribution.

▶ Figure 4 and ▶ Figure 5 show the 
typical profiles of PDG and LH profiles ac-
cording to these supergroups of μ and σ 
values.

For PDG profiles, Panels 4a, 4d, and 4g 
of ▶ Figure 4, show symmetric or asym-
metric bell-shaped profiles according to 
the value of μ. The other panels show a pla-
teau profile obtained either with higher 
values of σ (vs. 4a, 4d, and 4g) and even in-
creasing values of PDG toward the end of 
the menstrual cycle that correspond to the 
highest values of μ (▶ Figure 4i).

Figure 2 Shape diversity obtained with the beta-binomial distribution according to μ and σ values. (a): Bell-shape. (b): Narrow peak. (c): Left-skew. (d): 
Right-skew. (e): Decrease. (f): Increase. (g): Arch. (h): U-shape.
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For LH profiles, Panels 5c, 6f, and 5i of 
▶ Figure 5 show rapidly or more gradually 
decreasing curves obtained with high valu-
es of σ. The other panels show early (low μ) 
or more delayed (higher μ) peaks at the be-
ginning of the luteal phase.

These graphs illustrate the high diver-
sity of shapes fitted by the beta-binomial 
distribution.

4.1.2 Identification of the Predictors 
of Wave Characteristics: Amplitude, 
Wavelength, and Wave Shape

▶ Table 3 presents the result of a univariate 
regression of the characteristics of the wave 
on each predictor. The reason for showing 
only univariate results instead of multivari-
ate results is that the causal path from most 

predictors might pass through others; for 
example, the maximum follicle size can be 
a result of age or BMI as well as a cause of 
the characteristics of the wave of post-ovu-
latory hormone level. A multivariate analy-
sis would conceal the relationship between 
age or BMI and the characteristics of the 
wave.

All the predictors were previously stan-
dardized: they have mean zero and vari-
ance one to ease comparisons of effect 
sizes.

The wavelength appears to be signifi-
cantly longer in older women, shorter after 
a long pre-ovulatory phase and in case of a 
small maximum follicle size, and associated 
with higher post-ovulatory LH.

The amplitude was clearly and signifi-
cantly lower in case of high BMI.

The location parameter was signifi-
cantly higher in case of high post-ovulatory 
LH; i.e., a delayed increase of PDG after 
ovulation was associated with higher post-
ovulatory LH.

A significantly higher scale parameter; 
i.e., a longer wave (up to plateau-like), was 
significantly associated with a higher PDG 
level on day 3 of the cycle, longer pre-ovula-
tory phase, and small maximum follicle size.

5. Discussion

We propose here a new mathematical 
method to describe the hormonal profiles 
observed during the menstrual cycle using 
a density distribution, with a preference for 
a two-side truncated normal distribution or 

Figure 3 Examples of hormonal profiles starting at the ultrasound-determined day of ovulation (US-DO). (a) PDG – ID cycle: 1122. (b) PDG – ID cycle: 5152. 
(c) PDG – ID cycle: 7033. (d) LH – ID cycle: 2103. (e) LH – ID cycle: 5103. (f) LH – ID cycle: 6113. The solid lines show the hormonal profiles and the dashed 
lines the fitted beta-binomial distribution.
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beta-binomial distribution, which proved to 
be the more appropriate in our context. 
With this new method, we were able to de-
scribe a wide variety of hormone profiles 
using only 4 parameters: amplitude, wave-
length, position, and profile. The latter are 

estimated using a beta-binomial distribu-
tion with various μ and σ values. One of the 
desired benefits of the density distribution 
(instead of spline) was to smooth the wave 
and avoid giving too much importance to 
the measurement error.

By adjusting the amplitude (Y-scale), 
using the length as a first fixed parameter 
of the beta-binomial distribution, and fin-
ally estimating different values for μ and σ 
(the two parameters of the beta-binomial 
distribution), we were able to describe not 

Figure 4 Beta-binomial-fitted PDG profiles according to μ (columns) and σ 
(rows) terciles. (a) μ: (0.35 – 0.55); σ: (0.01 – 0.12). (b) μ: (0.35 – 0.55); σ: 
(0.12 – 0.18). (c) μ: (0.35 – 0.55); σ: (0.18 -0.71). (d) μ: (0.55 – 0.6); σ: (0.01 – 
0.13). (e) μ: (0.55 – 0.6); σ: (0.13 – 0.17). (f) μ: (0.55 – 0.6); σ:(0.17 – 0.73). 

(g) μ: (0.6 – 0.87); σ: (0.01 – 0.13). (h) μ: (0.6 – 0.87); σ: (0.13 – 0.19). (i) μ: 
(0.6 – 0.87); σ: (0.19 – 0.53). The individual cycles are shown in thin lines and 
the group average in thick line.
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only bell-shaped profiles, but also more 
complex profiles. This method allowed 
predicting directly the wave shape using a 
generalized additive model for location and 
scale of the beta-binomial distribution.

Several arguments led us to prefer the 
beta-binomial distribution. First, the beta-
binomial distribution is a common choice 
in analyses of proportion data with some 
form of added heterogeneity (See ▶ Ap-
pendix 3). Second, given that the time scale 

is discrete (i.e., one measurement per day), 
a discrete distribution was more suitable.

Third, the highly flexible beta-binomial 
distribution was able to describe most of 
the hormone waves (or curve shapes). We 
found that the simple and homogeneous (n, 

Figure 5 Beta-binomial-fitted LH profiles according to μ (columns) and σ 
(rows) terciles. (a) μ: (0.08 – 0.18); σ: (0.01 – 0.03). (b) μ: (0.08 – 0.18); σ: 
(0.03 – 0.14). (c) μ: (0.08 – 0.18); σ: (0.14 -1). (d) μ: (0.18 – 0.24); σ: (0.01 – 
0.05). (e) μ: (0.18 – 0.24); σ: (0.05 – 0.16). (f) μ: (0.18 – 0.24); σ: (0.16 – 0.6). 

(g) μ: (0.24 – 0.57); σ: (0.01 – 0.06). (h) μ: (0.24 – 0.57); σ: (0.06 – 0.19). (i) μ: 
(0.24 -0.57); σ: (0.19 – 1). The individual cycles are shown in thin lines and 
group average in thick line.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



© Schattauer 2018 Methods Inf Med 3/2018

109S. Abdullah et al.: Describing Hormone Curves by β-binomial Distribution

μ) binomial distribution offered a diversity 
of shapes: a bell-shape; a nearly normal 
shape when μ is close to 0.5, an asymmetric 
distribution when μ >0.5 (with a negative 
skew; i.e., a long tail to the left) or <0.5 (with 
a positive skew; i.e., a long tail to the right). 
When the probability was close to 1, the 
density increased monotonically and, on the 
opposite, when the probability was close to 
0, the density decreased monotonically.

Fourth, the beta-binomial distribution 
allows introducing heterogeneity through 
parameter σ. This parameter increased the 
number of possible shapes: the kurtosis of 
this distribution may be high or low (even 
a plateau); and, with a very high σ, the dis-
tribution can even be I, J, or U-shaped 
with, respectively, low, high, or medium lo-
cation parameter. 

Fifth, the beta-binomial distribution re-
flects optimally the variability of hormone 
profiles because its parameters have direct 
interpretations: the peaks of the hormone 
curves seemed to shift to the right with in-
creasing values of μ and show longer pla-
teaus with increasing values of σ. This ap-
plied to PDG as well as to LH.

Sixth, the beta-binomial distribution 
adapts naturally to the wavelength, and this 
length was fixed through parameter n be-
fore fitting the distribution to the data.

In this article, we described all profiles 
with a single type of distribution. An alter-
native approach would have been to select 
a distribution type for each cycle; however, 
this would have been at the price of greater 
complexity that would not allow for gen-

eralizations according to groups of param-
eters among cycles with common charac-
teristics. Obviously, in case of more com-
plex profiles (e.g., bimodal shapes), it 
would be warranted to include two beta-bi-
nomial distributions.

The method may be applied to all data 
that translate into a unimodal distribution 
(most frequently, with a single peak). In case 
of two or more peaks, a mixture of distribu-
tions is needed –thus, much more than two 
parameters–, which requires much more 
complicated methods. The proposed 
method would then apply, for example, to 
the evolution of biomarkers in emergency 
units or to the evolution of serum insulin 
after a test for insulin resistance.

6. Conclusion

The present study has confirmed the diver-
sity of hormonal waves in normally cycling 
women in terms of amplitude, wavelength, 
relative timing, and wave profile [1, 7–9]. 
This diversity was observed not only be-
tween women but also between different 
cycles in a single woman. The results con-
firm that the beta-binomial distribution 
may help describing generalizable patterns 
of hormone variability.

The problem of hormone wave charac-
terization has been long debated but is still 
unresolved. The method shown here offers 
a much less complex solution and allows 
much easier comparisons and interpre-
tations. This method is more appropriate 

than polynomials or splines whenever the 
shape of the wave is to be correlated with 
other characteristics. In future studies, it 
will be worthwhile to confirm whether dif-
ferences in the beta-binomial distribution 
characteristics reflect actually clinical pa-
rameters (e.g., age, body mass index) and 
whether the profiles of different hormones 
correlate with each other.

Furthermore, the concept and the 
method may be used in several other medi-
cal or scientific domains (physics, chemis-
try, etc.) whenever wave shapes have to be 
correlated with specific subject or object 
characteristics. The method applies ideally 
to curves that do not need a decomposition 
into two or more components (each with its 
own peak); i.e., the method does not apply 
to multimodal curves. For the latter curves, 
the above-cited more complicated methods 
(such as splines) would be more suitable.
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Level and predictor

Woman level

Age (years)

Body mass index

Cycle level

PDG on day 3 of the cycle

Pre-ovulatory phase length

Maximum follicle size < 18 mm

Post-ovulatory LH level (mIU/mg Cr) c

Results are expressed as value (SEM).
a Length of the post-ovulatory phase of the menstrual cycle.
b Maximum of PDG level.
c Creatinine-adjusted values.
* p < 0.05.

Wavelength a

0.254 (0.101)*

-0.005 (0.103)

-0.141 (0.102)

-0.513 (0.098)*

-0.859 (0.310)*

0.695 (0.093)*

Amplitude b

-0.807 (0.470)

-1.185 (0.467)*

0.196 (0.472)

-0.531 (0.471)

-0.678 (1.452)

0.082 (0.473)

Location parameter

-0.015 (0.017)

-0.008 (0.017)

0.001 (0.019)

-0.008 (0.018)

-0.082 (0.054)

0.044 (0.016)*

Scale parameter

-0.020 (0.031)

0.002 (0.062)

0.104 (0.029)*

0.076 (0.032)*

0.206 (0.093)*

-0.011 (0.029)

Table 3 
Predictors of the four 
characteristics of the 
waves: amplitude, wave-
length, location, and scale 
parameters (μ and σ) of 
the beta-binomial dis-
tribution used to describe 
the PDG profile during 
the post-ovulatory phase 
(Univariate analysis, esti-
mation over 266 cycles).
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