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Summary
Objective: This works investigates the time-
frequency content of impedance cardiogra -
phy signals during a propofol-remifentanil 
anesthesia.
Materials and Methods: In the last years, 
impedance cardiography (ICG) is a technique 
which has gained much attention. However, 
ICG signals need further investigation. Time-
Frequency Distributions (TFDs) with 5 differ-
ent kernels are used in order to analyze im-
pedance cardiography signals (ICG) before 
the start of the anesthesia and after the loss 
of consciousness. In total, ICG signals from 
one hundred and thirty-one consecutive 
 patients undergoing major surgery under 
general anesthesia were analyzed. Several 

features were extracted from the calculated 
TFDs in order to characterize the time-fre-
quency content of the ICG signals. Differ-
ences between those features before and 
after the loss of consciousness were studied.
Results: The Extended Modified Beta Dis-
tribution (EMBD) was the kernel for which 
most features shows statistically significant 
changes between before and after the loss of 
consciousness. Among all analyzed features, 
those based on entropy showed a sensibility, 
specificity and area under the curve of the re-
ceiver operating characteristic above 60%.
Conclusion: The anesthetic state of the pa-
tient is reflected on linear and non-linear fea-
tures extracted from the TFDs of the ICG sig-
nals. Especially, the EMBD is a suitable kernel 
for the analysis of ICG signals and offers a 
great range of features which change accord-
ing to the patient’s anesthesia state in a stat-
istically significant way.
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1. Introduction
In the last years, impedance cardiography 
(ICG) has proven to be an advantageous, 
inexpensive, non-invasive technique for 
monitoring the cardiovascular hemody-
namic state of patients undergoing several 
medical procedures [1, 2, 3, 4, 5, 6, 7]. This 
work investigates the frequency content of 
the ICG signals in different moments of an 
anesthesia procedure: previous to the in-
duction of anesthesia and after the start of 
an anesthesia procedure in the surgery 
room.

The spectral content of the ICG signals 
changes with time and thus time-frequency 
distributions (TFDs) are a convenient tool 
to analyze them. High-resolution time-fre-
quency analysis is useful for signals which 
are nonstationary and/or multicomponent. 
TFDs is a technique which is often used in 
the case of analyzing electroencephalogram 
(EEG) [8, 9, 10], and heart rate variability 
(HRV) [11, 12, 13, 14], amongst others. 
Any TFD application would ideally require 
high definition in spectral components, no 
cross-terms (in order to avoid confusing 
real components from artifacts or noise), a 
low computational complexity and some 
mathematical properties [15]. A consider-
able effort has been put into designing ap-
propriate TFD depending on the character-
istics of the signal to analyze [10, 16, 17, 18, 
19].

Nevertheless, TFDs contain consider-
ably large amounts of data. Therefore, fea-
tures are to be extracted from the TFDs in 
order to improve its characterization. Sev-
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eral authors have proposed different fea-
tures applied to TFD in order to describe 
non-stationary signals or to locate events 
based on the signal entropy, energy con-
centration measures or singular values de-
composition [20, 21, 22, 23]. This work 
compiles some of those features in order to 
apply them to ICG signals. Several kernels 
including the Extended Modified Beta Dis-
tribution (EMBD) are also compared and 
discriminant analyses were conducted to 
differentiate between the TFD features 
from the ICG signals before and after the 
patient’s loss of consciousness (LOC).

2. Materials and Methods
2.1 Analyzed Data and 
 Preprocessing
One hundred and thirty-one consecutive 
patients undergoing major surgery under 
general anesthesia at the Hospital CLINIC 
de Barcelona (Spain) were assessed in this 
observational study. The details of the pa-
tients are reported in ▶ Table 1. The pa-
tient characteristics included age, height, 
weight, lean body mass (LBM), body sur-
face area (BSA), body mass index (BMI) 
and gender.

This observational study was conducted 
in compliance with the requirements of the 
Institutional Review Board and Ethics 
Committee of Hospital CLINIC de Barce-
lona (2013/8356) and adhered to the prin-
ciples of the Declaration of Helsinki for 
medical research involving human sub-
jects. All patients gave their written in-
formed consent. Patients under eighteen 
years old or morbidly obese were excluded.

Propofol and remifentanil were admin-
istered. Anesthesia was induced with a tar-

get-controlled infusion system. The infu-
sion rate of propofol was controlled by 
Schnider’s pharmacokinetic model with 3 
μg/ml as effect-site target concentration 
and remifentanil was controlled by Minto’s 
pharmacokinetic-pharmacodynamic mod -
el with 4 ng/ml as effect-site target concen-
tration.

The impedance cardiography (ICG) was 
recorded by the qCO monitor (Quantium 
Medical, Spain) by using 4 electrodes, with 
one pair injecting a constant current (at 50 
kHz), and a second pair of electrodes 
measuring the resulting voltage. These sig-
nals are dimensionless and are recorded 
with a sampling rate of 250 Hz.

This study aims to compare two anes-
thesia-related patient states: conscious and 
unconscious. During the induction of an-
esthesia, the moment of LOC was assumed 
to occur when patients lost response to ver-
bal stimulation. To characterize each state, 
the ICG signal corresponding to a ten-sec-
ond length taken 4 minutes after LOC (i.e., 
unconscious state or post-LOC state) was 
isolated and so was that corresponding to 
the ten seconds taken 4 minutes before 
LOC (i.e., conscious state or pre-LOC 
state). In the surgery room, ten seconds is a 
signal duration which generally ensures a 
quality recording without movement arti-
facts or other electrical noises.

2.2 Analyzed Time-frequency 
 Distributions

Quadratic TFDs (QTFD) are based on esti-
mating the instantaneous power spectrum 
of the signal, using a bilinear operator [24] 
and are the result of a trade-off between the 
cancelation of cross-terms and the fre-
quency resolution. The Wigner-Ville dis-

tribution (WVD) is the basic QTFD and is 
defined by taking the Fourier transform 
(FT) of an instantaneous auto-correlation 
function Kz(t,τ) described in Eq.(1).

 (1)

where Kz (t, τ) is defined as

 (2)

and where z(t) is the analytic associate of a 
real signal x(t) obtained with the Hilbert 
transform z(t) = x(t) + jH{x(t)}.

Eq.(3) describes a general TFD as the 
convolution between the WVD and the 2D 
kernel γ(t, f) formulated in the ambiguity 
domain such as g(ν, τ) (where ν is Doppler 
and τ is lag). The WVD provides a high-
resolution representation of a signal in time 
and frequency but includes cross-terms in 
multicomponent signals. Therefore, the 
kernel used in the general formulation of 
the TFD reduces cross-terms although it 
also blurs auto-terms.

 (3)

where Az (ν, τ) is the ambiguity function of 
the analytic associate of the real signal 
under analysis.

In this work, several TFD kernels have 
been used: the Choi-Williams Distribution 
(CWD), the Modified B-Distribution 
(MBD) and the Extended Modified B-Dis-
tribution (EMBD), the spectrogram with 
Hanning window, and the Zhao-Atlas-
Marks distribution (ZAM). Their parame-
ters have been selected by optimizing the 
geometrical characteristics of the resulting 
TFDs of a synthetic ICG signal with known 
time-frequency (TF) parameters. The opti-
mization was accomplished based on a 
 former work by Sucic and Boashash [19]. 
The details of the kernels are included in 
▶ Table 2.
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Tab. 1  
Patients’ data and 
medications during 
surgical procedures. 
Qualitative data are 
presented as absolute 
frequencies and per-
centages; quantitative 
data are presented as 
mean ± standard devi-
ation.

Patient Characteristics

Age

Height

Weight

LBM, Lean Body Mass

BSA, Body Surface Area

BMI, Body Mass Index

Gender (male/female)

51.0 ± 16.0 years

162.1 ± 8.1 cm

68.2 ± 12.8 kg

47.7 ± 7.7

1.73 ± 0.21 m2

26.0 ± 4.7 kg/m2

32/99 
(24.4%/75.6%)

Medications

Propofol

Remifentanil

Rocuronium

Ephedrine

Atropine

131 (100%)

131 (100%)

46 (35.1%)

4 (3.1%)

21 (16.0%)
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 (6)

where δt and δf are the time and frequency 
sampling steps, respectively. Baranjiuk et al. 
[28, 29] analyzed the influence of the par-
ameter q when calculating both TFRE and 
TFNRE and concluded that non-integer 
orders are yield complex values and so ap-
peared of limited utility (6). In this study, a 
large range of q values (q = 3, 4, …, 14, 15, 
18, 21, 24, 27, 30, 35, 40, 45, 50) have been 
selected for TFRE and TFNRE in order to 
analyze its influence.

2.3.3 Extended Time-Domain 
 TFD-derived Features

In order to use statistical time-domain fea-
tures, such as mean and variance, the one-
dimensional time-domain moments have 
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(5) is used in substitution of the Shannon 
entropy [27]. The latter cannot be used for 
the majority of TFDs as these are not non-
negative. TFRE is a statistical tool sensitive 
to the number of signal components, their 
time duration and bandwidth, and their 
amplitude ratios.

      (5)

The TFRE for odd values of q causes zero-
mean cross-terms to diminish due to the 
summation operation. Thus, the TFRE 
cannot discriminate a high-resolution TFD 
with significantly reduced cross-terms 
from a high-resolution TFD without any 
suppression of cross-terms. The TFD nor-
malized Rényi entropy (TFNRE) in Eq.(6) 
solves this issue so that cross-terms have an 
overall effect of reducing the TFNRE.
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2.3 TFD-derived Parameters

The time variation in the spectrum of a sig-
nal can be characterized with several fea-
tures extracted from its TFDs. This paper 
analyses a collection of TFD-derived fea-
tures based on singular value decomposi-
tion (SVD), entropy, extended time-.do-
main, energy concentration and sub-bands 
energy.

2.3.1 SVD-based TFD-derived 
 Features

TFDs can be decomposed using its singular 
values in the form ρ = USVH, where U is an 
N×N matrix, S is an N×M diagonal matrix 
with positive real singular values σi , and VH 
is an M×M real unitary matrix. Following 
previous works [20, 21, 22], in this investi-
gation several features are extracted from 
the singular values σi of the TFD, such as: 
FSVD1 , the maximum σi ; FSVD2 , standard 
deviation of σi ; and FSVD3 , the number of 
non-zero σi .

2.3.2 Entropy-based TFD-derived 
Features

The concept of Shannon Entropy [26] has 
been applied to both the design of new 
TFDs with minimum entropy [23] and the 
quantification of TFD complexity in TFDs. 
If the TFD is interpreted as a quasi-prob-
ability distribution, a highly-concentrated 
TFD with a small number of components 
has a lower entropy than a signal with a 
large number of signal components. The 
TFD complexity (TFCM) in Eq.(4) uses 
both SVD and Shannon entropy concepts 
and it represents the magnitude and the 
number of the non-zero singular values of 
the TFD [20, 21]. It is a useful feature as 
their magnitudes have a strong relationship 
with the information content in the TFD.

 (4)

where   are the N normalized singular 
values, i.e.:  .

If the entropy of a TFD is to be calcu-
lated without using its singular values, the 
Time-Frequency Rényi entropy (TFRE) in 
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Tab. 2  
Kernels for the QTFDs 
[25] and their par-
ameter values used for 
the ICG characteriz-
ation. The parameters 
a, α, β and σ and the 
window length W de-
fine the kernel shape.

TFD

CWD

MBD

EMBD

Spectrogram

ZAM

Kernel g(ν,τ) Parameters

σ=4.12

β=0.0026

α=0.002
β=0.988

Hanning, W=919

a=2.3
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Tab. 3 Time-frequency extension of time-domain features.

Feature

TFD Mean

TFD Variance

TFD Skewness

TFD Kurtosis

TFD Coefficient of 
variation

TF Formulation

(7)

(8)

(9)

(10)

(11)

1 
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been replaced with the corresponding two-
dimensional TF characteristics according 
to [30]. ▶ Table 3 includes all extended 
time-domain features.

2.3.4 Energy Concentration

The energy concentration measure 
(ECOME) determines the concentration of 
the dominant component at each location 
in the TF domain. Signals with TFD dis-
tributed in the TF plane will have a larger 
ECOME, while concentrated TFDs will 
have a smaller ECOME.

                 (12)

2.3.5 Sub-Bands Energy-based 
 Features

Sub-band energy-based features represent 
the energy of the ICG signal in different 
frequency sub-bands. To the best of the au-
thors’ knowledge, no previous studies have 
been published regarding the spectral con-
tent of the ICG signals. Therefore, the fre-
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quency plane of the TFDs has been divided 
by visual inspection and by using pairs of 
logarithmically spaced values. In total, 138 
frequency bands have been analyzed and 
their corresponding features have been cal-
culated using Eq.(13).

                 (13)
where Mi0 and Mi1 are the starting and end 
frequencies of the i-th band. Most of the 
content of the ICG signals is in the band 
between 0.5 Hz and 4 Hz. Therefore, the 
spectrum has initially been divided in 55 
logarithmically-distributed partitions (i.e. a 
partition is a single value). Bands have then 
been defined: A. for each partition; B. for 
each group of two successive partitions; 
and C. for the frequencies from 0 Hz until 
each partition.

2.4 Selected Features and 
 Statistical Analysis

In order to characterize signals corre-
sponding to the segment previous to the 
LOC and that after the LOC, a range of fea-
tures were selected in our study. These fea-
tures are listed in ▶ Table 4.

Statistical analyses were performed 
using SPSS (Version 24, IBM, USA) and 
MATLAB® (MathWorks, USA). Quanti-
tative data are presented as mean ± stan-
dard deviation and qualitative data as fre-
quency (percentage). A non-parametric 
test, the Wilcoxon signed-rank test, was 
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Tab. 4 Selected features to distinguish between pre-LOC and post-LOC ICG segments. All features 
have arbitrary units.

Class

SVD-based TFD-derived Features

Entropy-based TFD-derived  Features

Extended Time-Domain  TFD-derived 
Features

Energy Concentration

Sub-Bands Energy-based Features

Feature name

Maximum SV

SV Standard Deviation

SV Range

TF Complexity

TF Rényi Entropy

TF Normalized Rényi Entropy

Mean

Variance

Kurtosis

Skewness

Coefficient of variation

Energy Concentration

Energy in i-th band

Formulation

FSVD1

FSVD2

FSVD3

TFCM

TFREq

TFNREq

mTF

σ2
TF

kTF

γTF

cTF

ECOME

1 
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Fig. 1 EMBD of an ICG segment before LOC (A) and after LOC (B).



© Schattauer 2018 Methods Inf Med Open 01/2018

e5

tables and figures how the several TFD-
 derived Features reported in ▶ Table 4 are 
related to the patient’s state.

3.1 SVD-based TFD-derived 
 Features

SVD-based TFD features change from be-
fore to after the LOC in a statistically sig-
nificant manner in the case of FSVD1 , FSVD2 
and FSVD3 values. ▶ Table 5 shows the aver-
age values for these features for all the TFD 
kernels. It can be seen that the defined 
SVD features are higher before LOC than 
after LOC. These results have been ob-
tained with values of Sen, Spe and AUC 
very similar for all kernels and all SVD-
based TFD features. In this way, over the 
different kernels used, Sen(%) is 76.4 
[75.3,77.5] for FSVD1 , 78.0 [77.4,78.6] for 
FSVD2 and 65.0 [61.8,68.2] for FSVD3 . Spe(%) 
is 49.2 [48.8,49.6] for FSVD1 , 51.0 [50.6,51.4] 
for FSVD2 and 57.0 [54.5,59.5] for FSVD3 . 

group depending on whether their dis-
criminant score is smaller or larger than 
the cut-off value. Relationship between 
time-frequency derived indices and patient 
characteristics was assessed using Pearson’s 
coefficient of correlation (ρ). Significance 
level is always set at p<0.05.

3. Results

After isolating ten-second segments from 
before and after the LOC, TFDs were cal-
culated with different kernels and, then, 
the features were extracted and analyzed. 
▶ Figure 1 displays an example of a case 
analyzed using an EMBD. ▶ Figure 1A 
shows the pre-LOC TFD and ▶ Figure 1B 
shows the post-LOC TFD. The main differ-
ences between the two states are the con-
tent below 1Hz and the instantaneous fre-
quencies, which seem to be lower in ▶ Fig-
ure 1B. The subsequent results aim to show 

J. Escrivá Muñoz et al.: TF Features for ICG Signals During Anesthesia
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used to investigate whether the analyzed 
features changed after induction of anes-
thesia. Features that satisfy this condition 
were considered for building a linear dis-
criminant function. The leave-one-out 
method was used for validation. Sensitivity 
(Sen), specificity (Spe) and the area under 
(AUC) the Receiver operating character-
istic (ROC) curve were calculated to assess 
the ability of the studied features to predict 
the occurrence of LOC. Sen represents the 
proportion of pre-LOC ICG segments cor-
rectly classified and Spe represents the pro-
portion of post-LOC ICG segments cor-
rectly classified. Grouped sensitivities and 
specificities are presented as mean [95% 
confidence interval (CI)]. In the classifi-
cation, the cut-off values are always the 
main of the centroids of the groups. Pre-
dicted membership is calculated by first 
producing a discriminant score for each 
case using a linear discriminant function. 
Then cases are classified in a concrete 

Tab. 5 Mean and standard deviation of the SVD-based TFD parameters. All changes between pre-LOC and post-LOC are statistically significant. * indicates 
that Sen > 60 %, Spe > 60 % and AUC > 60 %.

CWD

MBD

EMBD

Spec. (Han.)

ZAM

FSVD1

pre-LOC

(4.0 ± 3.0)·104

(1.5 ± 1.1)·105

(1.4 ± 1.1)·107

(1.5 ± 1.1)·107

(6.3 ± 4.7)·106

post-LOC

(2.4 ± 1.6)·104

(9.2 ± 6.4)·104

(8.4 ± 5.8)·106

(8.3 ± 5.6)·106

(3.8 ± 2.7)·106

FSVD2

pre-LOC

(9.8 ± 7.1)·102

(3.6 ± 2.6)·103

(3.2 ± 2.3)·105

(3.1 ± 2.3)·105

(1.6 ± 1.2)·105

post-LOC

(5.6 ± 3.7)·102

(2.0 ± 1.4)·103

(1.8 ± 1.2)·105

(1.7 ± 1.1)·105

(9.1 ± 6.0)·104

FSVD3

pre-LOC

(8.1 ± 1.4)·101

(1.3 ± 0.1)·102 

(2.4 ± 0.6)·102 *

(1.0 ± 0.1)·102

(5.4 ± 1.9)·102

post-LOC

(7.4 ± 1.3)·101

(1.2 ± 0.2)·102

(2.1 ± 0.5)·102

(9.7 ± 1.2)·101

(4.6 ± 1.4)·102

Fig. 2 TFCM values for different kernels before (blue) and after (red) LOC. All changes are statistically significant.
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3.3 Extended Time-Domain 
 TFD-derived Features

The time-extended TF features show statis-
tically significant differences between the 
pre-LOC and post-LOC values of mTF and 
 , for all TFD kernels. In addition, there 
are also statistically significant differences 
in the case of kTF for all TFD kernels except 
for the CWD and in the case of the γTF for 
all TFD kernels except for CWD and ZAM. 
The difference between the pre-LOC and 
post-LOC values of cTF is only statistically 
significant for the spectrogram. For all 
TFD kernels, the AUC for these features is 
0.70 for mTF and  , and between 0.51 
and 0.63 for kTF , γTF and cTF . Spe is always 
lower than 60% (between 38.2 and 54.2) for 
all time-extended TF features and for all 
kernels but Sen(%) is in average 75.5 
[75.2,75.8] for mTF and 85.8 [85.2,86.1] for 
 . ▶ Table 7 shows that all the time-ex-
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post-LOC for all kernels and for all q valu-
es. Furthermore, Sen, Spe and AUC are 
similar for all q values as seen in ▶ Figure 3 
and also for all kernels as ▶ Table 6 shows. 
▶ Figure 3A shows the TFREq for an 
exemplary kernel such as the EMBD for all 
the different q values. TFREq emphasizes 
high probabilities when q > 1. This figures 
shows how the values converge as the q in-
creases and the values are always higher for 
the pre-LOC signals than for the post-LOC 
signals.

TFNRE also shows statistically signifi-
cant differences between pre and post-LOC 
for all q values in the case of the spectro-
gram and in the case of the EMBD for q ≥ 
6. Compared to the TFRE values, the nor-
malization has decreased the AUC below 
0.6 in all cases and Sen and Spe are below 
60%. ▶ Figure 3B also shows the TFNRE 
for an exemplary kernel such as the EMBD 
for all the different q values.
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AUC is 0.69 [0.68,0.70] for FSVD1 , 0.70 
[0.70,0.70] for FSVD2 and 0.65 [0.64,0.66] 
for FSVD3 . The best SVD-based TFD feature 
is FSVD3 calculated with an EMBD kernel, 
which presents an AUC = 0.63, Sen = 
67.7% and Spe = 60.3%.

3.2 Entropy-based TFD-derived 
Features

Regarding the entropy-based TF features, 
several results have been obtained. The 
TFCM presents statistically significant dif-
ferences between pre-LOC and post-LOC 
for all kernels (see 2). In average for all ker-
nels, Sen(%) is 65.4 [60.9,69.9], Spe(%) is 
51.6 [50,53.2] and AUC is 0.62 [0.59,0.65]. 
The complexity of the TFD responses is 
greater during pre-LOC than during post-
LOC.

TFREq always shows statistically signifi-
cant differences between pre-LOC and 

3 4 5 6 7 8 9 10 11 12 13 14 15 18 21 24 27 30 35 40 45 50
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Fig. 3 Pre (blue) and post-LOC (red) median values for TFRE (A) and TFNRE (B) for the EMBD. Changes between pre and post LOC values are always stat-
istically significant (p<0.05).

Tab. 6 Mean [95 % CI] of area under the curve (AUC) of the receiving operating curve (ROC), sensitiv-
ity (Sen) and specificity (Spe) of the TRFEq feature for all the studied distributions and all q values. 
TRFE50 values for before and after the LOC have also been included. CI of AUC are the same as the mean 
and thus are not included.

CWD

MBD

EMBD

Spec. (Han)

ZAM

Sen (%)

61.52 [61.35,61.69]

61.07 [60.86,61.27]

63.01 [62.91,63.11]

62.29 [61.90,62.67]

62.44 [62.16,62.73]

Spe (%)

68.90 [68.64,69.16]

67.17 [66.66,67.69]

69.33 [69.04,69.62]

69.92 [69.69,70.14]

69.41 [68.92,69.90]

AUC

0.69

0.69

0.71

0.72

0.70

pre-LOC
TFRE50

-9.26 ± 1.18

-11.38 ± 1.25

-17.64 ± 1.24

-17.15 ± 1.23

-16.73 ± 1.22

post-LOC
TFRE50

-8.51 ± 1.13

-10.59 ± 1.21

-16.77 ± 1.20

-16.22 ± 1.13

-15.91 ± 1.15

Tab. 7 Time-extended TF features of the ICG sig-
nals before and after the LOC using the spectrogram 
kernel with a Hanning window. All changes are stat-
istically significant. Features have arbitrary units.

mTF

σ2
TF

kTF

γTF

cTF

pre-LOC

486.5 ± 340.5

(3.6 ± 5.3)·107

16.1 ± 2.8

319.0 ± 100.9

9.8 ± 1.5

post-LOC

275.0 ± 168.4

(1.0 ± 1.5)·107

15.0 ± 2.4

278.0 ± 87.1

9.5 ± 1.3
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Fig. 4 Pre and post-LOC ECOME values for the CWD (A), the EMBD (B), the MBD (C), the spectrogram with a Hamming window (D) and the ZAM dis-
tribution (E). Changes between pre and post LOC values are always statistically significant (p<0.05).
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Fig. 5 Mean and standard deviation of the energy of some bands for the pre-LOC (blue) and post-LOC (red) periods. The kernel used for this figure is the 
MBD. * indicates that the change is statistically significant (p<0.05).

tended TF features decrease after LOC for 
the spectrogram. This also occurs for the 
rest of kernels.

3.4 Energy Concentration

ECOME values for all TFD kernels before 
and after LOC are plotted in ▶ Figure 4 
and these are higher after the LOC than be-
fore it. All changes have proven to be statis-
tically significant. In average, Sen is 75.3 
[73.2,77.4], Spe is 51.6 [49.9,53.3] and AUC 
is 0.72 for all kernels.

3.5 Sub-Bands Energy-based 
 Features

The spectrum of the TFDs has been divided 
into 138 different frequency bands. The 

MBD and the ZAM distribution are the 
ones with the largest number of statistically 
significant frequency bands, with 114 and 
116, respectively. The rest of kernels provide 
less significant bands: EMBD (106), CWD 
(100) and the spectrogram with a Hanning 
window (91). The spectral content of the 
TFD bands is always greater before the 
LOC than after the LOC. AUC is in almost 
all cases above 0.6 but both Sen and Spe are 
not larger than 60% at the same time. 
▶ Figure 5 shows how the energy in some 
of the frequency bands changes between 
before and after the LOC. Moreover, this 
figure also shows how most energy is con-
centrated between 1 and 4 Hz. The very low 
frequency from 0 to 0.05 Hz is also promi-
nent, due to the non-zero signal mean.

4. Discussion
TFDs have been analyzed using five differ-
ent kernels and information has been 
extracted using several features based on 
SVD decomposition, entropy, extended 
time-domain, concentration and sub-
bands energy. All features decreased after 
the LOC. The EMBD kernel offered the 
largest quantity of features with statistically 
significant differences (156). In total, 129 
were found for CWD, 129 for MBD, 147 for 
the spectrogram and 146 for ZAM dis-
tribution. After EMBD, kernels such as the 
spectrogram and the ZAM distribution 
also offer a large amount of significant fea-
tures but ZAM usually introduces more 
cross-terms than other distributions.
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The robustness of the spectrogram is 
generally related to the lack of undesirable 
artifacts present in other TFDs since the 
non-linearity is introduced in the final step 
of the spectrogram computation. Nonethe-
less, the spectrogram does not satisfy the 
instantaneous frequency criterion of the 
quadratic class of TFDs and hence it does 
not allow the exact extraction of the signal 
IFs from its dominant peaks.

Among all the features which have been 
analyzed, TFRE is the most successful. For 
all kernel types and for any q value, TFRE 
values decrease after the loss of conscious-
ness and both their sensitivity and specifi-
city are always above 60%. Moreover, the 
AUC is always above 0.6. The increase in 
the TFRE is theoretically related to the de-
crease of predictability or the increase of 
disorder. From a biological point of view, 
this would imply that the ICG signals are 
more deterministic after the LOC. Regard-
ing the sub-bands energy-based features, 
these show that most of the ICG energy is 
concentrated between 1 and 4 Hz, since 
their values are higher than in the rest of 
frequency band. Nevertheless, sensitivity 
and specificity of the features should be im-
proved in the future for such features to be 
adequate for clinical applications.

Our study presents some limitations 
which must be considered. The pharmaco-
logical effects of the drugs infused in the 
patients may vary depending on the target 
concentrations. This is especially true 
when analysing signals after the LOC. This 
fact does not reduce the validity of results 
but should be taken into account especially 
in future works for which information 
from depth-of-anaesthesia monitors 
should be included.

5. Conclusion

In conclusion, this work presents a collec-
tion of various features which can be ob-
tained from TFDs. Different kernel TFDs 
have been calculated and their results have 
been compared. When analyzing signals 
representing different anesthetic states, the 
TF Rényi entropy is the most prominent 
feature. Regarding the various kernels 
which have been analyzed, the EMBD is 
the most successful for the extraction of 

features showing statistically significant 
differences in different anesthesia points.
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