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Summary
Background: Natural Language Processing (NLP) methods are 
increasingly being utilized to mine knowledge from unstructured 
health-related texts. Recent advances in noisy text processing 
techniques are enabling researchers and medical domain experts 
to go beyond the information encapsulated in published texts 
(e.g., clinical trials and systematic reviews) and structured 
questionnaires, and obtain perspectives from other unstructured 
sources such as Electronic Health Records (EHRs) and social 
media posts. 
Objectives: To review the recently published literature discussing 
the application of NLP techniques for mining health-related 
information from EHRs and social media posts.
Methods: Literature review included the research published over the 
last five years based on searches of PubMed, conference proceedings, 
and the ACM Digital Library, as well as on relevant publications 
referenced in papers. We particularly focused on the techniques 
employed on EHRs and social media data. 
Results: A set of 62 studies involving EHRs and 87 studies involving 
social media matched our criteria and were included in this paper. 
We present the purposes of these studies, outline the key NLP con-
tributions, and discuss the general trends observed in the field, the 
current state of research, and important outstanding problems.

1   Introduction
The need to embrace the patient’s perspective 
in health-related research and quality of care 
measures is one point on which all major 
health organizations around the world agree. 
Indeed, the World Health Organization in 
Europe prominently lists “patient and com-
munity participation or direction” [1] as a 
practical and proven quality improvement 
approach in their guidelines to developing 
quality and safety strategies. Relevant to the 
approaches we review here, guidelines note 

tute (PCORI) and the Patient-Focused Drug 
Development (PFDD) programs in the United 
States. Patient-reported outcomes (PROs) [2] 
and measurement instruments, which are ex-
tensively validated questionnaires to measure 
patients’ symptoms and quality of life such as 
the PROMIS [3, 4] set designed by the NIH, 
have become the standard way to collect the 
patient’s perspective. However, distributing 
and getting an adequate number of responses 
to these questionnaires is a constant challenge, 
and does not necessarily build “on local cul-
ture and existing structures”.

In this paper, we reviewed the recently pub-
lished literature discussing Natural Language 
Processing (NLP) methods that could help 
go beyond structured questionnaires to find, 
extract, and incorporate information related 
to the patient’s perspective from unstructured 
fields (text) found in different sources such as 
social media, patient speech, patient/therapist 
interactions, and the information recorded in 
the free text fields of clinical records. This 
overcomes the problem of the targeted dis-
tribution and collection of questionnaires by 
proactively extracting information reflecting 
the patient’s perspective where it is already 
present. We also reviewed advances in the 
closely related field of machine learning, 
which offered several milestone develop-
ments in the recent past, such as cognitively 
grounded semi-supervised or unsupervised 
methods. In many cases, the NLP community 
embraced and adapted these automated learn-
ing methods to the specifics of NLP tasks, 
given that such methods are now capable of 
utilizing information from labeled and unla-
beled data. Relevant to the specific focus of 
this review, these methods enable the use of 
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approaches, because of the growth of annotated data sets and 
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imperative role in the development of future systems. 

Keywords
Natural language processing review; medical terms; social media; 
mining electronic health records

Yearb Med Inform 2017:214-27
http://dx.doi.org/10.15265/IY-2017-029
Published online August 18, 2017

that “work would be needed to find the best 
ways to introduce [patient and community 
participation], building on local culture 
and existing structures.” Around the world, 
numerous initiatives were launched in the 
last 10 years to incorporate the patient’s 
perspective, including efforts such as pa-
tient survey programs by the Care Quality 
Commission (CQC) in England, the “Better 
Together” effort of the Scottish Government, 
the Institute for Quality and Efficiency in 
Health Care (IQWiG) in Germany, and the 
Patient-Centered Outcomes Research Insti-
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large sets of clinical records and health-relat-
ed user-generated content from social media 
microblogs (Twitter, Facebook, Reddit, and 
Instagram, to name a few) and health forums 
(such as DailyStrength, WebMD, and others).

The review by Meystre et al. [5] presents 
an excellent overview of health-related text 
processing and its applications until 2007. The 
research presented in the present manuscript 
includes, for social media and clinical records, 
advances to fundamental NLP methods such 
as classification, concept extraction, and 
normalization published since 2008, mostly 
omitting what has been included in similar 
recent reviews [6–8], except when required to 
complete and highlight recent advances. For 
each data source, after reviewing advances in 
fundamental methods, we reviewed specific 
applications that capture the patient’s perspec-
tive for specific conditions, treatments, or phe-
notypes. For the applications, we built on the 
2016 review by Demner-Fushman and Elhadad 
[7] and highlighted major achievements from 
2013 to 2016 that are relevant to the patient’s 
perspective focus of this review. The search 
and selection criteria used were similar to the 
ones used by Névéol and Zweigenbaum [8], 
from January 1st, 2013 through December 
31st, 2016, resulting in 464 papers. A total of 
62 papers focusing on clinical records were 
selected from this set. For social media, most 
of the literature has been published within 
this same time frame; a total of 87 papers 
were included in this review. Research was 
included if it was published within the time 
window of interest and it was, to the best of our 
judgment, classified as either: (1) an advance 
to fundamental methods for health-related 
natural language processing (Health Language 
Processing, or HLP hereafter) and is applicable 
to more than a single condition, treatment, or 
phenotype, or (2) an HLP method applied to 
specific conditions, treatments, or phenotypes, 
but focused on capturing the patient’s perspec-
tive. References dated outside the window of 
interest were included when required, and their 
use does not imply they are part of the set of 
papers defined by this inclusion criterion.

We understand the patient’s perspective 
to include reports of disease progression and 
manifestation (symptoms) given directly by 
the patient, which corresponds to the defini-
tion of patient-reported outcomes given by 
the FDA [9], although the level of detail and 

completeness of information collected using 
HLP methods will often lag behind what can 
be collected with patient-reported outcome 
instruments. However, we also consider of 
interest for most secondary use of heath 
data the collective patient perspective, “an 
understanding of the disease experiences 
of many patients” [10] that share specific 
characteristics. Thus, either written by the 
patients themselves as in social media, or ex-
tracted from clinical notes written by a health 
provider, unstructured text captures the health 
narrative from the patient and reflects the 
characteristics shared by a group of patients 
(such as suffering from a specific disease or 
symptom, or smoking status). HLP allows 
the collection of aspects of the patient’s 
perspective that are more complex than what 
surveys are designed to collect. Consider for 
example the nuanced descriptions of quality 
of life and mental state, such as the ones in 
Figure 1, which are postings in social media 
from someone with inflammatory bowel 
disease/colitis. The postings speak about 
general routine exercise, well-being, and 
attitude, in a way that would be difficult to 
capture in a survey, and they are potentially 
available in much greater volume, over lon-
ger periods of time, and for a large number 
of patients in social media. Going beyond 
the structure of surveys greatly increases the 
number of reports (and derived knowledge) 
that can be incorporated, aggregating many 
more patient reports of cohorts with some 
unifying characteristic, such as a specific 
condition. Finally, we include time as a unique 
dimension of the patient’s perspective, and 
review HLP methods tailored to capturing 
events related in time (for example, the pa-
tient reporting a pre-existing condition, or a 
recent treatment with antibiotics), or specific 
moments in a “health timeline” (such as 
when pregnancy was revealed, or when the 
flu shot was taken). 

The paper is organized in two main parts. 
Part 1 focuses on NLP of electronic health 
records (EHRs) and Part 2 focuses on NLP 
of health-related social media text. Within 
each part, we describe the developments in 
fundamental tasks and various applications. 
Our intent is to provide the reader with a scope 
of the trends and advances in capturing the 
patient’s perspective on health within the last 
three years, as outlined before.

Jan 12 6:23 am “This morning got off to 
a good start with deadlifts. Snatches and 
rowing will be on the agenda between 
classes”

Jan 10 4:16 am “4:15 AM Let‘s do this,” 

Jan 4, at 9:08pm “Resolved: to not let the 
colitis sidetrack my work and to finally 
master it.” 

Jan 3 6:46 am “Deadlifts - always 
humbling.”

Jan 3 4:25 am “4:25 AM: Good morning 
everyone. Let‘s get after it.”

Jan 2 6:25 am “First day back post flare. 
After a six week break it‘s going to be a 
difficult uphill battle. Swings, presses 
and squats.”

Fig. 1   Postings in a timeline progressing after a colitis flare-up 
that lasted 6 weeks.

2   Mining Electronic Health 
Records
While one could argue that the EHR does 
not provide a true “patient perspective” 
according to the FDA’s definition [9], as its 
contents are invariably captured by a health 
care provider, we posit that it contains some 
unique aspects of the patient perspective: 
the manifestation of symptoms unique to 
the patient, or a narrative of what the pa-
tient expressed (i.e., “patient complains of 
vertigo…”). In aggregate, EHRs constitute 
an important source of the collective patient 
perspective, as defined before. In order to 
capture this, however, it is necessary to 
pinpoint the concepts of interest, map them 
to standardized vocabularies, and put them 
in temporal context (a timeline) in order to 
then derive further knowledge. We outline 
the advances on each of these tasks next.

2.1   Concept Extraction and 
Normalization
The field has long advanced beyond the 
simple keyword search functionalities that 
are widely implemented in commercial 
EHR systems as well as research platforms 
such as i2b2 [11]. The limitations of key-
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word search strategies are well-known. A 
keyword-based retrieval will only match 
documents that contain the keyword 
exactly as typed (with some limited flexi-
bility allowed – such as suggestions when 
alternate spellings are found). Advanced 
NLP enables finding concepts rather than 
keywords. A concept-based retrieval system 
can identify a concept expressed in many 
different ways (including synonyms as well 
as generalizations or specifications of a 
concept). For example, if EHRs mentioning 
adverse reactions to a specific medication 
are needed, the researcher would have to 
include keywords to cover all variants and 
specific types of reactions in order to use 
a keyword-based search. The situation is 
even worse if, for instance, a cohort of 
people involved in a motor vehicle acci-
dent is the desired set. In a keyword-based 
system, the user would need to specify one 
by one all motor vehicles, while an efficient 
concept-based system will retrieve them 
automatically if “motor vehicle” is specified 
as the query. Only a handful of systems are 
currently generally available to automatically 
find concepts in free text from clinical nar-
ratives, the most established being MedLEE 
(Medical Language Extraction and Encod-
ing) [12], and cTAKES [13]. Other systems 
are Noble Coder [14], CLAMP (http://clamp.
uth.edu/), MetaMap Lite (https://metamap.
nlm.nih.gov/download/new/), and DNorm 
adaptation for clinical text [15].  

Normalization of concept mentions in-
volves matching the extracted concept to a 
unique identifier from a medical ontology, 
usually one from the UMLS Metathesaurus 
[16]. The UMLS provides a vast coverage of 
medical terminology in English, and it has 
been used previously for disease normaliza-
tion [17–19]. Recently, other lexicons have 
been developed for normalization in other 
languages, for example the QUAERO French 
medical corpus [20], the CLEF eHealth in-
formation extraction tasks of 2015 and 2016 
(clinical entity and concept recognition from 
French, ICD-10 coding of causes of death 
for French), and the NTCIR [21] 2015 and 
2016 tasks on ICD-10 coding in Japanese. 
Regardless of the language, most of the re-
search to date on concept normalization has 
used some variations of dictionary lookup 
techniques and string matching algorithms. 

With the advances in machine learning 
techniques and the increased availability of 
annotated data, recent approaches have used 
learning-based algorithms to improve basic 
dictionary matching techniques. For tasks 
such as gene name normalization, some of 
these works have involved list-wise learn-
ing, which learns the best list of objects as-
sociated with a concept and returns the list 
rather than a single object [22, 23], graph-
based normalization [24], conditional ran-
dom fields [25], regression-based methods 
[26], and semantic similarity techniques 
[27]. Leaman et al. [28] applied pairwise 
learning from a specialized disease corpus 
for disease name normalization. Mapping 
free text to concepts in an ontology has 
been done by Gobbels et al. [29] who used 
a Naïve Bayes machine learning system 
to match phrases from clinical records to 
SNOMED ontology terms, whereas Kate 
[30] used learned edit distance patterns 
to normalize clinical text to UMLS IDs. 
Other approaches have used tools such as 
MetaMap [31] or cTAKES [13], to extract 
and map terms to concepts in the UMLS 
[32, 33]. The tools are generally effective 
for clinical text, but are not portable: they 
miss relevant information when applied 
to colloquial language as the one used in 
social media [34]. 

Several shared tasks have taken on the 
challenge of normalization using clinical 
texts. Using the ShARe corpus, participants 
in the 2014 ShARe/CLEF Task 2 were 
tasked with normalizing semantic modifi-
ers related to disease mentions in clinical 
texts [35]. The submitted systems obtained 
accuracies ranging from 0.769 to 0.868 
[36]. The SemEval 2014 Task 7 challenged 
participants to automatically identify and 
normalize diseases and disorders in clini-
cal texts [37]. The approaches used ranged 
from rule-based classifiers to hybrid rule-
based/machine learning classifiers. The 
latter approach typically led to a higher 
performing system. For the top performing 
system, Zhang et al. [38] developed a ma-
chine learning NER module and an ensemble 
learning module used as a binary classifier to 
determine if the NER module output was a 
true positive for disorder entity recognition. 
For normalization, they developed a Vector 
Space Model to assign the most appropriate 

UMLS Concept Unique Identifier (CUI). The 
2015 SemEval task related to clinical texts 
again presented the task of disorder entity 
recognition and normalization as well as 
template slot filling [39]. For disorder span 
recognition, CRF approaches were the most 
utilized. Pathak et al. [40] developed a CRF 
system to locate contiguous disorder men-
tions and for disjointed disorder mentions, 
a support vector machine (SVM) binary 
classifier was developed to determine if 
the two mentions were related or not. This 
approach allowed them to detect disjointed 
mentions with about 70% accuracy. For 
the normalization, they divided the task 
into three parts: a direct dictionary match, 
a dictionary match on a modified UMLS 
that was parsed into phrases, and a string 
similarity algorithm. Xu et al. [41] extended 
the work they had done in the prior year 
[38], including the training of a deep neu-
ral network using the unlabeled MIMIC II 
corpus to obtain word embeddings that were 
used as a feature in their system. Results are 
summarized in Table 1.

2.2   Timeline Extraction
The 2015 Clinical TempEval challenge pre-
sented the task of extracting temporal infor-
mation from clinical notes. The participants 
were tasked with identifying time and event 
expressions and attributes of those expres-
sions, and the temporal relations between 
them [42]. Three teams participated, with 
one participating in all tasks and subtasks. All 
systems employed supervised classifiers for 
the challenge and all outperformed the rule-
based systems that were used as baselines. 
The top performing system [43] utilized a 
combination of CRF, SVM, and rule-based 
approaches. The 2016 Clinical TempEval 
presented similar tasks and utilized the same 
corpus as the prior year. However the number 
of participants increased [44]. The submitted 
systems used differing machine learning 
approaches with the top systems utilizing 
HMM SVM [45] and CRF [46]. As in the 
prior year, the top systems achieved a high 
level of performance for the time and event 
identification tasks, reaching F-scores close 
to those of human annotators. The temporal 
relation tasks proved to be more difficult; 
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however, marked progress was made from the 
prior year’s systems. A summary of the results 
with the ShARe corpus is included in Table 1.

2.3   Knowledge Discovery
The fundamental methods outlined before 
are generally a basic requirement in any 
HLP pipeline for secondary use of health 
data. Recently, interesting directions have 
been explored where the collective patient 
perspective data from EHRs has been used 
to create disease progression and medical 
decision-making models, to assist in reach-
ing potential diagnoses and assessing risk 
factors. We review here some of these HLP 
applications.

Disease Progression Models: To better 
understand disease evolution patterns, Lui 
et al. [47] proposed a temporal graph-based 
representation of patient EHR data. The 
graph framework’s predictive power was 
tested on the onset risk of heart failure and 
on the risk of heart-related hospitalizations 
for COPD patients. On each of these two 
tasks the system obtained an AUC of 0.72. 
Using an EHR database of 300,000 patient 
records, Wang et al. [48] developed an 
unsupervised disease progression model 

using a combination of statistical methods. 
Applying the model to chronic obstructive 
pulmonary disease (COPD), they identified 
comorbidities and inferred a progression 
trajectory model of the disease. Pham et al. 
[49] created a system, DeepCare, to predict 
the next stage of disease progression and the 
risk of unplanned readmissions. The system 
models illness trajectories and predicts 
future outcomes. Based on a deep dynamic 
neural network, it incorporates irregular 
timing and interventions to infer future 
prognosis. Tested on a cohort of 12,000 
diabetic patients, the system prediction of 
readmissions achieved an F-score of 0.791, 
which was an improvement over the baseline 
method score by 0.077.

Decision Support: For creating a de-
cision-making model, Liang et al. [50] 
proposed a modified deep belief network to 
simulate human thinking procedures. Fea-
tures were extracted through an unsupervised 
method and a supervised method, SVM, was 
used for final decision-making. This semi-su-
pervised approach outperformed standard 
SVM and decision tree methods on EHR 
data. Wang et al. [51] used clinical notes 
of the Maine Health Information Exchange 
(HIE) EMR database to train and test an NLP 
system to find uncoded cases of congestive 

heart failure (CHF). The classifier identified 
2,411 instances of CHF out of 253,804 cases. 
The system had and F-score of 0.753, which 
outperformed prior methods.

Risk Assessment: Karmaker et al. [52] 
used machine learning to analyze EHRs to 
assess the risk of suicide based on physical 
illness. After extracting illnesses based on 
ICD-10 codes, they developed six modules, 
differentiated by range of time of included 
illnesses, to predict suicide risk. The maxi-
mum AUC, 0.71, was obtained by incorpo-
rating illnesses across all time in the model. 
Overall, improvements in risk assessment 
were seen over increasing time ranges and 
all models were an improvement over the 
AUC of the clinically assessed score. In 
assessing the risk of coronary artery disease 
(CAD), Jonnagaddala et al. [53] developed 
a rule-based text mining system to identify 
and extract Framingham risk factors from 
the unstructured text of EHRs in a cohort of 
diabetic patients. The results were used to 
calculate the Framingham risk score (FRS). 
This approach showed the feasibility of 
extracting such information, however, it did 
have some limitations including the lack of 
temporal information and a lack of clini-
cal context for the information extracted. 
An extension of this study [54] employed 
machine learning components to assign an 
indicator and time attributes, where applica-
ble. A Naïve Bayes supervised classifier was 
developed to assign the time attribute. The 
system achieved an overall micro-averaged 
F-score of 0.83. Chen et al. [55] developed 
a hybrid system based on machine learning 
and a rule-based approach to identify risk 
factors for heart disease in the same cohort 
of patients. A pipeline system that included 
the use of SSVMs, SVMs, and CRF was used 
to extract information. Overall, this system 
achieved an F-score of 0.9268.

Risk Prevention: Due to the readmission 
penalty program initiated by the Centers 
for Medicaid and Medicare, providers have 
attempted to assess patients at high risk for 
readmissions. These patients are targeted 
to receive enhanced interventions. In an 
effort to automate the detection of such 
patients, Zheng et al. [56] compared neural 
networks, random forests, and a hybrid 
model of intelligent swarm heuristics and 
support vector machines (PSO-SVM) in a 

Table 1   Relevant shared tasks results, information extraction, and normalization.

Shared Task Results

IE and Normalization

Year

2014

2014

2014

2015

Challenge

ShARe/CLEF

Sem-Eval

SemEval

SemEval

Corpus

ShARe*

ShARe 

ShARe

ShARe

Task Description

Normalization values of 10 
attributes

Identification of disorder 
mentions

Normalization of mentions 
to SNOMED-CT

Identification of disorder 
mentions and normalization 
to CUI

Number of 
Participants

10

21

18

16

Results Range / 
Measurement

0.769-0.768/Accuracy

Strict: 0.787-0.448/F1

Relaxed: 0.975-0.717/F1

Strict: 0.716-0.299/
accuracy

Relaxed: 0.923-0.584/
accuracy

Strict: 0.757-0.093/F1

Relaxed: 0.787-.0364/F1

* http://share.healthnlp.org/ [accessed: April 1st, 2017]

file:///C:\Users\Karen\Downloads\share.healthnlp.org
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cohort of heart failure patients. The PSO-
SVM outperformed the other methods with 
an accuracy of 78.4%. It improved upon 
the currently used LACE score which has 
an accuracy of 43.5%. Futoma et al. [57] 
tested f ive models to determine which 
would perform best at predicting patients 
at high risk for readmissions. The models 
were tested on 280 patient cohorts deter-
mined by diagnosis-related groups (DRG). 
They found that deep neural networks 
outperformed regression models and had 
consistently better AUCs over the cohorts. 
They also observed a slightly better AUC 
for predictions based on individual DRGs 
rather than on the data as a whole.

Adverse Drug Effects Discovery (ADE): 
Drug safety studies have also used EHR data. 
From the free text of psychiatric EHRs, Iqbal 
et al. [58] used the GATE NLP framework to 
identify possible extrapyramidal side effects 
with dictionary matching and a rule-based 
approach. ADEs were detected with an 85% 
precision and 86% recall, and the results 
were used to perform a secondary analysis of 
the prevalence of ADEs based on subgroups 
of patients. However, they did not attempt 
to assess causality to determine the proba-
bility of discovering true drug-ADE pairs. 
To address the problem of confounders, Li 
et al. [59] used the NLP system MEDLee 
to structure and encode narrative notes. 
Temporal information was also extracted. 
A statistical method used penalized logistic 
regression to estimate confounder-adjusted 
ADE associations. This method identified 
several drug safety signals that warranted 
further clinical review. Wang et al. [60] 
developed a discriminative classifier to 
automatically detect potential drug-ADE 
pairs. After constructing a set of features, 
three classifiers were tested and the random 
fields classifier was determined to be supe-
rior. The classifier achieved an AUC of 0.94, 
which exceeded 0.79, the AUC of the method 
used by the FDA’s Adverse Event Reporting 
System (FAERS). 

Off-label Use Discovery: Clinical notes 
have also been used to detect off-label drug 
use by using NLP methods to extract used-
to-treat mentions. Jung et al. [61] trained an 
SVM classifier to detect potential off-label 
usage from 9.5 million free text clinical 
notes. After filtering for known drug-indi-

cation pairs and drug-adverse event pairs, 
the system identified 403 novel off-label 
usages. Drug repurposing signals have also 
been validated using EHR data. To validate 
reports that metformin improves cancer sur-
vival and reduces cancer risk, Xu et al. [62] 
automatically extracted information from a 
cohort of cancer patients, including diabetes 
status and other covariates including drug 
exposure. A stratified Cox regression model 
was used to assess metformin influence on 
cancer survival probabilities and confirmed 
reports associating its use with lower cancer 
mortality.

Cancer-related Information Extraction: 
A number of studies use various techniques 
to extract information from cancer-relevant 
clinical text. A group of studies employ doc-
ument classification techniques to discover 
various oncology categories. This approach 
is taken mainly because there is docu-
ment-level gold data already available for 
the purpose of cancer registry abstraction. 
Yala et al. [63] extracted breast cancer-re-
lated information from pathology notes for 
the following types: (a) Diseases/disorders 
such as Ductal Carcinoma In Situ (DCIS), 
Invasive Lobular Carcinoma (ILC), carci-
noma, Lobular Carcinoma In Situ (LCIS), 
Atypical Ductal Hyperplasia (ADH), lob-
ular neoplasia, flat epithelial atypia, blunt 
adenosis, atypia, (b) positive and negative 
lymph nodes, (c) biomarkers/receptors and 
their values such as Estrogen Receptors (ER), 
Progesterone Receptors (PR), and HER2, 
and (d) breast side/laterality. They used 
machine learning where the features were 
the n-grams from the pathology reports and 
the classification label was one of (a)-(d). 
The gold classification labels were created 
in previous breast cancer studies. Weegar 
and Dalianis [64] created a pilot rule-based 
system for information extraction from 
breast cancer pathology notes in Norwegian 
– sentinel nodes, axillary nodes, tumor size, 
histological grade, ER, PR, Ki67, pT. The 
system was trained and tested on a very small 
dataset and conceived as a pilot study to 
generate fodder for a more sophisticated sys-
tem whose architecture is presented by the 
authors. Ou and Patrick [65] built a system 
for information extraction from melanoma 
pathology reports. The system passed noun 
phrases produced by the GENIA tagger in a 

pre-processing step to a conditional random 
fields classifier that detected named entities. 
Reported performance was on-par with that 
of humans. However, it is not clear whether 
the named entities were further linked by 
relations, e.g., whether a named entity men-
tion of type site and laterality was linked to 
a specific tumor. The very recent work of the 
DeepPhe team (cancer.healthnlp.org) moves 
beyond entity mention-level recognition to 
episode- and patient- levels over the entire 
set of patient records (pathology, oncology, 
clinical, and radiology reports) where mul-
tiple tumors associated with types of cancer 
are described [66]. These tasks require 
sophisticated extraction techniques such as 
coreference resolution, relation extraction, 
and temporal relation extraction to achieve 
reliable summarization.

Temporal Data (see Table  2): Using a 
temporal database to discover the possible 
patterns that might point to cause and effect 
events, Wang et al. [67] created a system 
to align and visualize multiple patients’ 
records by event, allowing for a way to 
more readily find precursor, co-occurring, 
and after-effect events. To extract relevant 
temporal and event information from clini-
cal narratives in an EHR, NLP and machine 
learning techniques have been employed. 
Nikfarjam et al. [68] proposed using an 
SVM classif ier with a graph-based ap-
proach to find temporal relations. Kovecevic 
et al. [69] proposed to use conditional ran-
dom fields (CRF) and post-processing rules 
to identify mentions of clinical events and 
temporal expressions. Longitudinal data has 
also been explored as a resource to detect 
drug safety information. Schumie et al. [70] 
used Bayesian methods to detect possible 
drug safety signals in longitudinal obser-
vational healthcare records. They reported 
that the use of temporal data enables their 
method to distinguish between false drug-
event associations, such as a protopathic 
bias, and genuine adverse effects. To find 
unreported ADEs in EHRs, Zhao [71] pro-
posed using time-stamped clinical events as 
a feature in a supervised machine learning 
algorithm. Assigning weights to temporal 
relationships between the clinical event and 
an ADE increased the predictive power of 
the system over no weighting at all. Chen et 
al. [72] combined the temporal information 
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of structured EHRs with that automatically 
extracted from the clinical text through 
state-of-the-art NLP techniques [73] to 
identify rheumatoid arthritis patients with 
liver toxicity side effects as a result of 
the administration of methotrexate. This 
innovation sets their work apart from the 
computable phenotyping work done within 
national initiatives such as eMERGE and 
i2b2 where the phenotypes are temporally 
non-sensitive.

3   Mining Social Media
Social media has seen a massive growth, 
perhaps the greatest among all health-re-
lated information sources in HLP research 
in recent years [74], primarily driven by the 
rapid increase of the number of users. Ac-
cording to the latest Pew report [75], nearly 
half of the adults worldwide and two-thirds 
of all American adults (65%) use social 
media, including over 90% of 18-29-year 
old persons. The number continues to rise 

every year as larger numbers of older peo-
ple commence interacting on social media. 
Earlier research from the same organiza-
tion suggests that seven out of ten adult 
Internet users adults search health-related 
information on the Internet, one in four 
read about others’ health experiences, and 
16% go online to find users with similar 
health-related experiences [76]. It has been 
realized that because of the large user-bases 
that popular social networks have, there is 
an abundance of health-related knowledge 
contained within this domain in the form 
of text. Crucially, social media has opened 
up unique opportunities in patient-oriented 
health care—by allowing the access of in-
formation directly from users about various 
health-related topics and empowering the 
development of data-centric NLP tech-
niques that can take into account patients’ 
perspectives in unprecedented ways [77]. 

From the perspective of health, there 
are two broad categories of social media 
sources—generic social networks such 
as Facebook, Twitter, and Instagram, and 
domain-specific social networks such as 

PatientsLikeMe1  and DailyStrength2.  While 
generic social networks (GSNs) contain 
information about a range of topics, do-
main-specific networks, often referred to as 
online health communities (OHCs), are ded-
icated exclusively for discussions associated 
with health. Thus, GSNs typically provide 
access to data from large groups of users and 
may provide access to patients’ perspectives 
that are not available from any other sources, 
on a wide range of topics [78], and in distinct 
languages [79]. For example, GSNs such 
as Twitter provide unique windows for re-
searchers to study population-level attitudes 
and behaviors regarding prescription and 
illicit drug abuse and misuse [80], data that 
may not be available from traditional sourc-
es such as published literature, surveys, or 
EHRs. OHCs, in contrast, have much smaller 
user bases, but they include users with 
common interests/problems/objectives and 
usually provide cleaner and more targeted 
data (e.g., breast cancer forums).

Despite the profusion of health-related 
information available from social media, 
automatic processing of this data has made 
relatively slow progress. Social media text is 
generally noisy and unwieldy [81], given the 
presence of domain-specific terminologies, 
semantic information and complex language 
usage [82–84], the challenges are exacer-
bated when extracting health information 
from social media [85, 86]. Recent NLP 
research suggests that when used to solve 
specific clinical or public health associated 
tasks, only small proportions of social media 
data selected for the given task are useful. A 
significant proportion of the data is noise or 
unreliable, even when collected using care-
fully designed queries [87]. Health chatter 
on social media is also jam-packed with 
colloquialisms and misspellings, making 
detection and machine-level understanding 
of important concepts difficult. Furthermore, 
particularly for GSNs, user posts often 
lack contextual information, aggravating 
the difficulty of machine-level semantic 
understanding of the texts. NLP research in 
this domain has thus primarily been targeted 

1	 https://www.patientslikeme.com/ 
[accessed: April 1st, 2017]	

2	 https://www.dailystrength.org/ [accessed: 
April 1st, 2017]	

Table 2   Results from shared tasks related to temporal relation extraction from clinical records. 

1	 https://ww-healthnlp.org/ [accessed: April 1st, 2017]
2	 https://github.com/stylerw/thymedata/ [accessed: April 1st, 2017]
3 	 http://thyme.healthnlp.org/ [accessed: April 1st, 2017]
a	 Results reported are for span extraction only.

Temporal Extraction

Challenge

i2b2

SemEval

SemEval

Year

2012

2015

2016

Corpus

i2b21

THYME2

THYME3

Task Description

Identification of time expressions

Identification of event expressions

Identification of temporal relations

Identification of time expressions

Identification of event expressions

Identification of temporal relations

Identification of time expressions

Identification of event expressions

Identification of temporal relations

Number of 
Participants

10

10

10

3

1

1

10

10

10

Results Range /
Measurement

0.92-0.83/F1a

0.66-0.45/F1a

0.69-0.43/F1

0.725-0.404/F1a

0.875/F1a

Document Time: 0.702/F1

Narrative Containers: 0.102

0.795-0.118/F1a

0.903-.0755/F1a 

Document Time: 0.756-
0326/F1

Narrative Containers: 0.479-
0.017/F1

https://www.i2b2.org/NLP/DataSets/
file:///C:\Users\Karen\Downloads\thyme.healthnlp.org\
https://github.com/stylerw/thymedata/
file:///C:\Users\Karen\Downloads\thyme.healthnlp.org\
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towards discovering knowledge from the 
abundance of noisy, imbalanced data. Social 
media NLP research has focused on a variety 
of techniques such as query formulation 
and keyword selection for the detection 
of targeted content, generative techniques 
such as Latent Dirichlet Allocation (LDA) 
and variants of topic modeling techniques 
to identify common themes across large 
data sets, and supervised text classification 
techniques for filtering out noise and irrele-
vant data. Innovative entity recognition and 
extraction techniques have been proposed for 
health concept detection/identification tasks. 
More recent research contributions have 
made progress in concept normalization, 
signal generation, and predictive analytics 
via the application of sophisticated text 
mining pipelines. We review the most recent 
of these advances in this section and discuss 
some of the data, resources, and tools that are 
currently available for NLP of social media 
health data. We begin by discussing some 
of the most commonly addressed topics 
that social-media-based health text mining 
has addressed.  

3.1   Social Media Sources, Topics, 
and Data Acquisition
Within the two broad categories of social 
networks (i.e., GSNs and OHCs), there are 
notable differences in many key attributes of 
the individual sources. Within GSNs, for ex-
ample, Facebook is a broad coverage social 
networking site, Twitter is for microblogging, 
and Instagram is for photo sharing [88]. The 
data sharing and privacy policies of these 
media influence how widely they are used for 
research, with Twitter being the most popular 
because of its public streaming API. A recent 
systematic review by Sinnenberg et al. [74] 
identified 137 peer-reviewed research arti-
cles, which utilized Twitter for health-related 
research, with 57% of them focusing on con-
tents while the rest focused on recruitment 
or interventions. Over 80% of the identified 
publications were either focused on lexical 
content analysis or surveillance, and 108 of 
the articles that focused on the contents, rep-
resented 5.1 billion tweets—a monumental 
amount of information. Population/public 
health topics are most commonly addressed 

within the Twitter articles identified and 
the same trend can be seen for Facebook 
and Instagram, although one key difference 
we observed is that a significant portion 
of public health research using Facebook 
focused on communication rather than on 
lexical content processing [89–91]. For 
monitoring and surveillance research from 
social media, the most common topic has 
been influenza surveillance [92, 93]. Data 
collection strategies for this task and other 
similar tasks (e.g., identifying health threats 
[94], drug interactions [95], smoking pat-
terns [96, 97], pharmacovigilance [98, 99]) 
have been typically employing simplistic 
NLP techniques, relying on keywords and/or 
hashtags as queries or on the direct selection 
of users via network links (e.g., followers 
of a brand of e-cigarettes). While for some 
research tasks such querying techniques 
suffice, other recent studies, particularly 
in the field of medication-effect analysis 
where the recall is generally low, have de-
vised techniques to address the social media 
specific challenge of misspellings [100]. 
Pimpalkhute et al. [101] proposed a phonetic 
spelling variant generator that automatically 
generates common misspellings given a 
term. While the system has been used for 
collecting medication-related chatter from 
Twitter [102] and personal health messages 
[103], it may be applied to a variety of other 
data collection tasks. Data collection from 
OHCs has not faced similar challenges, as 
posts are usually categorized/structured, and 
the strategies employed have been simpler. 
However, because of the privacy policies of 
such sources, publicly available NLP data 
sets are scarce.  

3.2   Content Analysis and Text 
Classification
Over half of the studies involving social 
media data that are cited in this paper employ 
lexical content analysis. A large subset of 
these studies has merely relied on collecting 
data in bulk using appropriate queries, and 
then deriving conclusions using simple sta-
tistical models directly based on the volume 
of data [104]. Sometimes, the information 
is coupled with available metadata (e.g., 
geolocation for flu surveillance) [105,106]. 

In some cases, studies involving big data 
from social media have overcome the chal-
lenges faced by studies using big data from 
other sources (e.g., Google Flu Trends, its 
shortcomings, and the use of Twitter for flu 
surveillance [107]).  

Early health-related NLP research uti-
lizing social media data suggests that 
rule-based approaches perform particularly 
poorly in this domain because of the nature 
of the data, resulting in a shift towards ma-
chine-learning-based approaches in recent 
years [100]. Text classification techniques 
have been applied to extract high quality 
information from noisy, health-related 
social media data [108] or for other down-
stream tasks in both GSNs (e.g., [109]) 
and OHCs (e.g., [110]). These downstream 
tasks include, but are by no means limited 
to, sentiment analysis [111–113], adverse 
drug reaction detection [114, 115], antibi-
otic discussion characterization [116], pre-
scription medication abuse detection [117], 
substance use (e.g., tobacco products) clas-
sification [96, 118], personal event detection 
[119–121], and user behavior analysis [122]. 
Sentiment analysis/classification is a well 
explored NLP task, and, because of its par-
ticular suitability to large social media data 
and the availability of annotated resources 
(e.g., data from the SemEval task [123]), it 
has found applications in an assortment of 
inter-domain tasks. For example, recently, 
sentiment analysis/classification techniques 
have been applied to understanding user 
sentiments associated with drugs [124, 125], 
including non-medical use of drugs [126] 
and vaccinations [127], treatments [111, 
128], and diseases [129].

In terms of methods for content analysis 
and filtering, supervised learning techniques 
that incorporate informative features have 
been the most popular, although many 
studies still rely on a manual analysis for 
deriving final conclusions [130]. Many early 
studies discovered that the high amount of 
noise present in social media data posed an 
important problem for mining knowledge, 
and they attempted to address the issue by 
designing supervised classification tech-
niques [131]. Traditional text classification 
features such as bag-of-words and n-grams 
are most commonly used and social media 
specific features such as emoticons have also 
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been found to be informative for particular 
tasks [132]. Sarker and Gonzalez showed 
that social media text classification, partic-
ularly for short text nuggets such as Twitter 
posts, benefits from the generation of large 
numbers of semantic features representing 
information about the texts from multiple 
aspects such as topics, polarities, senti-
ments, and others. The short nature of Twit-
ter posts along with the presence of frequent 
misspellings commonly result in extremely 
sparse vectors, and thus generating many 
features to represent diverse properties of 
the text enables classifiers to learn better 
fitting models. Another interesting aspect 
of social-media-based health text classifi-
cation is that medical domain-specific tools 
such as MetaMap [133], which have been 
used in the past for generating features for 
text classification, are not very useful when 
it comes to social media text. This is pri-
marily because such tools are designed for 
formal medical text only, and are incapable 
of understanding social media expressions. 
Unsurprisingly, SVMs have obtained the 
best performance for a long time and are 
still very difficult to beat in terms of per-
formance [108, 114, 117, 134–136]. Very 
recently, deep neural-network-based models 
have been designed and employed for social 
media health text classification, with very 
promising results [137].

Another effective and popular social 
media lexical content analysis approach has 
been topic modeling. Unlike text classifica-
tion algorithms, which require supervision/
annotated data, topic models utilize large 
volumes of unlabeled data to identify topics 
that represent that data. Therefore, topic 
modeling techniques can be readily em-
ployed to identify and analyze the contents 
of targeted social media health chatter. Paul 
and Dredze [138], for example, proposed 
the Ailment Topic Aspect Model (ATAM) 
to identify health-related topics from Twitter. 
Using this technique, the authors discovered 
some of the most popular health-related 
topics of Twitter conversations, such as 
influenza, allergies, and obesity. The ap-
proach has been replicated, modified, and 
other topic modeling techniques have been 
employed to find health-related topics in 
languages other than English (e.g., Chi-
nese [139]), and for focused tasks such as 

analyzing suicide-related content on social 
media [140] and characterizing discussions 
about vaccines [141]. Li and colleagues 
[142, 143] proposed topic models for iden-
tifying clusters of ‘life events’, and using 
them for building user timelines and other 
downstream applications. Other variants 
of topic models have also been applied for 
deriving task-specific knowledge from large, 
unlabeled social media data sets—such as 
the use of keyword-biased topic models for 
predicting the safety of dietary supplements 
[144] and time-sensitive probabilistic topic 
models for capturing changing user interests 
and topics over time from health-related 
chat logs [145]. Recent advances in deep 
neural-network-based models have seen the 
application of such models for the generation 
of topical content, which may then be applied 
to downstream tasks [146].

3.3   Information Extraction and 
Normalization 
It was obvious early on in information ex-
traction research from social media health 
text that traditional approaches performed 
poorly in this domain. Social media and 
health are both complex lexical domains 
and the intersection of the two particularly 
aggravates challenges associated with text 
mining. Rare and non-standard contents 
are specifically difficult for systems to ex-
tract and aggregate [78,79] particularly for 
pharmacovigilance, via the use of NLP. Be-
cause of the relatively new research focus on 
social media mining for health-related tasks, 
challenges associated with the extraction of 
pertinent, task-specific content have only 
been discovered/realized in the recent past.

In line with early biomedical NLP 
approaches, information extraction ap-
proaches specif ic to the social media 
domain mostly employed lexicon-based 
techniques to solve many problems, such 
as detecting adverse drug reactions [147], 
identifying users making pregnancy an-
nouncements [148], and mining opinions 
[149]. However, with the evolving nature 
of language usage on social media and the 
unconstrained number of ways in which the 
same information can be expressed in this 
domain, developing thorough lexicons is a 

difficult task. Additionally, even the most 
thorough lexicons may get outdated within 
a relatively short period of time. Recent 
efforts have attempted to combine multiple 
task-specific lexicons for improving infor-
mation detection/extraction performance 
on target datasets, but these lexicon-based 
approaches are easily outperformed by 
learning-based approaches in the presence 
of expert annotated data [99]. Denecke’s 
qualitative analysis [150] on concept 
extraction from social media details the 
specific problems associated with the use 
of standardized lexicons in this domain. 
The author explains that knowledge-bases/
lexicons such as MetaMap and cTakes fail 
to identify common language or consumer 
health vocabulary. In particular, verbs, per-
sonal pronouns, adjectives, and connecting 
words present problematic contents.

With emerging efforts in the preparation 
of annotated social media based datasets 
for a variety of health-related and public 
health monitoring tasks, recent benchmark 
systems have employed supervised learning 
for concept extraction/sequence labeling. 
Conditional random fields (CRFs) currently 
produce the best performance on annotated 
data for the task in English and other lan-
guages [99, 112, 151, 152]. The primary 
reason behind the success is the ability of 
CRFs to incorporate contextual information 
when determining whether a given token 
should be classified as relevant or not. For 
example, concerning disease, disorders, or 
adverse drug reaction mentions in social 
media, while users may use a variety of 
creative terms to express their minds, sim-
ilar concepts are likely to occur in similar 
contexts. In addition to context terms, 
such context-incorporating learning-based 
algorithms have shown improvements when 
generalized representations of the context 
tokens are provided. Recent advances in 
learning semantic representations from 
large unlabeled datasets [153] have aided 
social media mining research by allowing 
systems to identify semantically similar 
terms. Nikfarjam et al. [99], for example, 
learnt distributed representations of social 
media terms, as used within a domain, clus-
tered the vectors, and used cluster numbers 
as features. The clusters contain the terms 
that are found to be close to each other in the 
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semantic space, and so, terms that are used 
in the same contexts are clustered together. 
Such features are particularly attractive be-
cause they don’t require human annotations 
or the manual creation of resources, but can 
be learned automatically in the presence of 
large amounts of unlabeled data—of which 
there is abundance in social media. There-
fore, such approaches are easily portable 
to other tasks or even to other languages. 
Morlane-Hondère et al. [152], for example, 
used the same features for French social 
media data. 

One of the least explored topics in 
social media health language processing 
is perhaps normalization. As discussed in 
the previous sections, normalization is the 
task of grouping together lexical items that 
essentially represent the same concepts. 
Within the domain of medical NLP, tools 
based on lexicons and knowledge bases 
such as MetaMap [133] have been used 
for identifying and grouping distinct lex-
ical representations of the same concepts. 
Learning-based approaches for normaliza-
tion have been proposed and employed for 
tasks within the medical domain [21, 22, 
23, 25, 27, 147, 148, 149], but research on 
this topic within the domain of social media 
is still in its infancy. While medical text is 
itself complex, social media text presents 
additional challenges due to non-standard 
expressions and spellings. Typos, ad hoc 
abbreviations, phonetic substitutions, use of 
colloquial language, ungrammatical struc-
tures, and even the use of emoticons make 
social media text significantly different 
from texts from other sources [154]. While 
these properties present NLP challenges, 
these also constitute the primary motivation 
for building normalization systems. 

Some research on normalization of social 
media text focused at the lexical level, and 
has similarities to spell checking techniques 
with the primary difference that out-of-vo-
cabulary terms in social media text are often 
intentionally generated. Text messages have 
been used as input data for normalization 
models, and various error models have been 
proposed, such as Hidden Markov Models 
[155] and noisy channel models [156]. 
Similar lexical normalization techniques 
have been evaluated on social media texts as 
well [157, 158]. For concept normalization 

of social media texts, approaches still mostly 
rely on custom-built lexicons [159, 160] 
and lexical matching. Metke-Jimenez and 
Karimi [159] presented a large, compiled 
lexicon of adverse drug reaction terms and 
employed term weighting techniques for 
retrieving relevant concepts. Very recently, 
with the development of new, efficient tech-
niques for learning vector representations 
of terms/phrases, new mechanisms for 
performing normalization using vector rep-
resentations of words have been proposed. 
In a typical normalization pipeline, word 
vector representations are generated from 
large unlabeled data sets and then similarity 
measurements, such as cosine similarity, 
are utilized to identify semantically similar 
concepts [103, 161]. In terms of methods, 
techniques adapted from the field of machine 
translation [161] and neural-network-based 
approaches [103, 162] are currently being 
explored. Although progress in this field 
is very limited, the importance of such 
techniques has been realized and there is 
currently a drive from the research commu-
nity to release more data sets for evaluating 
social-media-based health text normalization 
systems [87, 159]. Considering the necessity 
of high-performance normalization systems 
for health text mining tasks from social me-
dia, the severe lack of research on this topic, 
and the recent advances in semantic repre-
sentations of text nuggets, NLP research in 
the near future should, and inevitably will, 
focus on the development of more advanced 
concept normalization techniques. 

3.4   Individual and Temporal Data 
in Social Media
Very recently, the detection of personal 
health-related life events and their extraction 
have received some attention as researchers 
are starting to focus on using social media 
data for precision medicine. Simple bag-of-
words and n-gram models have been com-
bined with temporal information from indi-
viduals’ social media timelines to perform 
personal life event detection [119]. Unsuper-
vised LDA models and human annotations 
have also been used to detect personal events 
[142]. Li and Cardie [143] proposed using 
an unsupervised Dirichlet Process Mixture 

Model to capture temporal and personal 
event mentions to create a chronological 
timeline from a user’s Twitter feed. Kiciman 
and Richardson [120] combined several 
supervised learning methods to classify and 
extract personal event information mentions 
in Twitter. Combining this information with 
temporal information, they propose to cre-
ate a system for creating action—outcome 
relationships from a user’s timeline. Wen et 
al. [121] designed a temporal tagger to ex-
tract temporal expressions from sentences 
containing predefined event words from a 
patient’s profile on an online cancer support 
community. A trained classifier was then 
used to normalize dates and sort mentions 
of the event in a chronological timeline. 
Chandrashekar et al. [163] attempted to 
combine query formulation, supervised 
classification, and rule-based information 
extraction techniques to identify and study 
pregnancy timelines. These studies have 
suggested that individuals belonging to 
specif ic cohorts can be detected from 
social media, and specific health-related 
events over time can be mined from the 
information posted by individual users. 
Future research will inevitably build on 
these studies and utilize social media data 
for personalized tasks.

3.5   Shared Tasks
There has been a move in recent times to 
design shared tasks and release data for 
social media health NLP tasks. Although, 
compared to the general health NLP domain, 
such efforts in the social media domain are 
very limited and relatively new. They present 
some of the first opportunities to compare 
distinct approaches and systems on social 
media tasks. Table 3 presents four such tasks 
that we decided to include in this review. A 
fifth task, on normalization of social media 
concepts, was proposed in 2016, but did not 
receive any participating systems [87]. Three 
of the tasks were on text classification and 
one on information extraction. Class-specific 
F-scores were typically used as the evaluation 
metrics, except in one task (Depression and 
Post-traumatic Stress Disorder (PTSD) detec-
tion). Unsurprisingly, the performances of the 
best performing systems on social media texts 
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are generally lower than the performances of 
similar systems in generic health-related texts. 
Despite this, with the growth of public release 
of annotated and targeted, unlabeled data sets, 
the development of better performing and 
more applicable systems is inevitable.

4   Conclusion
In this survey, we reviewed recent main 
developments in the field of health text pro-
cessing. The survey focused on fundamental 
NLP tasks as well as higher-level applications 
related to extracting the patient’s perspective 
from clinical records and social media.

One of the main challenges in the field 
is the availability of data that can be shared 
and which can be used by the community 
to push the development of methods based 
on comparable and reproducible studies. 
Shared data and open-source state-of-the-
art methods go hand in hand in the quest of 
reproducible scientific discoveries. 

From the applications point of view, NLP 
approaches that use EMR data would benefit 
from the direct use by clinical investigators 
for biomedical discoveries such as very large 
scale PheWAS/GWAS studies based on 
patient cohorts collected through automatic 
computable phenotypes. From a methods 
point of view, the field is now well aligned 
with the developments in the general NLP 
area (which was not the case a decade ago). 

State-of-the-art technologies from machine 
learning have infiltrated the domain. The 
next frontier tasks are the ones that require 
higher-level discourse processing such 
as co-reference and temporal relation ex-
traction, as well as normalization. 

With respect to the use of social media, 
despite the great interest it has elicited in 
the research community, when used to solve 
specific clinical or public health associated 
tasks, only small proportions of the data se-
lected for the given task are actually useful. A 
significant proportion of the data is noise or 
unreliable, even when collected using care-
fully designed queries [87]. In order to obtain 
enough data, information retrieval methods 
with adaptable queries are needed, along 
with greater flexibility in concept extraction, 
and reliable normalization. While other 
state-of-the-art information extraction/iden-
tification approaches have been proposed in 
the machine learning and NLP literature, the 
scarcity of annotated social media data is still 
a major obstacle in assessing the true value 
of social media for the various health-related 
tasks. Novel, generic extraction algorithms 
for various health-related tasks have been 
proposed in the recent past [170], but their 
performance in real-life social media data 
have not been evaluated. This obstacle has 
been discussed in recent reviews [100] and 
there has been a greater urgency for creating 
and releasing annotated datasets and targeted 
unlabeled data sets in distinct languages 
[102, 159, 171].

Not until all of the fundamental tasks are 
readily available will knowledge discovery 
applications that use social media as a source 
flourish and be reliable enough to be used by 
regulatory agencies. 
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