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VonWillebrand factor: Looking back and looking forward
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Summary
Looking back at the last thirty years of studies on von Wille-
brand factor is a lesson on the importance of combining clinical
observations with basic research. Most of what we know today
originates from the perceptive evaluation of patients with con-
genital disorders of haemostasis such as haemophilia and von
Willebrand disease. Understanding the causes of these diseases
was akin to the current approach of using mutagenesis in animal
models to get insights into the function of specific gene prod-
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ucts.The information generated to date has been detailed and
comprehensive, but looking into the future one sees that much
remains to be done to understand how the role of von Wille-
brand factor and its primary platelet receptor, glycoprotein Ib, is
integrated into the complex responses to vascular injury. Many
challenges remain, along with the hope of translating the know-
ledge acquired into new and efficacious treatments for arterial
thrombosis.
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Introduction
With advancing age one typically appreciates more the value of
historical perspective in relation to all human activities, and scien-
tific research is no exception. We seem to learn that challenging
existing concepts and exploring new directions is best done when
we fully appreciate the achievements of those who came before us.
Their quest was the same we are pursuing today and others will
pursue tomorrow; their discoveries are as essential to the progress
towards our goals as the meticulous fine-tuning of the tools we use
in our experimental work. The golden anniversary of a journal de-
voted to disseminating scientific information provides the oppor-
tunity to reflect on these concepts, looking back to successes and
controversies in order to find, or one may dare say provide, inspi-
ration and motivation for the journey forward.

Early years
I initiated my studies in the field of thrombosis and haemostasis
in 1968, although the social and political unrest that swept
through most universities in the world at the time was a strong
competing interest. Judith Pool had described a few years before
the method to prepare cryoprecipitate enriched in factor VIII (1,
2), and a young Pier Mannuccio Mannucci, fresh from his train-
ing in England with Ingram and Biggs (3), was starting to create

the program that so profoundly contributed to improve the lives
of haemophiliacs in Italy and elsewhere. Only a few years later
Ted Zimmerman provided the definitive demonstration that the
protein deficient in von Willebrand disease was normally present
in haemophilia A (4), in essence ending – but without fully real-
izing it, yet – the debate on "one protein, two functions" (more
about this later) (5). Insightful patient studies in Sweden – by
Nilsson, Holmberg et al. (6–8) – and France – by Larrieu, Meyer
and Caen (9–11) – contributed important information on the het-
erogeneity of von Willebrand disease and the bases for its dis-
tinctness from haemophilia A. The quantitative determination of
"factor VIII-related antigen" made possible by Ted’s discovery
also created the basis for diagnosing the state of haemophilia A
carrier in females (12). Thus, the decade between 1964 and 1973
witnessed seminal discoveries that established the foundations
for the molecular understanding of haemophilia A and von
Willebrand disease in the following 20 years, at the same time
initiating the modern era of substitution therapy for these con-
genital bleeding disorders. Only a few years later, the group lead
by Mannucci brought to fruition years of studies (13) with the
clinical demonstration that factor VIII and von Willebrand factor
(VWF) activities in plasma could be raised to therapeutically
useful levels in patients with mild haemophilia and type I von
Willebrand disease using a synthetic vasopressin analogue, thus
avoiding the risk of transfusion-transmitted infections (14–16).
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The field of platelet research was not standing still. In the
early 1970s it became evident that abnormalities of platelet
membrane glycoproteins resulted in functional defects char-
acterized by excessive bleeding (17–20), and once again careful
studies of patients paved the way to basic experimental work
aimed at understanding the mechanisms of platelet adhesion.
During the same years, a selected group of investigators began
studies on the influence of hemodynamic conditions (21-23) and
other physical parameters (24), on thrombus formation, and the
results of these efforts ultimately blossomed into the initial
understanding of key relationships between shear forces and ad-
hesive platelet interactions that were somehow related to von
Willebrand disease (25–28). In essence, by the end of the seven-
ties one could sense that the stage was set for new developments

to happen that would bring the knowledge on the functions of
factor VIII and VWF to new levels.

The molecular era
For somebody with an interest in understanding the function of
VWF and the molecular basis of von Willebrand disease, it was
natural to want to work with Ted Zimmerman (Fig. 1). For a
number of years investigators had been debating whether the ac-
tivity that controls the bleeding time and is defective in von
Willebrand disease (a.k.a. angiohaemophilia), on one side, and
the procoagulant function that is defective in haemophilia A, i.e.
factor VIII, were two functions of the same molecules. What we
now know as VWF was for many years the factor VIII antigen
and then the factor VIII-related antigen. Ted had developed the
tools to prove that the two activities were the expression of differ-
ent, albeit associated, molecules, and was interested in studying
the structure and function of both in great detail. I began as a fel-
low in his laboratory in 1978 and was assigned to the VWF pro-
ject; Carol Fulcher (Fig. 2), who joined the group a few months
after me, started working on factor VIII. Her meticulous work
would lead to the method to purify factor VIII that in great part
contributed to the availability of virus-free concentrates for
therapeutic use before recombinant factor VIII became available
(29). In those years we devised a method to study the multimeric
structure of VWF that became widely used (30, 31). The first ap-
plication for me was to study the strange variant of von Wille-
brand disease that had been identified some years before in Italy
(32) and made no sense because the patients were paradoxically
hyper-responsive to ristocetin when, according to their diag-
nosis, they should have been hypo-responsive (33).

The major advance that ushered in the new era of molecular
studies onVWF and von Willebrand disease was the cloning of the
VWF cDNA (34–36).This achievement confirmed the monumen-
tal work of Titani et al. who, essentially at the same time, com-
pleted the amino acid sequence of the purified VWF protein (37).
Of equal importance for most future developments was the eluci-
dation of the complex biosynthesis of VWF by endothelial cells
(38, 39) and megakaryocytes (40), with the subsequent demon-
stration of the regulated secretion of large VWF multimers from
storage organelles (41). These basic research results were instru-
mental in interpreting the pathophysiological role of VWF
multimers in thrombotic thrombocytopenic purpura (42) as well
as the significance of the proteolytic processing of VWF after re-
lease into the circulation (43, 44).All these studies eventually con-
tributed to the identification of ADAMTS-13 (45), the protease
that cleaves VWF multimers (46). Of note, the studies on the bio-
synthesis of VWF also helped clarify the identity of von Wille-
brand disease antigen II.This was discovered by Bob Montgomery
when he was a fellow with Ted Zimmerman (47), and was later
demonstrated to be the VWF propeptide released into the circu-
lation after cleavage from the assembled VWF multimers (48).

Selected aspects of current knowledge
Platelets, shear forces andVWF
Platelets are essential for normal haemostasis and particularly to
arrest bleeding from arterioles where shear stress is elevated

Figure 1: An official portrait of
Theodore Samuel Zimmerman
(1937–1988), taken around 1983.

Figure 2: Shown from the left are Augusto Federici, Carol
Fulcher,Ted Zimmernam andYoshihiro Fujimura. This picture
was taken in front of the Scripps Research Institute in 1984.
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(49). In pathological conditions, platelets are a major contributor
to arterial thrombosis, which typically occurs at sites of athero-
sclerosis with stenosis of the vessel lumen where shear stress
values are considerably higher than in the normal circulation
(50–52). Shear rate and shear stress have different effects on cel-
lular adhesive interactions. The shear rate is directly related to
flow velocity, including the velocity of cells in the fluid layer ad-
jacent to the vessel wall, and limits the time of contact between
membrane receptors and immobilized substrates on the vessel
wall, thus the on-rate of the adhesive interaction. As a con-
sequence, the efficiency of cell recruitment onto the surface de-
creases with increasing shear rate. Shear stress, in contrast, in-
fluences the lifetime of an adhesive bond once formed, thus the
off-rate of the interaction, and the consequence is decreased ef-
ficiency caused by detachment of adherent cells with increasing
shear stress.

Different pathways of platelet adhesion are variably affected
by increasing shear force depending on the biomechanical prop-
erties of each receptor-ligand pair. Above a threshold shear rate
of 500–800 s-1 in human blood (27, 53) and 2,000–5,000 s1 in
mouse blood (54), only the interaction between immobilized
VWF A1 domain (VWF-A1) and the glycoprotein (GP) Ibα in
the platelet membrane GP Ib-IX-V receptor complex (55) has a
sufficiently fast on-rate to initiate platelet adhesion (56). It is im-
portant to note that the threshold discussed here is not a mini-
mum shear rate value to engage the function of immobilized
VWF-A1, which can mediate platelet tethering even under ve-
nous slow flow conditions (56); rather, it is an upper limit for the
function of most other platelet adhesive bonds in the absence of
VWF.

Subendothelial and immobilized plasma-derivedVWF
As a constitutive component of the extracellular matrix of en-
dothelial cells, subendothelial VWF can directly support platelet
adhesion (28, 57–59). Nonetheless, haemostasis can be normal
in the absence of endogenous endothelialVWF if plasmaVWF is
present (60). Consequently, the interaction of circulating VWF
with exposed vascular and perivascular tissues is a key early
event in thrombus formation. The main substrate capable of
binding VWF is collagen (61), particularly types I and III in
deeper layers of the vessel wall and microfibrillar collagen type
VI in the subendothelial matrix (62–65). Two of the three type A
domains in VWF, A1 and A3, can mediate binding to collagens,
and their respective roles may vary depending on the type of col-
lagen involved and the fluid dynamic conditions (64, 66). The
VWF A1 domain (VWF-A1), comprising residues 497–716 of
the mature subunit (add 763 to obtain the corresponding residue
number in pre-pro-VWF) (67), was initially shown to interact
with collagen types I (68, 69) and III (70), but its main role may
be binding to collagen type VI (64, 71). The latter contains VWF
type A domains in its non-collagenous regions that may become
engaged in homotypic interactions with VWF-A1 (64, 72). The
VWF A3 domain (VWF-A3), comprising residues 910–1111,
also binds to collagen types I and III (69, 70, 73), and is appar-
ently necessary and sufficient to mediate the interaction with fi-
brillar collagens (53, 74). The VWF-A3 residues involved in col-
lagen binding have been mapped (75, 76) and a high-affinity
binding site for VWF has been identified in collagen type III

(77). Fluid dynamic conditions and mechanical forces may
modulate the VWF-collagen interaction, and the interplay of do-
mains A1 and A3 may be necessary to support VWF immobiliz-
ation onto extracellular matrices containing various collagen
types (64). Of note, VWF multimer size directly correlates with
the affinity for collagen binding (78).

Contrasting the information on the role played by VWF-A3
in the interaction with fibrillar collagens in vitro, supported by
the demonstrated anti-thrombotic activity of a function-blocking
anti-VWF A3 antibody (79), stands the evidence that mutations
preventing collagen binding (such as Ser968Thr) are compatible
with normal haemostasis in vivo (80, 81). This may indicate that
collagen type VI in the endothelial cell and fibroblast matrix is
the main VWF binding site through an interaction mediated by
the A1 domain (82), and/or that VWF-A1 can substitute for
VWF-A3 in supporting binding to different fibrillar collagen, in
which the sites interacting with the two domains appear to be
overlapping (66). In addition, or in alternative, VWF can interact
with extracellular matrix components independently of collagen.
The A1 domain contains a heparin-binding site (83, 84) that has
been localized to the sequence Tyr565-Ala587 (85). A second,
lower-affinity heparinbinding sequence exists within the first
272 residues of the mature VWF subunit (86). These heparin-
binding sites may reflect the ability to interact with matrix pro-
teoglycans that contain sulfated carbohydrates. For example, the
small proteoglycan decorin, which associates with several ma-
trix components and contributes to matrix assembly, has been re-
ported to bindVWF in an interaction mediated by the glycosami-
noglycan chain and regulated by the degree of sulfation (87). In
addition, VWF binds to sulfated glycosphingolipids (sulfatides)
(88, 89) that are present on cellular membranes and may serve an
accessory role in promoting localization on wounded tissues.
The binding site for sulfatides has been localized within residues
512–673 of the A1 domain, possibly with a more direct involve-
ment of residues 569584 (90) and/or 626–646 (91). Sulfatides
can inhibit platelet adhesion to VWF mediated by GP Ibα, sug-
gesting an overlap of interacting sites (92). Because VWF is
multimeric, sulfatides may contribute to its binding to surfaces
and still allow platelet adhesion to different A1 domains in the
same immobilized polymer. Similar considerations apply to he-
parin and its binding site in theA1 domain (93).Another pathway
to VWF immobilization involves the interaction with com-
ponents of a forming clot. Thus, the cross-linking of VWF to the
α-chain of fibrin (94) can contribute to platelet deposition onto
altered vascular surfaces (95), and this may become a relevant
adhesion mechanism in areas where acute or chronic inflam-
mation causes fibrin deposition (96).

The ability to self-associate represents an additional mech-
anism for the transition from soluble to immobilized VWF, in
which case circulating multimers interact in a reversible manner
with matrix-bound and endogenous subendothelial VWF (97).
This mechanism was demonstrated by immobilizing a mutant
VWF devoid of domain A1 (αA1-VWF), thus unable to promote
platelet adhesion, onto collagen and showing that GP Ibα-me-
diated tethering was restored by the presence of soluble VWF in
plasma. Very large VWF multimers locally released by stimu-
lated endothelial cells (42) may enhance the efficiency of the
process, as these molecules form high-strength bonds with GP
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Ibα (98). Self-association of VWF multimers can occur onto the
platelet surface (99) under conditions of hydrodynamic shear
that favor the binding of soluble VWF (100). The self-associ-
ation of VWF apparently involves multiple domains (101) and
none has been identified as essential, includingA1 andA3 (97).

The distinctive functional properties of immobilized
and solubleVWF
Platelets have no measurable interaction with soluble VWF in
the circulation, but adhere promptly to exposed immobilized
VWF. Such a tight regulation is necessary to prevent intravascu-
lar platelet aggregation, and has led to the concept that surface-
bound VWF must undergo a conformational change to make the
interaction with GP Ibα possible and initiate platelet adhesion.
Indeed, VWF molecules may change shape depending on hae-
modynamic conditions, so that upon binding to the vessel wall
under high shear stress they may appear as elongated filaments
rather that the loosely coiled structures seen under static or low-
shear-stress conditions (102). Such an "uncoiling" may expose
the repeating functional sites present in multimeric VWF, allow-
ing a more efficient support of adhesive interactions as a result of
multivalent binding. Three-dimensional structural studies (103)
have shown that more subtle conformational changes can occur
in the GP Ibα-binding A1 domain as a result of amino acid sub-
stitutions, such as those causing type 2B von Willebrand disease
(33), which overcome the affinity barrier for soluble VWF bind-
ing to platelets. These results prove that conformational changes
can regulate the interaction between VWF-A1 and GP Ibα, but
there is no evidence that the transition from soluble to surface-
immobilized VWF induces these or similar conformations.
Studies with a specific antibody fragment (104), a "nanobody",
support the concept of a common "active" conformation in the
VWF A1 domain of surface-bound multimers, soluble ultralarge
multimers released by endothelial cells and mutant type 2B plas-
ma VWF, in contrast to the "inactive" conformation of normal
plasma VWF. In fact, the "nanobody" appears to bind prefer-
entially to the A1 domain of VWF species with enhanced affin-
ity for GP Ibα, indicating that they may share the same con-
formation. It remains to be determined whether such a con-
formation is dynamically transient or reflects one of the known
crystallized structures (103, 105, 106). A particularly relevant
"active" form of soluble VWF is represented by the ultralarge
multimers (98) released from the storage granules of stimulated
endothelial cells and platelets (107, 108). Ultralarge VWF
multimers function locally, but under normal conditions they do
not accumulate in circulating blood (109) because they are pro-
cessed by a specific protease, ADAMTS-13 (45).

ADAMTS-13 and the regulation ofVWF-mediated
platelet adhesion and aggregation
VWF in plasma or released by altered endothelial cells and/or ac-
tivated platelets at sites of vascular injury has a potent prothrom-
botic effect by promoting both platelet adhesion and aggre-
gation, particularly under high shear stress conditions. The lar-
gest multimers ofVWF, with the greatest prothrombotic function
(98, 109), are present inside cellular storage granules (107, 108)
but are not normally found in the circulation. The reason for this
is the efficient processing of all secreted VWF (110) by the

metalloprotease, ADAMTS-13 (45), which cleaves one single
peptide bond in the VWF subunit (43) and in so doing reduces
multimer size (44). Absence of ADAMTS-13 results in a throm-
botic microangiopathy (111), suggesting that the physiologic
function of the protease is to limit the activity of the most active
VWF multimers to the sites where they are released from cells
(109). Recently, the results of ex-vivo perfusion experiments
have added to this concept by showing that ADAMTS-13 can
further cleave circulating VWF multimers while they mediate
activation-independent interplatelet cohesion induced by elev-
ated shear stress, resulting in a time-dependent dispersion of the
aggregates (112). In contrast, the protease appeared to have no
effect, at least under the ex-vivo conditions studied, when throm-
bus formation was induced by blood exposure to a collagen sur-
face.

The latter finding stands in apparent contradiction with the
results of in-vivo studies in mouse thrombosis models, which
have shown the ability of recombinant ADAMTS-13 to dissolve
experimentally-induced thrombi in the arteriolar circulation
leading to the conclusion that the protease could be used as an
antithrombotic agent (113). While the effect of ADAMTS-13 on
microarteriolar thrombi is in agreement with the phenotype
caused by its deficiency, i.e. microarteriolar thrombosis (111),
the situation may be different in larger arteries. In this case, the
anti-thrombotic activity of ADAMTS-13 may depend on the ex-
tent to which adhesive molecules such as fibrinogen and fibro-
nectin, rather thanVWF, contribute to platelet aggregation.Thus,
the anti-thrombotic activity ofADAMTS-13 may be selective for
platelet aggregation under high shear stress conditions in which
VWF is important for platelet cohesion (114, 115). During hae-
mostasis, ADAMTS-13 activity may be needed to avoid the
propagation of platelet aggregates beyond the limits of a vascu-
lar wound, which typically involves the microarteriolar circu-
lation with rapidly flowing blood. It remains to be demonstrated
whether ADAMTS-13 may limit the potential role of VWF in
mediating the occlusion of stenotic arteries where pathologically
elevated shear rates develop. In this regard, it is intriguing to ob-
serve that a recent study found a positive correlation between
ADAMTS-13 levels and the risk of myocardial infarction in men
(116), a finding that is in apparent contrast with the suggestion
that ADAMTS-13 may act as an anti-thrombotic agent. The
mechanism through which increased ADAMTS-13 levels and/or
activity might constitute a risk for arterial thrombosis remains to
be understood.

Membrane receptors and the mechanism of platelet
tethering toVWF
Platelets have two main binding sites for VWF (117, 118),
GP Ibα in the GP Ib-IX-V complex (55) and the integrin αIIbβ3
(115). A second β3 integrin, αvβ3, albeit present at much lower
density than αIIbβ3 (120), may contribute to the platelet binding
ofVWF through the ligandArg-Gly-Asp (RGD) sequence, an in-
teraction shown to occur on endothelial cells (121). Both VWF
platelet receptors are promiscuous and bind several ligands that
may mediate adhesion to other platelets and cells. In particular,
the GP Ib-IX-V complex is a counter-receptor for P-selectin
(122) and for the leukocyte integrin Mac-1 (α2βM) (123), sup-
porting two interactions that may contribute more to inflamma-
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tory responses (124) than to platelet thrombus formation.The in-
tegrin αIIbβ3, on the other hand, binds several ligands, in addi-
tion to VWF, that are key to the process of platelet adhesion and
aggregation, primarily fibrinogen (125), fibronectin (126) and
CD40 ligand (127).

The primary VWF platelet receptor is GP Ibα and its binding
site in the VWF molecule, later shown to interact with heparin
and collagen as well, was identified byYoshihiro Fujimura (who
is shown in Fig. 2) in Ted Zimmerman’s laboratory (68, 83, 128).
The identification of its boundaries between residues 449 and
728 defined its location within the A1 domain (129). The distin-
guishing feature of the interaction between GP Ibα andVWF-A1
is the ability to support activation-independent platelet tethering
to thrombogenic surfaces even when the velocity of blood is
elevated. The interaction has a fast dissociation rate, exhibiting
the characteristics of a selectin-like bond (130), and the common
paradigm is that it cannot support irreversible adhesion (56);
thus, platelets tethered to the vessel wall solely through VWF-
GP Ibα binding move constantly in the direction of flow. In in-
flamed tissues, this function may support the initial platelet con-
tact with stimulated endothelial cells (131), a surface onto which
membrane-bound VWF and P-selectin, which also mediates
transient adhesion and rolling (132), may be the only adhesive
substrates. Initial transient interactions between platelets and
reactive surfaces may be essential for allowing a modulated re-
sponse while surveying vessel wall integrity, as commitment to
irreversible adhesion after each initial contact could have ad-
verse consequences, including tissue damage. The presence of
additional structures signifying a serious lesion may be the
required trigger for subsequent steps such as irreversible platelet
adhesion and accumulation. The GP Ibα-mediated translocation
velocity onto immobilized VWF is typically less than 2% of the
free flow velocity of non-interacting platelets at the same dis-
tance from the luminal surface.

This slow motion allows the establishment of additional
bonds through receptors that belong mostly, but not necessarily,
to the integrin superfamily. Such receptors, many of which de-
pend on platelet activation to express function, typically have an
intrinsically slower rate of bond formation but are capable of
mediating stable interactions that lead to the definitive arrest of
individual platelets and subsequent thrombus development. No-
table in this regard is the role of the activated integrin αIIbβ3,
which binds to the Arg-Gly-Asp sequence in VWF itself (117,
118),which binds to the Arg-Gly-Asp sequence in VWF itself or
to other adhesive substrates in a complex matrix (133, 134), and
of collagen and its receptors (135, 136). When VWF is bound to
collagen, the transition from rolling to stable adhesion occurs
more rapidly than on immobilized VWF alone and thrombus de-
velopment occurs at higher shear rates than on collagen without
VWF (53). Such a consideration highlights the true synergistic
function of the VWF-collagen complex, which also leads to
multiple activating signals coupled, in part, to the VWF-GP Ibα
interaction (137–141).

An integrated view ofVWF-mediated platelet adhesion
and aggregation
The concept that the VWF-GP Ibα interaction cannot support
long-lasting adhesion must be modified in view of the recently

demonstrated ability of non-activated platelets to form aggre-
gates that attach firmly to immobilized VWF under extremely
high shear stress conditions (Fig. 3) (115). Several unique fea-
tures characterize this mechanism of platelet adhesion to extra-
cellular surfaces and to one another, marking substantial differ-
ences with the process of single platelet rolling. Perhaps the most
relevant distinction is that GP Ibα-mediated long-lasting ad-
hesion and aggregation only occurs above a threshold shear rate
of ~ 10,000 s1, a feature that highlights its potential importance
for pathological arterial thrombosis. A second key distinction is
that platelet adhesion and aggregation at pathologically elevated
shear rates depends on soluble as well as surface-bound VWF.
Single platelet adhesion and rolling, in contrast, requires only
immobilized VWF, even though it is also enhanced by the pres-
ence of solubleVWF at the higher shear rates (115) likely as a re-

Figure 3: Activation-independent platelet adhesion and aggre-
gation at the interface of immobilized and solubleVWF.
A) Blood containing 93 µM D-phenylalanyl-L-prolyl-L-arginine chloro-
methyl ketone dihydrochloride (PPACK) as anticoagulant, the fluor-
escent dye mepacrine (10 µM), prostaglandin (PG) E1 (10 µM) to inhibit
platelet activation, and EDTA (5 mM) to prevent ligand binding to inte-
grins, was perfused over immobilizedVWF (20 µg/ml coating concen-
tration). The white line delimitsVWF-coated (to the left) from uncoated
glass. Single platelets adhere when the shear rate is 3,000 s-1 (top); roll-
ing aggregates (some identified by arrowheads) form at 20,000 s-1 (bot-
tom). B) Perfusion over immobilizedVWF of washed blood cells sus-
pended in buffer (20 mM Hepes, 150 mM NaCl, pH 7.4). In the absence
of solubleVWF, single platelets adhere when the shear rate is 3,000 s-1

(upper left), and fewer single platelets adhere at 24,000 s-1 (upper right).
After adding solubleVWF (20 µg/ml), single platelets adhere at 3,000 s-1

(lower left; an arrow points to a single platelet shown for reference), but
aggregates form at 24,000 s-1 (lower right; arrows point to a rolling ag-
gregate and an inset highlights a stretched aggregate during stationary
adhesion). C) Perfusion over immobilizedVWF of washed blood cells
with added solubleVWF and anti-VWF A1 domain monoclonal antibody
(NMC-4, 20 µg/ml). No platelet adhesion is detected. (Printed with per-
mission from Ruggeri ZM et al., Blood 2006; 108: 1903–1910.)
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A look to the future
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