Planta Med 2008; 74(12): 1488-1491
DOI: 10.1055/s-2008-1081339
Natural Products Chemistry
Letter
© Georg Thieme Verlag KG Stuttgart · New York

Cytotoxic Activity of C-Geranyl Compounds from Paulownia tomentosa Fruits

Karel Šmejkal1 , Petr Babula1 , Tereza Šlapetová1 , Eleonora Brognara2 , Stefano Dall'Acqua3 , Milan Žemlička1 , Gabbriella Innocenti3 , Josef Cvačka4
  • 1Department of Natural Drugs, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
  • 2Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
  • 3Department of Pharmaceutical Sciences, University of Padua, Padua, Italy
  • 4Mass Spectrometry Group, Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
Further Information

Publication History

Received: April 30, 2008 Revised: June 25, 2008

Accepted: June 29, 2008

Publication Date:
26 August 2008 (online)

Abstract

The newly discovered 5,7-dihydroxy-6-geranylchromone (1) was isolated from Paulownia tomentosa fruit and subsequently characterized. The structure of the isolated compound was elucidated on the basis of extensive NMR experiments including HMQC, HMBC, COSY, and NOESY, as well as HR-MS, IR, and UV. The cytotoxicity of 1 was evaluated using a plant cell model represented by tobacco BY-2 cells. The other phytoconstituents (2 – 8) previously isolated from P. tomentosa were similarly evaluated together with the known flavanones 10 and 11. The cytotoxicity (human erythro-leukaemia cell line K562) and activity on erythroid differentiation of compounds 2 – 9 and 12 and 13 have also been evaluated. Acteoside (2) was determined to be the most toxic of the compounds tested on BY-2 cells, diplacone (6) on the K562 cell line. Some aspects of the relationship between the flavanone skeleton substitution and the metabolic activation necessary for a toxic effect are discussed.

References

  • 1 Smejkal K, Grycova L, Marek R, Lemière F, Jankovska D, Forejtníkova H. et al . C-Geranyl compounds from Paulownia tomentosa fruits.  J Nat Prod. 2007;  70 1244-8
  • 2 Smejkal K, Chudík S, Kloucek P, Marek R, Cvacka J, Urbanova M. et al .Antibacterial C-geranylflavonoids from Paulownia tomentosa Fruits. J Nat Prod 2008: DOI: 10.1021/np070446 u
  • 3 Asai T, Hara N, Kobayashi S, Kohshima S, Fujimoto Y. Geranylated flavanones from the secretion on the surface of the immature fruits of Paulownia tomentosa.  Phytochemistry. 2008;  69 1234-41
  • 4 Kang K H, Jang S K, Kim B K, Park M K. Antibacterial phenylpropanoid glycosides from Paulownia tomentosa Steud.  Arch Pharm Res. 1994;  17 470-5
  • 5 Lee K W, Kim H J, Lee Y S, Park H J, Choi J W, Ha J. et al . Acteoside inhibits human promyelocytic HL-60 leukemia cell proliferation via inducing cell cycle arrest at G(0)/G(1) phase and differentiation into monocyte.  Carcinogenesis. 2007;  28 1928-36
  • 6 Pettit G R, Numata A, Takemura T, Ode R H, Narula A S, Schmidt J M. et al . Antineoplastic agents 107. Isolation of acteoside and isoacteoside from Castilleja linariaefolia.  J Nat Prod. 1990;  53 456-8
  • 7 Li N G, You Q D, Huang X F, Wang J X, Guo Q L, Chen X G. et al . Synthesis and antitumor activity of small compounds structurally related to gambogic acid.  Chin Chem Lett. 2007;  18 659-62
  • 8 Rao Y K, Geethangili M, Fang S -H, Tzeng Y -M. Antioxidant and cytotoxic activities of naturally occurring phenolic and related compounds: A comparative study.  Food Chem Toxicol. 2007;  45 1770-6
  • 9 Ko W G, Kang T H, Kim N Y, Lee S J, Kim Y C, Ko G I. et al . Lavandulylflavonoids: a new class of in vitro apoptogenic agents from Sophora flavescens.  Toxicol In Vitro. 2000;  14 429-33
  • 10 Moridani M Y, Galati G, O'Brien P J. Comparative quantitative structure toxicity relationships for flavonoids evaluated in isolated rat hepatocytes and HeLa tumor cells.  Chem Biol Interact. 2002;  139 251-64
  • 11 Hayashi K, Nakanishi Y, Bastow K F, Cragg G, Nozaki H, Lee K -H. Antitumor agents. 221. Buceracidins A and B, two new flavanones from Bucida buceras.  J Nat Prod. 2003;  66 125-7
  • 12 Wätjen W, Weber N, Lou Y, Wang Z, Chovolou Y, Kampkötter A. et al . Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells.  Food Chem Toxicol. 2007;  45 119-24
  • 13 Shen S -C, Ko C H, Tseng S -W, Tsai S -H, Chen Y -C. Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production.  Toxicol Appl Pharmacol. 2004;  197 84-5
  • 14 Breinholt V M, Offord E A, Brouwer C, Nielsen  S E, Brøsen K, Friedberg T. In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids.  Food Chem Toxicol. 2002;  40 609-16
  • 15 Rechner A R, Smith M A, Kuhnle G, Gibson G R, Debnam E S, Srai S KS. et al . Colonic metabolism of dietary polyphenols: Influence of structure on microbial fermentation products.  Free Radic Biol Med. 2004;  36 212-25
  • 16 Silberberg M, Gil-Izquierdo A, Combaret L, Remesy C, Scalbert A, Morand C. Flavanone metabolism in healthy and tumor-bearing rats.  Biomed Pharmacother. 2006;  60 529-35
  • 17 Murashige T, Skoog F. A revised medium for rapid growth and bioassys with tobacco tissue cultures.  Physiol Plant. 1962;  15 473-97
  • 18 Nagata T, Nemoto Y, Hasetawa S A. Tobacco BY-2 cell line as the Hela-cell in the cell biology of higher plants.  Int Rev Cytol Surv Cell Biol. 1992;  132 1-30
  • 19 Bianchi N, Chiarabelli C, Borgatti M, Mischiatti C, Bergamini P, Fibach E. et al . Accumulation of gamma-globin mRNA and induction of erythroid differentiation after treatment of human leukemia K562 cells with tallimustine.  Br J Haematol. 2001;  113 951-61

Karel Šmejkal

Department of Natural Drugs

Faculty of Pharmacy

University of Veterinary and Pharmaceutical Sciences Brno

Palackého 1–3

61242 Brno

Czech Republic

Phone: +420-5-4156-2839

Email: karel.mejkal@post.cz