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Introduction
�

It is generally believed that prevention is better
than treatment. It is also an accepted reality that

more than 90 % of the cancers are preventable.
Cigarette smoke, alcohol, environmental pollu-
tion, sunlight and diet have been shown to play
a major role in causing cancer. How these agents

Abstract
�

Although spices have been used for thousands of
years and are known for their flavor, taste and col-
or in the food, they are not usually recognized for
their medicinal value. Extensive research within
the last two decades from our laboratory and oth-
ers has indicated that there are phytochemicals
present in spices that may prevent various chronic
illnesses including cancerous, diabetic, cardiovas-
cular, pulmonary, neurological and autoimmune
diseases. For instance, the potential of turmeric
(curcumin), red chilli (capsaicin), cloves (euge-
nol), ginger (zerumbone), fennel (anethole), ko-
kum (gambogic acid), fenugreek (diosgenin), and
black cumin (thymoquinone) in cancer prevention
has been established. Additionally, the mecha-
nism by which these agents mediate anticancer
effects is also becoming increasingly evident. The
current review describes the active components
of some of the major spices, their mechanisms of
action and their potential in cancer prevention.

Abbreviations
�

ADT: anethole ditholethione
Bcl-3: B cell lymphoma protein-3
CDK7: cyclin-dependent kinase 7
cIAP: inhibitor of apoptosis
COX-2: cyclooxygenase-2
DNA: deoxyribonucleic acid
EGF: epidermal growth factor
ELAM-1: endothelial leukocyte adhesion

molecule-1
ERK or Erk: extracellular signal-regulated

kinases

GA: gambogic acid
GSH: glutathione
GST: glutathione S-transferase
H2O2: hydrogen peroxide
hTERT: human telomerase reverse

transcriptase
ICAM-1: intercellular adhesion molecule-1
IKK: IκBα kinase
IL: interleukins
JAK: Janus kinases
5-LOX: 5-lipoxygenase
MM: multiple myeloma
MMP: matrix metalloproteinase
NADH: nicotinamide adenine dinucleotide

hydride
NF-κB: nuclear factor kappa B
NIK: NF-κB inducing kinase
NNK: nitrosamine 4-(methylnitrosamino)-

1-(3-pyridyl)-1-butanone
RANKL: receptor activator for nuclear factor

κB ligand
RHD: Rel homology domain
RTX: resiniferatoxin
STAT: signal transducer and activator of

transcription
TNF: tumor necrosis factor
TNFR: TNF receptor
TQ: thymoquinone
TRAF: TNF receptor associated factor
uPA: urokinase plasminogen activator
VCAM: vascular cell adhesion molecule
VEGF: vascular endothelial growth factor
VEGFR2: VEGF receptor 2
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cause cancer is also becoming evident. One of the major media-
tors of cancer that has emerged within last five years is chronic
inflammation [1]. In contrast to acute inflammation, chronic in-
flammation is a low level inflammation that can persist over
20 – 30 years; thus eventually leading to cancer. Perhaps the
best-known markers of chronic inflammation include inflam-
matory cytokines [such as tumor necrosis factor (TNF), receptor
activator for nuclear factor κ B ligand (RANKL), interleukins (IL-1,
IL-6, IL-8)] and chemokines, inflammatory enzymes [cyclooxy-
genase-2 (COX-2), 5-lipoxygenase (5-LOX), matrix metallopro-
teinase (MMP) and urokinase plasminogen activator (uPA)], ad-
hesion molecules [intercellular adhesion molecule-1 (ICAM-1)],
vascular cell adhesion molecule (VCAM-1), endothelial leuko-
cyte adhesion molecule-1 (ELAM-1), and certain growth factors
such as epidermal growth factor (EGF). Interestingly, all the me-
diators of inflammation are primarily regulated by two different
transcription factors, nuclear factor kappa B (NF-κB) and signal
transducer and activator of transcription-3 (STAT-3).
The process of tumorigenesis requires cellular transformation,
hyper-proliferation, invasion, angiogenesis, and metastasis. Sev-
eral genes that mediate these processes are regulated by the
transcription factor NF-κB. The latter is activated by various car-
cinogens, inflammatory agents, and tumor promoters. Thus,
agents which can suppress NF-κB activation have the potential
to suppress carcinogenesis. NF-κB is a ubiquitous transcription
factor that binds to a specific deoxyribonucleic acid (DNA) se-
quence as a dimeric complex composed of various combinations
of members of the Rel/NF-κB family of polypeptides [2]. Family
members of this transcription factor are 35 to 61 % homologous
to each other and have a Rel homology domain (RHD) of about
300 amino acids. NF-κB proteins are present in the cytoplasm of
all cells, where they are kept in an inactive state by a family of
anchorin domain-containing proteins, which includes IκBα,
IκBβ, IκBγ, IκBε, B cell lymphoma protein-3 (Bcl-3), p105, and
p100. Under resting conditions, NF-κB consists of a heterotrimer
of p50, p65, and IκBα in the cytoplasm; only upon activation, do
the p50 and p65 subunits translocate to the nucleus leading to
the sequence of events. Most carcinogens, inflammatory agents,
and tumor promoters, including cigarette smoke, phorbol ester,
okadaic acid, hydrogen peroxide (H2O2), and TNF, have been
shown to activate NF-κB. The activation of NF-κB involves the
phosphorylation, ubiquitination and degradation of IκBα and
phosphorylation of p65, which, in turn, leads to the transloca-
tion of NF-κB to the nucleus where it binds to specific response
elements in the DNA. The phosphorylation of IκBα is catalyzed
by IκBα kinase (IKK), which is essential for NF-κB activation by
most agents. NF-κB has been shown to regulate the expression
of several genes whose products are involved in tumorigenesis.
These include antiapoptotic genes [e. g., inhibitor of apoptosis
(cIAP), survivin, TNF receptor associated factor (TRAF), Bcl-2,
and Bcl-xL], genes encoding adhesion molecules (ICAM, VCAM),
chemokines, inflammatory cytokines and cell cycle regulatory
genes (e. g., cyclin D1 and c-myc).
Members of the STAT family of transcription factors regulate the
expression of gene products involved in cell survival, prolifera-
tion, chemoresistance, and angiogenesis [3]. The activation of
STATs involves the phosphorylation of a critical tyrosine residue
by Janus kinases (JAK), or the Src family kinases, leading to dime-
rization of STAT monomers, nuclear translocation, and binding
to specific DNA response elements in the promoters of target
genes. Among the STATs, STAT3 is perhaps most intimately
linked to tumorigenesis. Although STAT3 is activated by IL-6,

EGF, and other growth factors; constitutive activation of STAT3
has been discovered in a wide variety of tumors.
Dietary agents have been linked with prevention and therapy of
cancer through a mechanism that is not well understood. We
postulated that inflammation plays a major role in tumorigene-
sis through the activation of NF-κB and STAT3 [1]. We also
postulated that dietary agents mediate their effect through mod-
ulation of NF-κB and STAT-3 activation [4]. This factor regulates
the expression of various genes that control apoptosis, viral rep-
lication, tumorigenesis, various autoimmune diseases, and in-
flammation. NF-κB has been linked to the development of carci-
nogenesis for several reasons. Firstly, various carcinogens and
tumor promoters have been shown to activate NF-κB. Secondly,
activation of NF-κB has been shown to block apoptosis and pro-
mote proliferation. Thirdly, the tumor microenvironment can in-
duce NF-κB activation. Fourthly, constitutive expression of NF-
κB is frequently found in tumor cells. Fifthly, NF-κB activation in-
duces resistance to chemotherapeutic agents. Sixthly, several
genes involved in tumor initiation, promotion, and metastasis
are regulated by NF-κB. Seventhly, various chemopreventive
agents have been found to down-regulate the NF-κB activation.
All these observation suggest that NF-κB could mediate tumori-
genesis and thus can be used as a target for chemoprevention
and for the treatment of cancer. Besides NF-κB, we have also tar-
geted STAT3, another transcription factor that mediates tumor-
ienesis. The evidence below shows that phytochemicals derived
from spices are important inhibitors of NF-κB and STAT3 activa-
tion, and can suppress the expression of genes involved in carci-
nogenesis and tumorigenesis in vivo.

Evidence That Spice-Derived Phytochemicals can
Mediate Cancer Prevention
�

Phytochemicals derived from numerous spices have been linked
with cancer prevention. This review, however, will focus on
some of the major spice-derived phytochemicals as chemopre-
ventive agents (●� Fig. 1).

Capsaicin (red chilli)
Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is a princi-
pal pungent ingredient of hot and red chili peppers that belong
to the plant genus Capsicum (Solanaceae). In addition to alleviat-
ing neuropathic pain and itching in humans, capsaicin has ex-
hibited anticancer effects in animal models, suppressing carci-
nogenesis of the skin, colon, lung, tongue, and prostate. The
mechanism by which this vanilloid mediates its anticarcinogen-
ic effects is not understood but it has been shown to alter the
metabolism of carcinogens such as aflatoxin B1 and the tobac-
co-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-
1-butanone (NNK). In culture, capsaicin has been found to selec-
tively suppress the growth of various human tumor cells [5], [6]
including leukemic [7], [8], [9], gastric [10], hepatic [11], glioma
[12], and prostate [13]. The roles of nicotinamide adenine dinu-
cleotide hydride (NADH) oxidase activity, proteasome, COX, JNK,
NF-κB, peroxisome proliferators-activated receptor gamma, per-
oxynitrite and mitochondrial respiration have been implicated.
Its immunosuppressive effects have been linked to its ability to
suppress NF-κB activation. We examined the effect of capsaicin
and its analogue, resiniferatoxin (RTX), on the activation of NF-
κB induced by different agents including TNF [14]. The pretreat-
ment of human myeloid cells with capsaicin blocked TNF-medi-
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ated activation of NF-κB. RTX was at least 8 times more potent
than capsaicin in inhibiting NF-κB activation. Neither agent by

itself activated NF-κB or affected the DNA-binding ability of NF-
κB. Capsaicin also blocked phorbol ester-mediated NF-κB activa-

Fig. 1 Major spices and their active phytochemicals.
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tion but that mediated through okadaic acid was less effective,
suggesting that there is a difference in the mechanism of activa-
tion of NF-κB by different agents. Capsaicin treatment of cells
also blocked the degradation of IκBα and thus the nuclear trans-
location of the p65 subunit of NF-κB, which is essential for NF-κB
activation. TNF-dependent promoter activity of IκBα, which con-
tains NF-κB binding sites, was also inhibited by capsaicin.
Because STAT-3 has been closely linked with tumorigenesis, we
also investigated the effect of this vanilloid on the STAT3 path-
way in human multiple myeloma (MM) cells [15]. We found
that capsaicin inhibited constitutive activation of STAT3 in MM
cells, with a minimal effect on STAT5. Capsaicin also inhibited
IL-6-induced STAT3 activation. The activation of JAK1 and c-Src,
implicated in STAT3 activation, were also inhibited by this vanil-
loid, with no effect on extracellular signal-regulated kinases
(Erk1/2) activation. Pervanadate reversed the capsaicin-induced
down-regulation of STAT3, suggesting the involvement of a pro-
tein tyrosine phosphatase. Capsaicin down-regulated the ex-
pression of the STAT3-regulated gene products, such as cyclin
D1, Bcl-2, Bcl-xL, survivin, and VEGF. Finally, capsaicin induced
the accumulation of cells in G1 phase, inhibited proliferation,
and induced apoptosis, as indicated by caspase activation. Cap-
saicin also significantly potentiated the apoptotic effects of vel-
cade and thalidomide in multiple myeloma cells. When admin-
istered intraperitoneally, capsaicin inhibited the growth of hu-
man multiple myeloma xenograft tumors in male athymic nu/
nu mice. These results suggest that capsaicin is a novel blocker
of the STAT3 activation pathway, with a potential role in the pre-
vention and treatment of multiple myeloma and other cancers.

Curcumin (turmeric)
Curcumin is a component of the culinary spice turmeric, which
is also often used in curry powder. Its active ingredient was first
isolated in 1842 by Vogel. In 1910, Milobedzka determined that
the structure was diferuloylmethane, and this compound was
first synthesized in 1918 by Lampe and cocrystallized with 5-
LOX in 2003 by Skrzypczak-Jankun [16]. Extensive research
over the last 50 years has indicated that this polyphenol can
both prevent and treat cancer. It has also been demonstrated
that curcumin can suppress tumor initiation, promotion, and
metastasis. The anticancer potential of curcumin stems from its
ability to suppress proliferation of a wide variety of tumor cells,
to down-regulate transcription factors, to down-regulate the ex-
pression of COX-2, LOX, inducible nitric oxide synthase (iNOS),
MMP-9, uPA, TNF, chemokines, cell surface adhesion molecules,
and cyclin D1, to down-regulate growth factor receptors [such as
epidermal growth factor receptor (EGFR) and human epidermal
growth factor receptor (HER2)], and to inhibit the activity of c-
Jun N-terminal kinase, protein tyrosine kinases, and protein ser-
ine/threonine kinases [17]. In several systems, curcumin has
been described as a potent antioxidant and anti-inflammatory
agent. The compound has been found to be pharmacologically
safe: human clinical trials indicated no dose-limiting toxicity
when administered at doses up to 10 g/day [18]. All of these
studies suggest that curcumin has an enormous potential in pre-
vention of and therapy for cancer. However, a better understand-
ing of the mechanism would enhance the therapeutic potential
of curcumin either alone or in combination with chemotherapy.
We showed that curcumin could suppress NF-κB activation in-
duced by TNF, phorbol ester, and H2O2 through suppression of
IκBα degradation [19]. How curcumin suppresses NF-κB activa-
tion has also been investigated in detail. Curcumin inhibited

TNF-induced NF-κB-dependent reporter gene expression in a
dose-dependent manner. Curcumin also suppressed NF-κB re-
porter activity induced by TNF receptor 1 (TNFR1), TNF recep-
tor2 (TNFR2), NF-κB inducing kinase (NIK), IKK, and the p65 sub-
unit of NF-κB. TNF-induced NF-κB-regulated gene products in-
volved in cellular proliferation (COX-2, cyclin D1, c-myc), anti-
apoptosis (IAP1, IAP2, XIAP, Bcl-2, Bcl-xL, Bf1 – 1/A1, TRAF1,
cFLIP) and metastasis (VEGF, MMP-9, ICAM-1) were also down-
regulated by curcumin. COX-2 promoter activity induced by TNF
was abrogated by curcumin. We found that curcumin sup-
pressed TNF-induced nuclear translocation of p65, which corre-
sponded with the sequential suppression of IκBα kinase activity,
IκBα phosphorylation, IκBα degradation, p65 phosphorylation,
p65 nuclear translocation, and p65 acetylation. Curcumin also
inhibited TNF-induced AKT activation and its association with
IKK. Glutathione and dithiothreitol reversed the effect of curcu-
min on TNF-induced NF-κB activation. Thus, it is likely that sup-
pression of NF-κB by curcumin plays a major role in its ability to
prevent cancer.
Because curcumin has been shown to down-regulate the expres-
sion of Bcl-xL and cyclin D1 which are also regulated by activa-
tion of STAT3, whether curcumin can suppress constitutive or in-
ducible activation of STAT3 was also investigated by us. We
found that curcumin inhibited IL-6-induced STAT3 phosphoryla-
tion and consequent STAT3 nuclear translocation [20]. Curcumin
had no effect on STAT5 phosphorylation but inhibited interfer-
on-α-induced STAT1 phosphorylation. The constitutive phos-
phorylation of STAT3 found in certain MM cells was also abroga-
ted by treatment with curcumin [20]. Curcumin-induced inhibi-
tion of STAT3 phosphorylation was reversible. Compared with
AG490, a well-characterized JAK2 inhibitor, the action of curcu-
min was more rapid (30 min vs. 8 h) and it was a more potent
(10 μM vs. 100 μM) inhibitor of STAT3 phosphorylation. Similari-
ly, curcumin completely suppressed proliferation of MM cells
whereas the same dose of AG490 had no effect. In addition, dex-
amethasone-resistant MM cells were found to be sensitive to
curcumin.

Anethole (fennel)
Anethole, [1-methoxy-4-(1-propenyl)benzene], a chief constitu-
ent of fennel, anise, and camphor, has been shown to block both
inflammation and carcinogenesis. This compound and related
ones have striking metabolic effects. For example, anethole and
its derivative, anethole dithiolethione (ADT), have been shown
to increase the intracellular levels of glutathione (GSH) and glu-
tathione S-transferase (GST) [21], [22], [23]. The structurally re-
lated compounds eugenol and isoeugenol, which are found in
clove-oil, also modulate GSH metabolism [24]. These com-
pounds act like antioxidants [25], [26], inhibit lipid peroxidation
[24], [27], [28], and act as hydroxyl radical scavengers [29]. Be-
cause eugenol and isoeugenol inhibit arachidonic acid-induced
thromboxane B2, they are extensively used as anti-inflammato-
ry compounds [30], [31]. Besides their anti-inflammatory prop-
erty, anethole and its analogues exhibit chemopreventive activi-
ties as indicated by suppression of the incidence and multiplicity
of both invasive and non-invasive adenocarcinomas [32], [33],
[34], [35], [36].
Since anethole exhibits anticarcinogenic, and anti-inflammatory
properties, we proposed that the effects of anethole are medi-
ated through modulation of TNF-induced cellular responses
[37]. Our study showed that anethole inhibited TNF-induced ac-
tivation of NF-κB, IκBα and degradation, and NF-κB reporter
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gene expression. Suppression of IκBα phosphorylation and NF-
κB reporter gene expression induced by TRAF2 and NIK suggests
that anethole acts on IκBα kinase. Anethole also blocked NF-κB
activation induced by a variety of other inflammatory agents.
Anethole analogues eugenol and isoeugenol also blocked TNF
signalling. Thus, the inhibitory effects of anethole on TNF in-
duced cellular responses may explain its role in suppression of
inflammation and carcinogenesis.

Zerumbone (Asian ginger)
Zerumbone [2,6,9,9-tetramethyl-(2E,6E,10E)-cycloundeca-2,6,10-
trien-1-one] was first isolated in 1956 from the essential oil of
rhizomes of a wild ginger, Zingiber zerumbet Smith, which is
widespread in Southeast Asia [38]. Over the years, a wide variety
of activities have been assigned to this compound [39], [40], [41],
[42], [43], [44], [45]. For instance, zerumbone has been found to
suppress the proliferation of colon cancer [41], [45] and breast
cancer [45], with minimal effects on normal cells [41]. Zerum-
bone has also been shown to suppress inflammation [39], sup-
press the initiation and promotion of skin tumors in mice [43],
and prevent azoxymethane-induced aberrant crypt foci forma-
tion in rats [44]. This terpenoid has also been shown to suppress
dextran sodium sulfate-induced colitis in mice [42] and inhibit
the activation of the phorbol ester-induced Epstein–Barr virus
[40]. Additional activities assigned to zerumbone are the sup-
pression of superoxide and nitric oxide generation [46] and the
down-regulation of COX-2 [47], IL-1 [42], and TNF [41], [42].
Several of these activities could be explained if zerumbone
down-regulated NF-κB activation, since zerumbone has proven
effects on related activities. We found that zerumbone sup-
pressed NF-κB activation induced by TNF, okadaic acid, cigarette
smoke condensate, phorbol ester, and H2O2 and that the sup-
pression was not cell type specific [48]. Interestingly, α-humu-
lene, a structural analogue of zerumbone lacking the carbonyl
group, was completely inactive. Besides being inducible, consti-
tutively active NF-κB was also inhibited. NF-κB inhibition by zer-
umbone correlated with sequential suppression of the IκBα kin-
ase activity, IκBα phosphorylation, IκBα degradation, p65 phos-
phorylation, p65 nuclear translocation, and p65 acylation. Zer-
umbone also inhibited the NF-κB-dependent reporter gene ex-
pression activated by TNF, TNFR1, TRADD, TRAF2, NIK, and IKK
but not that activated by the p65 subunit of NF-κB. NF-κB-regu-
lated gene products, such as cyclin D1, COX-2, MMP-9, ICAM-1,
c-myc, survivin, IAP1, IAP2, XIAP, Bcl-2, Bcl-xL, Bfl-1/A1, TRAF1
and FLIP, were all down-regulated by zerumbone. This down-
regulation led to the potentiation of apoptosis induced by cyto-
kines and chemotherapeutic agents. Zerumbone's inhibition of
expression of these NF-κB-regulated genes also correlated with
the suppression of TNF-induced invasion activity. These results
indicated that zerumbone inhibits the activation of NF-κB and
NF-κB-regulated gene expression induced by carcinogens and
that this inhibition may provide a molecular basis for the pre-
vention and treatment of cancer by zerumbone.

Diosgenin (fenugreek)
Diosgenin, is a steroidal saponin found in a variety of plants [49],
[50] including fenugreek (Trigonella foenum graecum), roots of
wild yam (Dioscorea villosa), Solanum incanum Lloydia [51],
Costus speciosus [52], and Solanum xanthocarpum [53]. Extracts
from these plants have been traditionally used for the treatment
of diabetes [54], [55], [56], hypercholestrolemia [57], [58], and
gastrointestinal ailments [59], [60]. Research during the last

decade has shown that diosgenin suppresses proliferation and
induces apoptosis in cells of human colon carcinoma [60], [61],
osteosarcoma [62], [63], leukemia [64], [65], [66], and human
rheumatoid arthritis [67]. Antiproliferative effects of diosgenin
are mediated through cell cycle arrest [62], disruption of Ca2+

homeostasis [65], [66], the activation of p53, release of apopto-
sis-inducing factor, and modulation of caspase-3 activity [68]. It
also inhibits azoxymethane-induced aberrant colon crypt foci
[60] and has been shown to inhibit intestinal inflammation [69]
and modulate the activity of LOX [70] and COX-2 [62]. More re-
cently, diosgenin has been shown to bind to the chemokine re-
ceptor CXCR3, which mediates inflammatory responses [71].
We reported that diosgenin inhibited RANKL-induced osteoclas-
togenesis, suppressed TNF-induced invasion, and blocked the
proliferation of tumor cells, all activities known to be regulated
by NF-κB [72]. Diosgenin suppressed TNF-induced NF-κB activa-
tion as determined by DNA binding, activation of IκBα kinase,
IκBα phosphorylation, IκBα degradation, p65 phosphorylation,
and p65 nuclear translocation through inhibition of Akt activa-
tion. NF-κB-dependent reporter gene expression was also abro-
gated by diosgenin. TNF-induced expression of NF-κB-regulated
gene products involved in cell proliferation (cyclin D1, COX-2, c-
myc), antiapoptosis (IAP1, Bcl-2, Bcl-xL, Bfl-1/A1, TRAF1 and
cFLIP), and invasion (MMP-9) were also down-regulated by this
saponin. Diosgenin also potentiated the apoptosis induced by
TNF and chemotherapeutic agents. Thus diosgenin can suppress
proliferation, inhibits invasion, and suppresses osteoclastogene-
sis through inhibition of NF-κB-regulated gene expression and
enhances apoptosis induced by cytokines and chemotherapeutic
agents.

Gambogic acid (kokum)
Gambogic acid (GA) is a naturally occurring brownish-to-orange
resin called gamboges (also called kokkum), which is derived
from Garcinia indica. It has a long history of medicinal use in
Southeast Asia, and it is used as a folk medicine and coloring
agent in China. Recent studies showed that GA can inhibit the
growth of a wide variety of tumor cells, including cells of human
hepatoma [73], breast cancer [9], gastric carcinoma [74], [75],
[76], [77], and lung carcinoma [78]. Using cell- and caspase-
based high-throughput screening assays, Zhang et al. identified
GA as a potent inducer of apoptosis [9]. Studies have also indica-
ted that GA suppresses the growth of human tumors, e. g., lung
carcinoma and hepatoma [73]. How GA mediates these effects
is not fully understood, but it has been shown to inhibit telomer-
ase and telomerase reverse transcriptase mRNA expression [73],
[76], [77], inhibit human telomerase reverse transcriptase
(hTERT) promoter [76], suppress cyclin-dependent kinase 7
(CDK7)-mediated phosphorylation of CDC2/p34 [77], down-reg-
ulate Bcl-2 [74], and interact with c-Myc [73]. A recent report
suggests that GA mediates its apoptotic effects through its inter-
action with the transferrin receptor [79]. Because hTERT, c-Myc,
and Bcl-2 gene expression modulated by GA is regulated by NF-
κB activation, it is possible that GA mediates its effects by mod-
ulating the NF-κB pathway. We found that GA enhanced apopto-
sis induced by TNF and chemotherapeutic agents, inhibited the
expression of gene products involved in antiapoptosis (IAP1 and
2, Bcl-2, Bcl-xL, and TRAF1), proliferation (cyclin D1 and c-Myc),
invasion (COX-2 and MMP-9) and angiogenesis (VEGF), all of
which are known to be regulated by NF-κB [80]. GA suppressed
NF-κB activation induced by various inflammatory agents and
carcinogens accompanied by the inhibition of TAK1/TAB1-medi-

Review1564

Aggarwal BB et al. Potential of Spice-Derived … Planta Med 2008; 74: 1560 – 1569

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



ated IKK activation, thus inhibiting IκBα phosphorylation and
degradation, suppressing p65 phosphorylation and nuclear
translocation, and finally abrogating NF-κB-dependent reporter
gene expression. The NF-κB activation induced by TNFR1,
TRADD, TRAF2, NIK, TAK1/TAB1 and IKKβ was also inhibited.
The effect of GA was mediated through transferrin receptor as
down-regulation of the receptor by RNA interference reversed
its effects on NF-κB and apoptosis. These results demonstrated
that GA inhibits NF-κB signalling pathway.
Since angiogenesis is crucial for cancer development and other
human diseases, whether and how GA inhibits angiogenesis
was also investigated [81]. We discovered that GA inhibited an-
giogenesis in vitro and in vivo, and identified GA as a novel inhib-
itor of VEGF receptor 2 (VEGFR2). We demonstrated that GA sig-
nificantly inhibited human endothelial cell proliferation, migra-
tion, invasion, tube formation, and microvessel growth with all
antiangiogenesis characters. The effects of GA on cell prolifera-
tion, migration, and apoptotic activation were more effective in
human endothelial cells than cancer cells, providing additional
clues for cancer therapy of GA with low chemotoxicity. Using
the xenograft mouse model, we found that GA inhibited tumor
angiogenesis and prevented tumor growth by dramatically in-
hibiting angiogenesis. Furthermore, we demonstrated that GA
directly inhibited the activation of VEGFR2 and suppressed its
downstream kinases, such as Src, FAK, and AKT. Thus GA inhibits
angiogenesis through down-regulation of VEGFR2 and its signal-
ling pathways, and that GA is a viable drug candidate in antian-
giogenesis and anticancer therapies.

Thymoquinone (black cumin)
Thymoquinone (TQ), the most abundant component of black cu-
min (Nigella sativa) seed oil, has been reported to exhibit antiox-
idant [82], [83], [84], anti-inflammatory, and chemopreventive
[85], [86], [87] effects. For instance, TQ has been shown to sup-
press the proliferation of various tumor cells, including colorec-
tal carcinoma, breast adenocarcinoma, osteosarcoma, ovarian
carcinoma, myeloblastic leukemia, and pancreatic carcinoma
[85], [88], [89], [90], [91], [92] while it is minimally toxic to nor-
mal cells [93]. In animal models, TQ has been shown to suppress
acetic acid-induced colitis in rats [94], inhibit TNF-α production
in murine septic peritonitis [95], and reduce carrageenan-in-
duced paw edema in rats [96]. TQ has also been reported to en-
hance the antitumor activity of ifosfamide in Ehrlich ascites car-
cinoma-bearing mice [86], prevent cisplatin-induced nephro-
toxicity in mice and rats [97], ameliorate benzopyrene-induced
forestomach carcinogenesis [98], inhibit COX-2 expression and
prostaglandin production in a mouse model of allergic airway
inflammation [99], and protect against doxorubicin-induced car-
diotoxicity in mice [100]. How TQ manifests these activities is
not fully understood, but it has been shown to down-regulate
the expression of Bcl-xL [89], COX-2 [99], iNOS [101], 5-LOX
[102], TNF [103], and cyclin D1 [104], all known to be regulated
by NF-κB.
Because numerous effects modulated by TQ can be linked to in-
terference with NF-κB signalling, we investigated in detail the
effect of this quinone on the NF-κB pathway [105]. As examined
by DNA binding, we found that TQ suppressed TNF-induced NF-
κB activation in a dose- and time-dependent manner, and inhibi-
ted NF-κB activation induced by various carcinogens and inflam-
matory stimuli. The suppression of NF-κB activation correlated
with sequential inhibition of the activation of IκBα kinase, IκBα
phosphorylation, IκBα degradation, p65 phosphorylation, p65

nuclear translocation, and the NF-κB-dependent reporter gene
expression. TQ specifically suppressed the direct binding of nu-
clear p65 and of the recombinant p65 to the DNA, and this bind-
ing was reversed by dithiothreitol. However, TQ did not inhibit
p65 binding to DNA when cells were transfected with the p65
plasmid containing cysteine residue 38 mutated to serine. TQ
also down-regulated the expression of NF-κB-regulated anti-
apoptotic (IAP1, IAP2, XIAP Bcl-2, Bcl-xL, and survivin), prolif-
erative (cyclin D1, COX-2, and c-myc), and angiogenic (MMP-9
and VEGF) gene products. This led to potentiation of apoptosis
induced by TNF and chemotherapeutic agents. Our results indi-
cate that the anticancer and anti-inflammatory activities previ-
ously assigned to TQ may be mediated in part through the sup-
pression of the NF-κB activation pathway; and thus may have
potential in the treatment of myeloid leukemia and other can-
cers.
We also recently reported that thymoquinone effectively inhibi-
ted human umbilical vein endothelial cell (HUVEC) migration,
invasion, and tube formation [106]. Thymoquinone inhibited
cell proliferation and suppressed the activation of AKT and ERK.
Thymoquinone blocked angiogenesis in vitro and in vivo, preven-
ted tumor angiogenesis in a xenograft human prostate cancer
(PC3) model in mouse and inhibited human prostate tumor
growth at low dosage with almost no chemotoxic side effects.
Furthermore, we observed that endothelial cells were more sen-
sitive to thymoquinone-induced cell apoptosis, cell proliferation
and migration inhibition compared to PC3 cancer cells. Thymo-
quinone inhibited VEGF-induced ERK activation, but showed no
inhibitory effects on VEGF receptor2 activation. Thus our results
suggest that thymoquinone inhibits tumor angiogenesis and tu-
mor growth, and could be used as a potential drug candidate for
cancer therapy.

Ursolic acid (rosemary)
Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is a pentacyclic
triterpenoid (a member of the cyclosqualenoid family) derived
from rosemary (Rosemarinus officinalis) and other plants. Ursolic
acid has been shown to suppress tumorigenesis [107], inhibit tu-
mor promotion [108], [109], [110], and suppress angiogenesis
[111]. Several of these effects of ursolic acid are mediated
through suppression of the expression of LOX, COX-2, MMP-9,
and iNOS [112], [113], [114], [115], [116], [117], all of which are
genes regulated by NF-κB. In addition, ursolic acid and its deriv-
atives have been shown to induce apoptosis in a wide variety of
cancer cells including breast carcinoma, melanoma, hepatoma,
prostate carcinoma and acute myelogenous leukemia [118],
[119], [120], [121], [122], [123], [124], through inhibition of DNA
replication [125], activation of caspases [121], [123], [124], in-
hibition of protein tyrosine kinases [122], and induction of Ca2+

release [126], [127]. Another mechanism by which ursolic acid
induces apoptosis involves down-regulation of the cellular in-
hibitor of apoptosis gene [121], another gene regulated by NF-κB.
We found that ursolic acid suppressed NF-κB activation induced
by various carcinogens including TNF, phorbol ester, okadaic
acid, H2O2 and cigarette smoke [128]. These effects were not
cell type specific. Ursolic acid inhibited IκBα degradation, IκBα
phosphorylation, IκBα kinase activation, p65 phosphorylation,
p65 nuclear translocation, and NF-κB-dependent reporter gene
expression. Ursolic acid also inhibited NF-κB-dependent report-
er gene expression activated by TNF receptor, TRADD, TRAF2,
NIK, IKK, and p65. The inhibition of NF-κB activation correlated
with suppression of NF-κB-dependent cyclin D1, COX-2 and
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MMP-9 expression. These actions of ursolic acid may mediate its
antitumorigenic and chemosensitizing effects.
We also found that ursolic acid inhibited both constitutive and
IL-6-inducible STAT3 activation [129]. The suppression was
mediated through the inhibition of activation of upstream kina-
ses c-Src, JAK1, JAK2 and ERK1/2. Vanadate treatment reversed
ursolic acid-induced down-regulation of STAT3, suggesting the
involvement of a tyrosine phosphatase. Indeed, we found that
ursolic acid induced the expression of tyrosine phosphatase
SHP-1 protein and of mRNA. Moreover, knockdown of SHP-1 by
siRNA suppressed the induction of SHP-1 and reversed the in-
hibition of STAT3 activation, thereby indicating the critical role
of SHP-1 in the action of this triterpene. Ursolic acid down-regu-
lated the expression of STAT3-regulated gene products such as,
cyclin D1, Bcl-2, Bcl-xL, survivin, Mcl-1, and VEGF. Ursolic acid
inhibited proliferation, induced apoptosis and the accumulation
of cells in G1/G0 phase of cell cycle. This triterpenoid also signif-
icantly potentiated the apoptotic effects of thalidomide and vel-
cade in MM cells. Thus ursolic acid is a novel blocker of STAT3
activation that may have a potential in prevention and treatment
of various cancers.

[6]-Gingerol (ginger)
[6]-Gingerol, the major active component of ginger (Zingiber
officinale), has also been linked with prevention of cancer
through numerous mechanisms. [6]-Gingerol has been shown
to inhibit the proliferation of a variety of cancer cell lines includ-
ing prostate [130], gastric [131], and breast [132]. It inhibits neo-
plastic transformation in mouse epidermal cells [133], blocks
VEGF-induced capillary-like tube formation in the mouse cor-
nea, and suppresses lung metastasis of B16F10-melanoma
[134]. Kim et al. [135] reported that topical application of [6]-
gingerol inhibited PMA-induced COX-2 expression in mouse
skin by suppression of NF-κB. This phytochemical was found to
suppress PMA-induced IκBα degradation and translocation of
p65 to nuclear in mouse skin by blocking of upstream kinase
p38 MAPK. Recently, Lee et al [136] reported that [6]-ginerol ex-
hibits antitumorigenic effects in human colorectal cancer cells
through up-regulation of NSAID-activated gene-1 (NAG-1). This
accompanies G1 cell cycle arrest by down-regulation of cyclin
D1 that was mediated through the degradation of β-catenin by
gingerol.

Others
Besides the spice phytochemicals described above, there are nu-
merous others including cumin (Cuminum cyminum), coriander
(Corriandrum sativum), cinnamon (Cinnamomum zeylanicum)
and black pepper (Piper nigrum), however, there is very little
known about their chemistry or the chemopreventive activities
of the compounds derived from them. Two flavonoid glycosides,
apigenin [137] and luteolin [138] derived from cumin, have been
shown to exhibit cancer chemopreventive activities.

Conclusions
�

From the description provided above it is clear that spice-de-
rived phytochemicals have an enormous potential in the preven-
tion and treatment of cancer. They can induce apoptosis, sup-
press proliferation of tumor cells, inhibit invasion and angiogen-
esis, and prevent even bone loss. These phytochemicals mediate
their effects through multiple targets and yet pharmacologically

they are highly safe. More animal studies and clinical trials are
needed to prove the usefulness of these agents. Safety, inexpen-
sive cost, years of intake by humans and their efficacy make
them ideal agents. Therefore it is not too surprising to note that
Vasco de Gama tried to look for these spices almost five centu-
ries ago.
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