Handchir Mikrochir Plast Chir 2010; 42(2): 115-123
DOI: 10.1055/s-2008-1038448
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Experimentelle freie funktionelle Muskeltransplantation zur Reanimation des Gesichtes: Vergleich zwischen einzeitigem und zweizeitigem Vorgehen am New-Zealand-White-Kaninchen

Free Functional Muscle Transplantation for Facial Reanimation: Experimental Comparison between the One- and Two-Stage ApproachM. Rab1 , W. Haslik2 , M. Frey2
  • 1Abteilung für Plastische und Wiederherstellungschirurgie, Wilhelminenspital der Stadt Wien, Österreich
  • 2Klinische Abteilung für Wiederherstellende und Plastische Chirurgie, Universitätsklinik für Chirurgie, Medizinische Universität Wien, Österreich
Further Information

Publication History

eingereicht 29.8.2007

akzeptiert 12.2.2008

Publication Date:
18 July 2008 (online)

Zusammenfassung

Fragestellung/Ziel: Ziel dieser experimentellen Studie war es, funktionelle Endresultate nach entweder ein- oder zweizeitiger freier funktioneller Muskeltransplantation (FFMT) zu vergleichen. Dazu wurde das bereits etablierte „M. scutuloauricularis-Modell“ am New-Zealand-White (NZW)-Kaninchen herangezogen. Methode und Material: 30 NZW-Kaninchen wurden in 2 Gruppen zu jeweils 15 Tieren aufgeteilt. In Gruppe 1 (einzeitiges Vorgehen) wurde der M. peroneus brevis (PB) als freies Transplantat mit einem 7 cm langen motorischen Nervenast gehoben. Der Muskel wurde anstelle des rechten M. scutuloauricularis (SCUT) unter mikrochirurgischer Wiederherstellung seiner Durchblutung in das Gesicht des Kaninchens transplantiert. Sein 7 cm langer motorischer Nervenast wurde zur kontralateralen Seite transferiert und mit dem bereits abgelösten motorischen N. facialis-Ast zum linken SCUT koaptiert. Vor der Durchführung der Koaptation wurden vom durchtrennten N. facialis-Ast Biopsien für die morphologische Analyse entnommen. In Gruppe 2 (zweizeitiges Vorgehen) erfolgte zuerst das Heben eines 7 cm langen N. saphenus-Nerventransplantates, welches mit dem durchtrennten linken N. facialis-Ast zum SCUT koaptiert und zur Gegenseite transferiert wurde. Vor der Koaptation wurden Nervenbiopsien entnommen. Nach 8 Monaten erfolgte die FFMT des PB, wobei dabei das distale Ende des N. saphenus-Transplantates mit dem motorischen Nervenast des PB koaptiert wurde. Nach einer Gesamt-Reinnervationsperiode von 13 Monaten ab der ersten Operation wurden in beiden Gruppen die Nachuntersuchungen durchgeführt. Dabei wurde die maximale tetanische Kraft des reinnervierten PB gemessen sowie die entnommenen Nerven- und Muskelbiopsien histomorphologisch analysiert. Ergebnisse: Die PB Transplantate der Gruppe 1 erzielten maximal tetanische Werte von 12,5 ± 3,1 N im Vergleich zu 10,6 ± 3,5 N der Gruppe 2. Dieser Unterschied in der Kraftentwicklung war statistisch nicht signifikant (p = 0,303). In Gruppe 1 war die Anzahl an myelinisierten Nervenfasern, welche direkt am Eintrittspunkt des motorischen Astes in den PB gezählt wurden (2798 ± 1242), deutlich höher (p = 0,008) als in der Vergleichsgruppe (1138 ± 1004). Die Morphologie der PB-Transplantate zeigte in Gruppe 1 deutlich weniger Typ-I-Fasern (p = 0,016) und mehr Typ-II b/d-Fasern (p = 0,011) im Vergleich zu Gruppe 2. Dennoch zeigte der Bindegewebeanteil innerhalb des Muskelgewebes im Gruppenvergleich keinen signifikanten Unterschied (p = 0,478). Schlussfolgerungen: Die einzeitige FFMT erzielte im Tierexperiment ähnliche funktionelle Resultate wie beim zweizeitigen Vorgehen. Bemerkenswert ist, dass trotz länger dauernder Denervationszeit des PB in Gruppe 1 der Bindegewebsanteil, als Ausdruck einer Denervationsatrophie, im Vergleich zu Gruppe 2 nicht signifikant unterschiedlich war.

Abstract

Purpose/Background: To investigate functional results of either one- or two-staged free muscle transplantation, the scutuloauricularis model in the New Zealand white rabbits was used. Method and Material: 30 rabbits were divided into 2 groups with 15 animals each. In group 1 (one-stage approach) the peroneus brevis (PB) muscle was harvested as a free muscle graft with a 7-cm long motor branch. The graft was positioned in the place of the right scutuloauricularis (SCUT) and its vascular supply microsurgically re-established. The motor branch was transferred to the contralateral side and its proximal end coapted to the cut facial motor branch to the left SCUT. Before nerve coaptation, biopsies were harvested from the cut motor branch for morphological analysis. In group 2 (two-stage approach) a 7-cm long saphenous nerve graft was taken and coapted to the cut motor branch of the SCUT and crossed over to the contralateral side. Nerve specimens from the cut motor branch were taken. Eight months later, free transplantation of the PB was performed and its motor branch coapted to the distal end of the cross-over nerve graft. After a total time period of 13 months the final experiments were carried out in each group. Maximal tetanic tensions in the reinnervated PB were measured and biopsies of muscle grafts together with nerve biopsies from the distal part of the motor branch were harvested for morphological analysis. Results: Muscle grafts of group 1 revealed tetanic tension values of 12.5 N (SD 3.1) in comparison to 10.6 N (SD 3.5) obtained in group 2. This difference was not statistically significant (p = 0.303). In group 1 the amount of regenerated nerve fibres counted at the distal motor branch site (mean: 2798, SD 1242) was significantly higher (p = 0.008) than in group 2 (mean: 1138, SD 1004). Muscle graft morphology revealed significantly less type I fibres (p = 0.016) and more type II b/d fibres (p = 0.011) in group 1 compared to group 2. However, the overall amount of perimysial connective tissue showed no significant difference in both groups (p = 0.478). Conclusion: Free muscle transplantation in a one-stage approach offers similar functional results in comparison to the two-stage approach. Although muscle grafts of the one-stage transplantation underwent a longer period of denervation, similar contents of perimysial connective tissue could be observed.

Literatur

  • 1 Carlson B M. Denervation, reinnervation, and regeneration of skeletal muscle.  Otolaryngology – Head Neck Surg. 1981;  89 192-196
  • 2 Frey M, Gruber H, Havel M. Experimental free-muscle transplantation with microneurovascular anastomoses.  Plast Reconstr Surg. 1983;  71 689-702
  • 3 Frey M, Gruber H, Freilinger G. The importance of the correct resting tension in muscle transplantation: experimental and clinical aspects.  Plast Reconstr Surg. 1983;  71 510-518
  • 4 Frey M, Gruber H, Stransky G, Havel M. Time course of alterations in muscle transfers with microneurovascular anastomoses. An experimental study in the rectus femoris muscle of the rabbit.  J Reconstr Microsurg. 1985;  2 33-43
  • 5 Frey M, Gruber H, Happak W, Girsch W, Gruber I, Koller R. Ipsilateral and cross-over elongation of the motor nerve by nerve grafting: an experimental study in sheep.  Plast Reconstr Surg. 1990;  85 77-89
  • 6 Frey M, Koller R, Liegl C, Happak W, Gruber H. Role of a muscle target organ on the regeneration of motor nerve fibres in long nerve grafts: a synopsis of experimental and clinical data.  Microsurg. 1996;  17 80-88
  • 7 Frey M, Giovanoli P, Deutinger M, Meuli-Simmen C. Scutuloauricularis muscle of the rabbit: a new model for free functional muscle transplantation in the mimic system.  Microsurg. 1997;  17 254-258
  • 8 Frey M, Giovanoli P, Meuli-Simmen C. The qualification of different free muscle transplants to reconstruct mimic function: an experimental study in rabbits.  Plast Reconstr Surg. 1998;  101 1774-1783
  • 9 Frey M, Giovanoli P. The three-stage concept to optimize the results of microsurgical reanimation of the paralyzed face.  Clin Plast Surg. 2002;  29 461-482
  • 10 Frey M, Giovanoli P, Tzou C-H J, Kropf N, Friedl S. Dynamic reconstruction of eye closure by muscle transposition or functional muscle transplantation in facial palsy.  Plast Reconstr Surg. 2004;  114 865-875
  • 11 Giovanoli P, Kamolz L P, Rab M, Koller R, Mittlboeck M, Frey M. Limits of muscle-to-nerve ratio in functional muscle transplantation.  J Reconstr Microsurg. 2003;  19 21-27
  • 12 Harii K. Microneurovascular free muscle transplantation for reanimation of facial paralysis.  Clin Plast Surg. 1979;  6 361-375
  • 13 Harii K, Asato H, Yoshimura K, Sugawara Y, Nakatsuka T, Ueda K. One-stage transfer of the latissimus dorsi muscle for reanimation of a paralyzed face: a new alternative.  Plast Reconstr Surg. 1998;  102 941-951
  • 14 Haslik W, Rab M, Grünbeck M, Schmidt M, Frey M. Microneurovascular anatomy of the Peroneus brevis muscle in the NZW-rabbit: a new model for free functional muscle transplantation.  Microsurg. 2006;  26 480-483
  • 15 Hua J, En-Tan G, Zheng-Lun J, Ming-Li Z, Van L. One-stage microneurovascular free abductor hallucis muscle transplantation for reanimation of facial paralysis.  Plast Reconstr Surg. 1995;  96 78-85
  • 16 Ikuta Y, Kubo T, Tsuge K. Free muscle transplantation by microsurgical technique to treat severe Volkmann's contracture.  Plast Reconstr Surg. 1976;  58 407-411
  • 17 Koller R, Frey M, Meier U, Liegl C, Gruber H, Meyer V E. Fiber regeneration in nerve grafts without connection to a target muscle: an experimental study in rabbits.  Microsurg. 1993;  14 516-526
  • 18 Koller R, Rab M, Todoroff B P et al:. The influence of the graft length on the functional and morphological result after nerve grafting: an experimental study in rabbits.  Br J Plast Surg. 1997;  50 609-614
  • 19 Koshima I, Moriguchi T, Soeda S, Hamanaka T, Tanaka H, Ohta S. Free rectus femoris muscle transfer for one-stage reconstruction of established facial paralysis.  Plast Reconstr Surg. 1994;  94 421-430
  • 20 Kugelberg E. Adaptive transformation of rat soleus motor units during growth. Histochemistry and contraction speed.  J Neuro Sci. 1976;  27 269-289
  • 21 Kumar P A V. Cross-face reanimation of the paralysed face, with a single stage microneurovascular gracilis transfer without nerve graft: a preliminary report.  Br J Plast Surg. 1995;  48 83-88
  • 22 Kumar P A V, Hassan K M. Cross-face nerve graft with free-muscle transfer for reanimation of the paralyzed face: a comparative study of the single-stage and two-stage procedures.  Plast Reconstr Surg. 2002;  109 451-462
  • 23 Manktelow R T, McKee N H. Free muscle transplantation to provide active finger flexion.  J Hand Surg. 1978;  3 416-426
  • 24 Mathes S J, Nahai F. Classification of the vascular anatomy of muscles: experimental and clinical correlation.  Plast Reconstr Surg. 1981;  67 177-187
  • 25 Nehrer-Tairych G V, Rab M, Kamolz L, Deutinger M, Stohr H G, Frey M. The influence of the donor nerve on the function and morphology of a mimic muscle after cross innervation: an experimental study in rabbits.  Br J Plast Surg. 2000;  53 669-675
  • 26 Rab M, Koller R, Haslik W et al:. The impact of a muscle target organ on nerve grafts with different lengths – a histomorphological analysis.  Muscle Nerve. 1998;  21 618-627
  • 27 Rab M, Koller R, Haslik W et al:. The influence of timing on the functional and morphological result after nerve grafting: an experimental study in rabbits.  Br J Plast Surg. 2002;  55 628-634
  • 28 Tamai S, Komatsu S, Sakamoto H, Sano S, Sasauchi N. Free muscle transplants in dogs, with microsurgical neurovascular anastomoses.  Plast Reconstr Surg. 1970;  46 219-225
  • 29 Terzis J K, Dykes R W, Sweet R C, Williams H B. Recovery of function in free muscle transplants using microneurovascular anastomoses.  J Hand Surg. 1978;  3 37-59
  • 30 Wei W, Zuoliang Q, Xiaoxi L et al:. Free split and segmental latissimus dorsi muscle transfer in one stage for facial reanimation.  Plast Reconstr Surg. 1999;  103 473-482

Priv.-Doz. Dr. med. Matthias Rab

Abteilung für Plastische und Wiederherstellungschirurgie
Wilhelminenspital der Stadt Wien

Montleartstraße 37

1160 Wien

Österreich

Email: matthias.rab@wienkav.at

    >