Subscribe to RSS
DOI: 10.1055/s-2003-36790
Chiral Sulfoxide Ligands in Catalytic Asymmetric Cyanohydrin Synthesis
Publication History
Publication Date:
22 January 2003 (online)
Abstract
A novel chiral sulfoxide-containing ligand for the catalytic addition of trimethylsilylcyanide to aldehydes is reported. The sulfoxide moiety was found to be vital for reactivity.
Key words
aldehydes - catalysis - cyanohydrins - chiral sulfoxides
-
1a
Griengl H.Hickel A.Johnson DV.Kratky C.Schmidt M.Schwab H. Chem. Commun. 1997, 1933 -
1b
Effenberger F. Angew. Chem., Int. Ed. Engl. 1994, 33: 1555 -
1c
North M. Synlett 1993, 807 -
1d
Herranz R.Castro-Pichel J.García-López T. Synthesis 1989, 703 - 2
Gregory RJH. Chem. Rev. 1999, 99: 3649 -
3a
Gröger H.Capan E.Barthuber A.Vorlop K.-D. Org. Lett. 2001, 3: 1969 -
3b
Hanefeld U.Straathof AJJ.Heijnen JJ. J. Mol. Catal. B: Enzym. 2001, 11: 213 -
3c
Ognyanov VI.Datcheva VK.Kyler KS. J. Am. Chem. Soc. 1991, 113: 6992 - Recent examples include:
-
4a
Gama A.Flores-López LZ.Aguirre G.Parra-Hake M.Somanathan R.Walsh PJ. Tetrahedron: Asymmetry 2002, 13: 149 -
4b
Liang S.Bu XR. J. Org. Chem. 2002, 67: 2702 -
4c
Aspinall HC.Greeves N. J. Orgmet. Chem. 2002, 647: 151 -
4d
Wang ZG.Fetterly B.Verkade JG. J. Orgmet. Chem. 2002, 646: 161 -
4e
Tian S.-K.Deng L. J. Am. Chem. Soc. 2001, 123: 6195 -
4f
Brunel JM.Legrand O.Buono G. Tetrahedron: Asymmetry 1999, 10: 1979 -
4g
Hwang CD.Hwang DR.Uang BJ. J. Org. Chem. 1998, 63: 6762 -
4h
Abiko A.Wang G.-Q. Tetrahedron 1998, 54: 11405 -
4i
Zi GF.Yin CL. J. Mol. Catal. A: Chem. 1998, 132: L1-L4 -
4j
Mori M.Imma H.Nakai T. Tetrahedron Lett. 1997, 38: 6229 -
4k
Iovel I.Popelis Y.Fleisher M.Lukevics E. Tetrahedron: Asymmetry 1997, 8: 1279 - General review of bifunctional catalysts:
-
5a
Rowlands GJ. Tetrahedron 2001, 57: 1865 -
5b Recent examples:
Casas J.Nájera C.Sansano JM.Saá JM. Org. Lett. 2002, 4: 2589 -
5c Also see:
Gröger H. Chem.-Eur. J. 2001, 7: 5247 -
5d Examples on the related
addition to imines:
Liu B.Feng X.Chen F.Zhang G.Cui X.Jiang Y. Synlett 2001, 1551 -
5e Also see:
Corey EJ.Wang Z. Tetrahedron Lett. 1993, 34: 4001 -
6a
Shen Y.Feng X.Li Y.Zhang G.Jiang Y. Synlett 2002, 793 -
6b
Shen Y.Feng X.Zhang G.Jiang Y. Synlett 2002, 1353 - Recent examples and references therein:
-
7a
Masumoto S.Yabu K.Kanai M.Shibasaki M. Tetrahedron Lett. 2002, 43: 2919 -
7b
Kanai M.Hamashima Y.Takamura M.Shibasaki M. J. Synth. Org. Chem. Jpn. 2001, 59: 766 -
7c
Shibasaki M.Kanai M. Chem. Pharm. Bull. 2001, 49: 511 -
8a
Deng H.Isler MR.Snapper ML.Hoveyda AH. Angew. Chem. Int. Ed. 2002, 41: 1009 -
8b Mechanistic studies on
the related addition to imines:
Josephsohn NS.Kuntz KW.Snapper ML.Hoveyda AH. J. Am. Chem. Soc. 2001, 123: 11594 -
9a
Belokon’ YN.Gutnov AV.Moskalenko MA.Yashkina LV.Lesovoy DE.Ikonnikov NS.Larichev VS.North M. Chem. Commun. 2002, 244 -
9b
Belokon" YN.Green B.Ikonnikov NS.North M.Parsons T.Tararov VI. Tetrahedron 2001, 57: 771 -
10a
Pelotier B.Anson MS.Campbell IB.Macdonald SJF.Priem G.Jackson RFW. Synlett 2002, 1055 -
10b
Massa A.Lattanzi A.Siniscalchi FR.Scettri A. Tetrahedron: Asymmetry 2001, 12: 2775 -
10c
Brinksma J.La Crois R.Feringa BL.Donnoli MI.Rosini C. Tetrahedron Lett. 2001, 42: 4049 -
10d
Procter DJ. J. Chem. Soc., Perkin Trans. 1 2001, 335 -
11a
Cogan DA.Liu G.Ellman J. Tetrahedron 1999, 55: 8883 -
11b
Huang ZC.Liao DZ.Zhang RH.Zhang XL.Huang TS.Wang HM. Polyhedron 1996, 15: 981 -
11c
Carreño MC. Chem. Rev. 1995, 95: 1717 -
12a
Ordoñez M.Guerrero de la Rosa V.Labastida V.Llera JM. Tetrahedron: Asymmetry 1996, 7: 2675 -
12b
Owens TD.Hollander FJ.Oliver AG.Ellman JA. J. Am. Chem. Soc. 2001, 123: 1539 - 13
Priego J.Mancheño OG.Cabrera S.Carretero JC. J. Org. Chem. 2002, 67: 1346 -
14a
Watanabe K.Hirasawa T.Hiroi K. Chem. Pharm. Bull. 2002, 50: 372 -
14b
Hiroi K.Watanabe K.Abe I.Koseki M. Tetrahedron Lett. 2001, 42: 7617 -
14c
Hiroi K.Suzuki Y.Abe I.Kawagishi R. Tetrahedron 2000, 56: 4701 -
15a
Priego J.Mancheño OG.Cabrera S.Carretero JC. Chem. Commun 2001, 2026 -
15b
Chelucci G.Berta D.Saba A. Tetrahedron 1997, 53: 3843 -
15c
Carreño MC.Ruano JLG.Maestro MC.Cabrejas LMM. Tetrahedron: Asymmetry 1993, 4: 727 - 16
Gritzner G. J. Mol. Liq. 1997, 73-74: 487 -
17a
Hellwig J.Belser T.Müller JFK. Tetrahedron Lett. 2001, 42: 5417 -
17b
Denmark SE.Wynn T. J. Am. Chem. Soc. 2001, 123: 6199 -
17c
Denmark SE.Stavenger RA. Acc. Chem. Res. 2000, 33: 432 -
18a
Iwasaki F.Onomura O.Mishima K.Maki T.Matsumura Y. Tetrahedron Lett. 1999, 40: 7507 -
18b
Iseki K.Mizuno S.Kuroki Y.Kobayashi Y. Tetrahedron Lett. 1998, 39: 2767 - Examples of the sila-Pummerer rearrangement:
-
19a
Bhupathy M.Cohen T. Tetrahedron Lett. 1987, 28: 4793 -
19b
Iwao M. Heterocycles 1994, 38: 45 -
19c Examples of silicon initiated
Pummerer reaction:
Magnus P.Mitchell IS. Tetrahedron Lett. 1998, 39: 9131 -
19d Also see:
Padwa A.Waterson AG. Tetrahedron 2000, 56: 10159 - 20
Bolm C.Weickhardt K.Zehnder M.Glasmacher D. Helv. Chim. Acta 1991, 74: 717 -
21a
Helmchen G.Pfaltz A. Acc. Chem. Res. 2000, 33: 336 -
21b
Johnson JS.Evans DA. Acc. Chem. Res. 2000, 33: 325 -
21c
Ghosh AK.Mathivanan P.Cappiello J. Tetrahedron: Asymmetry 1998, 9: 1 - 22
McKennon MJ.Meyers AI.Drauz K.Schwarm M. J. Org. Chem. 1993, 58: 3568 - 23
Aggarwal VK.Bell L.Coogan MP.Jubault P. J. Chem. Soc., Perkin Trans. 1 1998, 2037 - 25
Hayashi M.Inoue T.Miyamoto Y.Oguni N. Tetrahedron 1994, 50: 4385 - 26
Pastuszak JJ.Chimiak A. J. Org. Chem. 1981, 46: 1868 - 31
Braunstein P.Naud F. Angew. Chem. Int. Ed. 2001, 40: 680 - 32 The use of sulfoxides as Lewis
base catalysts for allylations:
Kentish-Barnes W. D. Phil. Thesis The University of Sussex; UK: 2002.
References
Nitrile 3 was accessible from 3,5-di-tert-butyl-2-hydroxybenzaldehyde in 3 steps.
27Sulfoxide (S
S)-7: 1H NMR (300 MHz,
CDCl3) 12.21 (1 H, br s,), 7.53 (1 H, d, J = 1.5 Hz), 7.44 (1 H, d, J = 2.5 Hz), 4.93-4.82
(1 H, m), 4.61 (1 H, t, J = 9.5
Hz), 4.29 (1 H, t, J 9.0 Hz), 2.84 (1 H, dd, J = 12.5
Hz, 6.5 Hz), 2.68 (1 H, dd, J = 12.5
Hz, 7.5 Hz), 1.42 (9 H, s), 1.28 (9 H, s), 1.26 (9 H, s); 13C
NMR (75 MHz, CDCl3) 167.7 (C), 157.3 (C), 140.7 (C), 137.0
(C), 128.9 (CH), 122.8 (CH), 109.7 (C), 71.9 (CH2), 62.2
(CH), 53.8 (C), 51.4 (CH2), 35.5 (C), 34.7 (C), 31.9 (CH3),
29.8 (CH3), 23.2 (CH3); MS (EI) m/z = 393, 337, 322, 274,
250, 217, 205, 149, 57.
Sulfoxide (R
S)-7: 1H NMR (300 MHz,
CDCl3) 12.15 (1 H, s), 7.52 (1 H, d, J = 2.5
Hz), 7.42 (1 H, d, J = 2.5 Hz),
4.91-4.81 (1 H, m), 4.58 (1 H, t, J = 9.0
Hz), 4.40 (1 H, dd, J = 9.0 Hz,
7.0 Hz), 3.00 (1 H, dd, J = 12.5
Hz, 3.5 Hz), 2.59 (1 H, dd, J = 12.5
Hz, 10.0 Hz), 1.40 (9 H, s), 1.27 (9 H, s), 1.25 (9 H, s); 13C
NMR (75 MHz, CDCl3) 167.9 (C), 157.2 (C), 140.7 (C),
137.1 (C), 128.9 (CH), 122.7 (CH), 109.5 (C), 71.0 (CH2),
61.4 (CH), 54.1 (C), 51.1 (CH2), 35.5 (C), 34.7 (C),
31.9 (CH3), 29.8 (CH3), 23.1 (CH3).
Typical procedure: Ti(i-PrO)4 (0.013 mL, 0.04 mmol, 0.09 equiv) was added to a solution of (S S)-7 (0.018 g, 0.05 mmol, 0.1 equiv) in CH2Cl2 (0.78 mL) at room temperature. The resultant pale yellow solution was stirred at room temperature for 1 hour whereupon it was cooled to -78 °C. Benzaldehyde (0.049 mL, 0.47 mmol, 1.0 equiv) was added and the solution stirred for a further 30 min. TMSCN (0.095 mL, 0.71 mmol, 1.5 equiv) was then added and the reaction vessel transferred to a -84 °C freezer for 60 h. HCl(aq) (3 M; 3 mL) was added and the mixture vigorously stirred at room temperature for 2 h. The layers were separated and the aqueous phase extracted with CH2Cl2 (3 × 5 mL). The combined organic layers were dried (MgSO4) and concentrated. The cyanohydrin 9 was isolated by column chromatography (petroleum ether:ether, 3:1).
29At -84 °C there was no reaction between benzaldehyde and TMSCN in the presence of either 10% Ti(i-PrO)4 or 10% Ti(i-PrO)4 + 10% DMSO after 48 h. On warming to -20 °C complete reaction was observed in the presence of just 10% Ti(i-PrO)4 in 12 h whilst the reaction had only gone to 60% completion in the presence of 10% Ti(i-PrO)4 + 10% DMSO over the same period. Again this indicates that the ligand is essential for activity. The decrease in the rate of reaction in the presence of DMSO could possibly be the result of the formation of a coordinatively saturated octahedral complex with resultant loss in Lewis acidity. This would require two equivalents of DMSO per titanium centre thus resulting in only 5% active catalyst being present. Stoichiometry of the catalyst has already been shown to effect the rate (Table [1] ; entry 6).
30Three aluminium complexes were studied in cyanosilylation reaction of benzaldehyde. One formed from 2,2′-biphenol gave 58% conversion, one with a phenyl sulfone substituent in the ortho position of 2,2′-biphenol gave 75% conversion whilst the phenyl sulfoxide substituted 2,2′-biphenol gave 92% conversion. This suggests that the sulfoxide is activating the TMSCN and that it is not purely an electronic effect making the aluminium centre more Lewis acidic. Work to convert this to a chiral system is currently underway.