Semin Liver Dis 2002; 22(3): 251-263
DOI: 10.1055/s-2002-34503
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Adenosine Triphosphate Release and Purinergic Regulation of Cholangiocyte Transport

Andrew P. Feranchak1 , J. Gregory Fitz2
  • 1Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado
  • 2Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado
Further Information

Publication History

Publication Date:
02 October 2002 (online)

ABSTRACT

The discovery of purinergic receptors on almost every cell type studied to date suggests that purinergic signaling is a fundamental process regulating cell and organ level functions. Purinergic receptors have been found on all principal liver cell types, including liver parenchymal cells, or hepatocytes, and biliary epithelial cells, or cholangiocytes. Both hepatocytes and cholangiocytes are capable of the regulated release of adenosine triphosphate (ATP), and both cell types express a range of purinergic receptors to mediate cellular processes. The role of extracellular nucleotides in liver function is presently being elucidated. Extracellular ATP, in addition to autocrine regulation of liver cell volume, has recently been shown to play an important role in paracrine signaling to coordinate specific hepatocyte and cholangiocyte cellular responses. The findings that (1) cholangiocytes are capable of the regulated release of ATP into bile, (2) ATP is present in bile in concentrations capable of stimulating purinergic receptors, and (3) P2 receptor stimulation results in brisk Cl- channel activation and fluid secretion suggest an important role of extracellular ATP in the regulation of bile formation. This article highlights important developments in our understanding of the role of purinergic signaling in cholangiocyte transport and bile formation.

REFERENCES

  • 1 Burnstock G. P2 purinoceptors: historical perspective and classification. In: Chadwick DJ, Goode JA, eds. P2 Purinoceptors: Localization, Function and Transduction Mechanisms Chichester: John Wiley & Sons 1996: 1-34
  • 2 Marunaka Y, Niisato N. The essential role of cytosolic Cl- in Ca2+ regulation of an amiloride-sensitive channel in fetal rat pneumocyte.  J Membr Biol . 2001;  180 91-99
  • 3 Puffinbarger N K, Hansen K R, Resta R. Production and characterization of multiple antigenic peptide antibodies to the adenosine A2b receptor.  Mol Pharmacol . 1995;  47 1126-1132
  • 4 Sebastiao A, Mendonca A, Ribeiro A. Neuroprotection during hypoxic insults: Role of adenosine.  Drug Development Research . 2001;  52 291-295
  • 5 Khakh B S, Burnstock G, Kennedy C. International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits.  Pharmacol Rev . 2001;  53 107-118
  • 6 Stoop R, Thomas S, Rassendren F. Contribution of individual subunits to the multimeric P2X(2) receptor: estimates based on methanethiosulfonate block at T336C.  Mol Pharmacol . 1999;  56 973-981
  • 7 Valera S, Hussy N, Evans R J. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP.  Nature . 1994;  371 516-519
  • 8 Virginio C, MacKenzie A, North R A, Surprenant A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor.  J Physiol . 1999;  519(Pt 2) 335-346
  • 9 Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F. Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin.  J Exp Med . 1997;  185 579-582
  • 10 Taylor A L, Schwiebert L M, Smith J J. Epithelial P2x purinergic receptor channel expression and function.  J Clin Invest . 1999;  104 875-884
  • 11 Dranoff J A, Masyuk A I, Kruglov E A, LaRusso N F, Nathanson M H. Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia.  Am J Physiol Gastrointest Liver Physiol . 2001;  281 G1059-G1067
  • 12 Harden T K, Boyer J L, Nicholas R A. P2-purinergic receptors:subtype-associated signaling responses and structure.  Annu Rev Pharmacol Toxicol . 1997;  35 541-579
  • 13 Takasaki J, Kamohara M, Saito T. Molecular cloning of the platelet P2T(AC) ADP receptor: Pharmacological comparison with another ADP receptor, the P2Y(1) receptor.  Mol Pharmacol . 2001;  60 432-439
  • 14 Communi D, Govaerts C, Parmentier M, Boeynaems J M. Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase.  J Biol Chem . 1997;  272 31969-31973
  • 15 Communi D, Boeynaems J-M. Receptors responsive to extracellular pyrimidine nucleotides.  Trends Pharmacol Sci . 1997;  18 83-86
  • 16 Communi D, Parmentier M, Boeynaems J-M. Cloning, functional expression and tissue distribution of the human P2Y6 receptor.  Biochem Biophys Res Comm . 1996;  222 303-308
  • 17 Schlenker T, Romac J MJ, Sharara A. Regulation of biliary secretion through apical purinergic receptors in cultured rat cholangiocytes.  Am J Physiol . 1997;  273 G1108-G1117
  • 18 Malcolm K C, Trammell S E, Exton J H. Purinergic agonist and G protein stimulation of phospholipase D in rat liver plasma membranes. Independence from phospholipase C activation.  Biochim Biophys Acta . 1995;  1268 152-158
  • 19 Salter K D, Fitz J G, Roman R M. Domain-specific purinergic signaling in polarized rat cholangiocytes.  Am J Physiol Gastrointest Liver Physiol . 2000;  278 G492-500
  • 20 Nukina S, Fusaoka T, Thurman R G. Gylcogenolytic effect of adenosine involves ATP from hepatocytes and eicosanoids from Kupffer cells.  Am J Physiol . 1994;  266 G99-G105
  • 21 Chari R S, Schutz S M, Haebig J A. Adenosine nucleotides in bile.  Am J Physiol . 1996;  270 G246-G252
  • 22 Wang Y, Roman R M, Lidofsky S D, Fitz J G. Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation.  Proc Natl Acad Sci U S A . 1996;  93 12020-12025
  • 23 Taylor A L, Kudlow B A, Marrs K L. Bioluminescence detection of ATP release mechanisms in epithelia.  Am J Physiol . 1998;  275 C1391-C1406
  • 24 Roman R M, Wang Y, Lidofsky S D. Hepatocellular ATP-binding cassette protein expression enhances ATP release and autocrine regulation of cell volume.  J Biol Chem . 1997;  272 21970-21976
  • 25 Feranchak A P, Fitz J G, Roman R M. Volume-sensitive purinergic signaling in human hepatocytes.  J Hepatol . 2000;  33 174-182
  • 26 Vroman B, LaRusso N. Development and characterization of polarized primary cultures of rat intrahepatic bile duct epithelial cells.  Lab Invest . 1996;  74 303-313
  • 27 Salter K D, Roman R M, LaRusso N R, Fitz J G, Doctor R B. Modified culture conditions enhance expression of differentiated phenotypic properties of normal rat cholangiocytes.  Lab Invest . 2000;  80 1775-1778
  • 28 Che M, Gatmaitan Z, Arias I M. Ectonucleotidases, purine nucleoside transporter, and function of the bile canalicular plasma membrane of the hepatocyte.  FASEB J . 1997;  11 101-108
  • 29 Haussinger D, Schliess F. Osmotic induction of signaling cascades: role in regulation of cell function.  Biochem Biophys Res Commun . 1999;  255 551-555
  • 30 Schwiebert E M, Egan M E, Guggino W B. Assays of dynamics, mechanisms, and regulation of ATP transport and release: implications for study of ABC transporter function.  Methods Enzymol . 1998;  292 664-675
  • 31 Musante L, Zegarra-Moran O, Montaldo P G, Ponzoni M, Galietta L J. Autocrine regulation of volume-sensitive anion channels in airway epithelial cells by adenosine.  J Biol Chem . 1999;  274 11701-11707
  • 32 Light D B, Capes T L, Gronau R T, Adler M R. Extracellular ATP stimulates volume decrease in Necturus red blood cells.  Am J Physiol . 1999;  277 C480-C491
  • 33 Mitchell C H, Carre D A, McGlinn A M, Stone R A, Civan M M. A release mechanism for stored ATP in ocular ciliary epithelial cells.  Proc Natl Acad Sci USA . 1998;  95 7174-7178
  • 34 Bosch I, Jackson G, Croop J M, Cantiello H F. Expression of Drosophilia melanogaster P-glycoproteins is associated with ATP channel activity.  Am J Physiol . 1996;  271 C1527-C1538
  • 35 Pasyk E A, Foskett J K. Cystic fibrosis transmembrane consuctance regulator-associated ATP and adenosine 3′-phosphate 5′-phosphosulfate channels in endoplasmic reticulum and plasma membranes.  J Biol Chem . 1997;  272 7746-7751
  • 36 Braunstein G M, Roman R M, Clancy J P. Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation.  J Biol Chem . 2001;  276 6621-6630
  • 37 Scoazec J Y, Bringuier A F, Medina J F. The plasma membrane polarity of human biliary epithelial cells: in situ immunohistochemical analysis and functional implications.  J Hepatol . 1997;  26 543-553
  • 38 Krause U, Rider M H, Hue L. Protein kinase signalling pathway triggered by cell swelling and involved in the activation of glycogen synthase and acetyl-CoA carboxylase in isolated rat hepatocytes.  J Biol Chem . 1996;  271 16668-16673
  • 39 Folli F, Alvaro D, Gigliozzi A. Regulation of endocytic-transcytotic pathways and bile secretion by phosphatidylinositol 3-kinase in rats.  Gastroenterology . 1997;  113 954-965
  • 40 Misra S, Ujhazy P, Gatmaitan Z, Varticovski L, Arias I M. The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver.  J Biol Chem . 1998;  273 26638-26644
  • 41 Misra S, Ujhazy P, Varticovski L, Arias I M. Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles.  Proc Natl Acad Sci U S A . 1999;  96 5814-5819
  • 42 Feranchak A P, Roman R M, Schwiebert E M, Fitz J G. Phosphatidyl inositol 3-kinase represents a novel signal regulating cell volume through effects on ATP release.  J Biol Chem . 1998;  273 14906-14911
  • 43 Feranchak A P, Roman R M, Doctor R B. The lipid products of phosphoinositide 3-kinase contribute to regulation of cholangiocyte ATP and chloride transport.  J Biol Chem . 1999;  274 30979-30986
  • 44 Wang T F, Rosenberg P A, Guidotti G. Characterization of a brain ecto-apyrase: evidence for only one ecto-apyrase (CD39) gene.  Molecular Brain Research . 1997;  47 295-302
  • 45 Misumi Y, Ogata S, Hirose S, Ikehara Y. Primary structure of rat liver 5′-nucleotidase deduced from the cDNA.  J Biol Chem . 1990;  265 2178-2183
  • 46 Griffith D A, Jarvis S M. Nucleoside and nucleobase transport systems of mammalian cells.  Biochim Biophys Acta . 1996;  1286 153-181
  • 47 Che M, Ortiz D F, Arias I M. Primary structure and functional expression of a cDNA encoding the bile canalicular purine-specific Na+-nucleoside cotransporter.  J Biol Chem . 1995;  270 13596-13599
  • 48 Felipe A, Valdes R, Santo B. Na+-dependent nucleoside transport in liver: two different isoforms from the same gene family are expressed in liver cells.  Biochem J . 1998;  330(Pt 2) 997-1001
  • 49 Yao S Y, Ng A M, Muzyka W R. Molecular cloning and functional characterization of nitrobenzylthioinosine (NBMPR)-sensitive (es) and NBMPR-insensitive (ei) equilibrative nucleoside transporter proteins (rENTI and rENT2) from rat tissues.  J Biol Chem . 1997;  272 28423-28430
  • 50 Haussinger D. Regulation and functional significance of liver cell volume. In: Boyer JL, Ockner RK, eds. Progress in Liver Disease Philadelphia: W. B. Saunders 1996: 29-53
  • 51 Haussinger D, Schliess F. Cell volume and hepatocellular function.  J Hepatol . 1995;  22 94-100
  • 52 Sarkadi B, Parker J C. Activation of ion transport pathways by changes in cell volume.  Biochim Biophys Acta . 1991;  1071 407-427
  • 53 Strange K, Emma F, Jackson P S. Cellular and molecular physiology of volume-sensitive ion channels.  Am J Physiol . 1996;  270 C711-C730
  • 54 Schlosser S F, Burgstahler A D, Nathanson M H. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides.  Proc Natl Acad Sci USA . 1996;  93 9948-9953
  • 55 Fitz J G. Cellular mechanisms of bile secretion. In: Zakim D, Boyer TD, eds. Hepatology Philadelphia: W. B. Saunders 1996: 362-376
  • 56 McGill J, Basavappa S, Shimokura G H, Middleton J P, Fitz J G. Adenosine triphosphate activates ion permeabilities in biliary epithelial cells.  Gastroenterology . 1994;  107 236-243
  • 57 Knowles M R, Clarke L L, Boucher R C. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis.  N Engl J Med . 1991;  325 533-538
  • 58 Lenzen R, Elster J, Behrend C. Bile acid-independent bile flow is differentially regulated by glucagon and secretin in humans after orthotopic liver transplantation.  Hepatology . 1997;  26 1272-1281
  • 59 Frame M K, de Feijter W A. Propagation of mechanically induced intercellular calcium waves via gap junctions and ATP receptors in rat liver epithelial cells.  Exp Cell Res . 1997;  230 197-207
  • 60 Schwiebert E M, Egan M E, Hwang T-H. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP.  Cell . 1995;  81 1063-1073
  • 61 Parr C E, Sullivan D M, Paradiso A M. Cloning and expression of a human P2u nucleotide receptor, a target for cystic fibrosis pharmacotherapy.  Proc Natl Acad Sci USA . 1994;  91 3275-3279
  • 62 Clarke L L, Grubb B R, Yankaskas J. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in cftr(-/-) mice.  Proc Natl Acad Sci USA . 1994;  91 479-483
  • 63 Bennett W D, Olivier K N, Zeman K L, et a ls. Effect of uridine 5′-triphosphate plus amiloride on mucociliary clearance in adult cystic fibrosis.  Am J Respir Crit Care Med . 1996;  153(Pt 1) 1796-1801
  • 64 Lazarowski E R, Boucher R C, Harden T K. Calcium-dependent release of arachidonic acid in response to purinergic receptor activation in airway epithelia.  Am J Physiol . 1994;  266 C406-C415
    >