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Abstract

There is accumulating evidence that oxidative stress plays a con-
siderable role in the development of liver fibrosis by acting in dif-
ferent cell types and in different signaling pathways. Conse-
quently, antioxidants, particularly those of plant origin, have
emerged as potent antifibrotic agents. This review briefly sum-

marizes current views of the mechanisms of fibrogenesis and re-
cent findings on the antifibrotic potential of plant-derived anti-
oxidants.
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Introduction

Liver fibrosis and cirrhosis developing in response to chronic he-
patocellular injury (Table 1) show general features of a wound
repair process [1], [2] characterized by specific cellular reactions
that are orchestrated by a set of cytokines and other signaling
molecules and finally lead to the excessive deposition of extra-
cellular matrix proteins [2], [3], [4], [5]. As these processes con-
tinue, remodelling of the liver architecture is apparent resulting
in severe pathophysiological consequences such as liver insuffi-
ciency, portal hypertension and hepatic encephalopathy. Al-
though fibrosis and cirrhosis are of high incidence worldwide,
therapeutic management of these diseases is still insufficiently
based on therapeutic concepts that focus mainly on symptoms
rather than on blocking central fibrogenic mechanisms [6], [7],
[8]. Recent progress in the understanding of the pathological
mechanisms, however, may open new strategies with which to
interfere at early steps in the development of these diseases [3],
[9], [10].

Oxidative stress has long been known to be involved in the pa-
thogenesis of hepatic fibrosis [1], [11], [12], [13]. In the past, the
main focus was placed on the damaging potential of oxygen radi-

Table1 Natural and experimental causes of liver fibrosis

Chemicals (carbon tetrachloride, dimethyl-
nitrosamine, stilbestrol, yellow phosphorus)

Drugs (methyldopa)

Diet (choline deficient)
Heterologous serum (pig in rats)

Viral hepatitis (chronic)
Alcohol abuse

Radiation
Cholestasis
(bile duct ligation)

Oxidative stress TGF-B transgenic mice

cals and other radicals for parenchymal cells (PC) [11], [14]. Thus,
oxidative stress and radicals were considered as special primary
causes of the disease. Consequently, antioxidants were recom-
mended only in rare occasions [14] and were not recognized as
therapeutic drugs with a potentially wide application. With
time, it became increasingly evident that oxidative stress is asso-
ciated with various cellular reactions during the development of
fibrosis [15] (and of other pathologies [16]) and, thus, may not
only be cause of but also mediator in this process (see below).
Despite this fact, the therapeutic potential of antioxidants in fi-
brosis was not estimated adequately in reviews on traditional
and more recent therapeutic approaches [8], [9].
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Current View of Fibrogenesis

As illustrated in Fig.1 our present understanding of the key events
in hepatic fibrosis reflects a complex interplay of cells and media-
tors. Roughly, the pathophysiological process can be divided into
three phases [17], the preinflammatory, the inflammatory, and the
postinflammatory phase. During the preinflammatory phase com-
plete or minor damage of hepatic parenchymal cells (PC) initiates
or facilitates the release of paracrine acting mitogen(s) and cato-
kines that have a dual effect. First, they induce proliferation of he-
patic perisinusoidal stellate cells (PSC) [18]. Second, they activate
resident macrophages, the Kupffer cells (KC), which, in turn, by re-
leasing a whole spectrum of different cytokines initiate the in-
flammatory phase [17], [19]. This phase is associated with a num-
ber of cellular changes in liver parenchyma. Stimulated by TGF-g,
the prototype of a fibrogenic cytokine, normal PSC transform into
a myofibroblast-like phenotype [20], [21]. Other cytokines may
participate in this process as well [4], [17], [19], [22], [23], [24]. This
transformation is considered a central event, since the resulting
myofibroblasts have been shown to contribute in many ways to
the excessive deposition of extracellular matrix [22], [25], [26]
and to produce several other mediators that further promote the
cellular changes in a paracrine and autocrine fashion [19], [27],
[28]. Production of such factors may lead to the recruitment of
new cells (neutrophils, mast cells, etc.) in liver parenchyma [28],
[29], [30]. In addition, the activated KC attract other cell types
such as polymorphonuclear leukocytes (PML) and may even po-
tentiate damage of PC via release of proteases, reactive oxygen
species (ROS) and toxic cytokines (e.g., TNF-¢) [17], [31]. In gener-
al, the inflammatory phase may be characterized as the most ag-
gressive period, maintained in a vicious cycle by various (chronic)
exogenous and endogenous signals. Despite the fulminant dynam-
ic of this phase, fibrogenesis is still reversible as obvious from
spontaneous regeneration, when primary stimuli are withdrawn
[32] or after interference with anti-inflammatory cytokines [4],
[19], [33]. In contrast of the detailed view of the pathogenesis, in-
formation on the mechanisms leading to (spontaneous) regenera-
tion is relatively sparse as yet. Apoptosis of stellate cells seems to
be important [9], [32], [34], [35], but little is known about the reg-
ulation of this process [36]. From recent studies, however, it is
emergent that signals transmitted through neuronal factors like
nerve growth factor [37] or through the peripheral-type benzodia-
zepine receptor [38] may be involved in this regulation as may be
fibronectin-derived antiadhesive peptides [39].

The autocrine stimulation of the myofibroblasts initiated already
in the inflammatory phase may be the most important feature of
the third, the postinflammatory phase which is characterized by
an increasing self-perpetuation of the fibrogenic process [27].
Apparently, cellular reprogramming has reached a degree that is
independent of the primary stimuli [40]. One reason for this may
be the continuous deposition of extracellular matrix which mod-
ulates the environment of the cells and is known to considerable
influence gene expression in transformed PSC [17], [41], [42],
[43]. Another reason may be changes in the response to cyto-
kines characteristic for the myofibroblast phenotype as found
for TGF-B signaling [44]. To what extent the pathogenesis is re-
versible at this point, is still a matter of debate and has to await
further elucidation of regenerating mechanisms. When the pro-
cess continues to develop into cirrhosis, however, the irreversi-
ble state is reached undoubtedly.

Fibrogenesis in Alcoholic Fibrosis and Chronic Hepatitis

Although the principal sequence of events is likely to be similar
in fibrosis of different etiology, inflammation may not always be
overt as, for instance, in alcoholic fibrosis [45]. There, hypoxia
and products of oxidative stress may be more important [46],
[47], since enhanced ROS production occurs in response to CY-
PIIE1-induction by ethanol [48]. However, the pathogenesis of
alcoholic liver disease involves additional mechanisms specific
to excessive alcohol consumption [49], [50]. In chronic hepatitis
C, PSC activation and fibrosis seem to be associated with necroin-
flammation and a Th1-like response, but independent on viral
load [51]. While elimination of hepatitis C virus in responders to
interferon therapy led to a deactivation of stellate cells [52], in
non-responders d-alpha-tocopherol was able to prevent fibro-
genesis [53], again favoring oxidative stress as mediator. Appar-
ently, various aspects of the general scheme of fibrogenesis may
be emphasized differently depending on the type of primary sti-
mulus, its duration and other circumstances.

Specific Involvement of Oxidative Stress in Fibrogenesis

ROS may be created by a variety of different mechanisms and
usually are under close control by sophisticated cellular detoxifi-
cation systems (Fig.2). Within the cascade of events outlined
above for fibrogenesis, oxidative stress is enhanced and seems
to be involved in many ways. This will be summarized for each
of several main liver cell types individually.

Hepatocytes

On the level of the parenchymal cells, production of ROS may be
cause and consequence of cellular damage. For instance, many
hepatotoxins (often through metabolism by the cytochrome
P450 system [48], [54] lead to increased concentrations of ROS
that cannot be handled in a normal way by the protective ma-
chinary of the cells [55]. Excessive production of ROS results in
lipid peroxidation leading to an increase in highly reactive alde-
hydic end products, altered signal transduction, modulation of
gene expression, alteration of the redox state including de-
crease of glutathione levels, and induction of apoptosis and ne-
crosis [56], [57], [58]. With respect to fibrogenesis, enhanced
rates of lipid peroxidation that surmount those associated
with physiological events (e.g., hepatocyte regeneration) seem
to be of considerable importance [59]. Thus, additional factors
such as the availability of heavy metals, particularly of free iron,
may be cofibrogenic by enhancing oxidative stress [13]. How-
ever, this may vary for hepatocytes and KC in different types of
fibrosis [13]. Under the conditions of high lipid peroxidation,
the aldehydes formed (e.g., malondialdehyde and 4-hydroxy-
nonenal) attack various cellular and extracellular proteins in
the hepatocytes but also in adjacent cell types [60]. They seem
to affect gene expression in adjacent PSC as demonstrated by
the induction of matrix components (collagen type I, fibronec-
tin), matrix metalloproteinases and other factors [56], [61],
[62], [63], [64], [65]. Fibroblasts could also be a potential target
[59], [66].

Kupffer cells
Similar events from increased lipid peroxidation to induction of
apoptosis may act on the level of KC. However, in the case of
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these cells excessive production of, rather than ultimate injury
by, ROS seems to prevail in their activated state. Thus, phagocytic
activity is accompanied by increased formation of toxic oxygen
metabolites and other radical species such as NO [24], [67]. Sim-
ilar products may be generated by PML [24]. These products are
released into the extracellular space and may attack other cells in
the vicinity. Interestingly, however, NO has been found to act as a
scavenger of ROS in vitro inhibiting PSC proliferation [68]. Thus,
the precise role of peroxonitrate formed from NO (see Fig.2) re-
mains to be clarified.

Perisinusoidal stellate cells

Besides the parenchymal cells and macrophages, PSC may be at-
tacked by liberated ROS. Due to their central role in fibrogenesis,
these cells may represent the most important cellular target.
However, although ROS may promote transformation of PSC
[69], such molecules may also be mediators of transformation
by other stimuli, e. g., TGF-o and collagen type I [17]. Apparently,

there is considerable cross-talk between ROS and various signal-
ing pathways [70], [71] (see below). Moreover, ROS seem to be
involved in further regulating and influencing many cellular
events once the myofibroblast-like phenotype has been estab-
lished. Thus, ROS have been shown to directly affect the synthesis
of monocyte chemoattractant protein I [72] and connective tis-
sue growth factor (CTGF) [73]. It is likely that other proteins pro-
duced by PSC (myofibroblasts that are related to fibrogenesis are
directly induced as well. On the other hand, the fibrogenic effect
of oxidative stress induced by ferric nitrotriacetate in cultured
PSC seems to be mediated through induction of the Na*/H* ex-
changer [74]. The importance of the NA*/H* exchange which can
also be induced by other factors like PDGF and IGF-1 [75] for the
fibrogenic process has recently been stressed in vitro and in vivo
[76]. In other models, NF-xB and ¢ myb seem to be essential med-
iators [3], [77], indicating again that ROS and other radicals have
to interfere with certain signaling pathways, in order to exert
their effects. Indeed, activation of NF-xB might play a potent
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role in hepatic injury and fibrosis [78] through activation of PSC
[79]. Although NF-xB is believed to mediate a general antioxi-
dant cellular response [80], its activation is subject to complex
control opening the possibility for alternative functional conse-
quences. Thus, it was reported that NF-xB may be involved in
apoptosis rather than proliferation and acitivation of HSC in cul-
ture [81], [82]. Moreover, the distal effects of this transcription
factor seem to depend on the cellular background [83], and, in
particular, on the timing of activation in relation to other signals
[84]. Therefore, it is hard to predict whether acitivation of NF-xB
will result in cell survival, proliferation, apoptosis or another
fate.

As indicated above, aldehydes produced in response to oxidative
stress through lipid peroxidation such as 4-hydroxy-2,3-alkenals
(e.g., HNE) may play an additional role as mediators [85] both in
PSC as well as other cells (for review see [3], [60]. Apparently,
transformed PSC are less sensitive to toxic effects of these alde-
hydes than normal PSC [86]. This seems to be due to a higher
rate of metabolism [86] although the level of GSTs which detox-
ify HNE is decreased [87].

Correspondence of in vitro and in vivo Results

There is still some uncertainty whether the sequence of events
outlined above or their extent is comparable in vivo and in vitro.
For instance, this has been questioned with respect to cellular
glutathione [88] and the site or temporal pattern of the produc-
tion of superoxide radicals [89]. Furthermore, modulation of glu-
tathione content may not have easily predictable effects on the
function of stellate cells [90]. The context in which these para-
meters are tested, however, seems to be of considerable influ-
ence. It is also possible that the general scheme may vary to
some extent depending on the specific cause of fibrosis. Thus, it
was doubted that PSC are subject to oxidative stress during iron-
induced fibrogenesis in rodents [13]. On the other hand, the level
of oxidative stress rather than cytokines seems to be responsible
for the progression of the activation of PSC during CCl,-induced
fibrogenesis [91]. In this respect it is of interest that the gluta-
thione level can discriminate between oxidative stress and TGF-
B signaling in activated PSC [92].

Therapeutic Potential of Plant-Derived Antioxidants in Liver
Fibrosis

For a long time, the therapeutic potential of antioxidants with re-
spect to fibrosis was realized only marginally [3], [6], [7], [8]. In
the last few years, however, a number of studies has dramatically
changed this situation [3], [93] placing oxidative stress and the
antifibrotic efficacy of antioxidants into focus. Even traditional
drugs such as pentoxifylline [94], as well-known phosphodies-
terase inhibitor, were unexpectedly found to block PSC activation
by interfering with the oxidative stress cascade suggesting new
mechanisms for their antifibrotic activity.

Antifibrotic efficiency - in vivo studies

Accumulative evidence for the effectiveness against fibrosis is
now available for several plant-derived antioxidants. Silymarin,
the active principle from Carduus marianus L., proved to be anti-
fibrogenic in humans [95], [96] and in a rat fibrosis model [97],
[98] where it led to a reduction of hepatic collagen accumulation

by more than 35%. It is well known that silymarin and its compo-
nent silibinin have potent antioxidant activity [99], [100]. Like-
wise, in a bile duct ligation model, the antifibrotic influence of
extracts from Stephania tetrandra and Polygonum aviculare
[101], [102] was described, although the active compounds have
not yet been identified. In the same experimental model querce-
tin was found to ameliorate liver damage [103]. Furthermore, an-
tioxidants from the herbal medicine Sho-saiko-to (e.g., baicalein,
baicalin and wogonin) were recently found to act antifibrogenic
in different animal models, namely choline-deficient .-amino
acid-defined diet [104] and fibrosis induced by pig serum [105]
or dimethylnitrosamine [105], [106]. Sho-saiko-to had already
been known for beneficial effects in patients with chronic active
hepatitis [107] and may have an even broader range of potential
applications [108]. Also, antioxidants in red wine have long been
suspected of exerting antifibrotic effects [50]. Likewise, diosmin
was found in vivo to reduce fibrosis associated with edema [139].
These promising reports on plant-derived antioxidants are com-
plemented by other recent findings that polyenylphosphatidyl-
choline and vitamin E were also effective as antifibrogenic drugs
in alcohol-induced fibrosis in the baboon [109] or in carbon tet-
rachloride-induced liver cirrhosis [14]. Thus, there is no doubt
that plant-derived antioxidants represent valuable antifibrotic
drugs.

However, what may render these compounds (particularly the fla-
vonoids) so efficient may not be their antioxidative potential
alone. This is apparent from reports comparing different antioxi-
dant vitamins (C and E), selenium and antioxidants from Nigella
sativa in CCl,-induced liver fibrosis in rabbits [110]. In this model,
Nigella sativa proved to be effective, while vitamin C was not. Con-
cerning vitamin E and selenium results were less promising [110]
than in a similar rat fibrosis model [14]. Using this latter model,
hepatoprotective effects of other plant extracts from Emblica
officinalis (syn. Phyllanthus embilca L.) and Artemisia iwayomogi
were found [111], [112] that may only partially involve antioxidant
functions. Olive oil in contrast to sunflower, corn or fish oil was
also protective against CCL,-induced fibrosis [113].

Possible mechanisms - in vitro studies

Although the efficacy of antifibrotic agents can best be demon-
strated by in vivo studies, mechanistic details of this activity
that can be derived from these studies, however, are sparse.
Therefore, many in vitro studies with plant extracts, less complex
fractions or isolated compounds were performed. Obviously, the
antioxidative activity was considered first. In most of the cases
cited above, the antioxidants were polyphenols, flavonoids or
structurally related compounds [95], [105], [114] that are known
as strong antioxidants [115], [116], [117]. As pointed out above,
many points of interference of antioxidants with single steps in
the fibrogenic process seem possible. Central points seem to be
NF-xB, bcl-x, and c-myb which are upregulated in acitivated
PSC [82]. Indeed, silymarin and silibinin inhibit NF-xB activation
[83] and seem to retard PSC activation [118] (R. Gebhardt, G. Bu-
niatian, unpublished results). Likewise, trans-resveratrol (from
grapes), a strong antioxidant, was found to deactivate the myofi-
broblast phenotype [119]. Another target may be the induction of
CTGF by ROS such as hydrogen peroxide [73]. In general, antiox-
idant such as baicalin, beicalein, quercetin, apigenin and trans-
resveratrol were shown to interfere with fibrogenic functions of
PSC and KC in vitro [105], [114], [118], [119], [120], [121].
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Concerning flavonoids, it is known that they exert a variety of
other effects besides acting as antioxidants. In particular, they
are inhibitors of different protein kinases [122], [123], [124] and
other kinases involved in signal transduction [125], which they
inhibit with different potency. As a result, they may interact
with intracellular signaling as has been demonstrated recently
for luteolin in cultured hepatocytes [126]. Furthermore, flavo-
noids are known to interrupt the cell cycle at different points
[127], [128]. Accordingly, proliferation of PSC usually associated
with the fibrogenic process in vivo was effectively inhibited in
vitro by baicalein, the major flavonoid in Sho-saiko-to [129]. A
similar function was described for trans-resveratrol which shows
some structural similarity to flavonoids [119]. Since protein kina-
ses, in particular stress-activated protein kinases, also play a role
in the activation of PSC [130] as well as other cell types [131],
such inhibitory effects of flavonoids may be of significance for in-
terrupting the pathogenic process in various different ways ren-
dering these natural compounds particularly interesting for ther-
apeutic use. It remains a challenge for the future to unravel the
definitive antifibrotic potential of flavonoids and to elucidate
whether there is any synergistic influence between the antioxi-
dative functions and the inhibitory effects on kinases, transpor-
ters and other proteins in the prevention of hepatic fibrosis.

Bioavailability, biotransformation and responsiveness

An issue of particular concern linking in vivo and in vitro studies
is the question of bioavailability of genuine compounds on ad-
ministration of plant extracts or complex fractions. Concerning
silymarin and silipide (lipophilic silybin-phosphatidylcholine
complex), detailed comparative studies on solubility and phar-
macokinetics in animals and patients with extrahepatic biliary
obstruction or cholecystectomy have been performed [132],
[133], [134], [135]. These studies revealed the rapid availability
in serum and bile of silybin (particularly from silipide) in free
and conjugated form, but also of silydianin, silycristin and isosi-
lybin. Studies on the bioavailability of baicalin in rats revealed
that it is mainly absorbed as the aglycone after hydrolysis by the
intestinal micoflora and is reconjugated in intestine and liver
[136]. Similar results were reported by Li and coworkers for bai-
calin and other flavonoids from Sho-saiko-to [137]. Interestingly,
these authors demonstrated a delayed excretion of the flavo-
noids after administration of Sho-saiko-to compared to isolated
components [137] indicating an enhanced efficacy of the flavo-
noids as part of a complex herbal medicine. Although these stud-
ies consistently demonstrate the bioavailability of the flavonoids,
two aspects deserve further investigation. First, it remains uncer-
tain which molecules (aglycones, conjugates or degradation prod-
ucts) are responsible for the biological effects. Regarding querce-
tin, for instance, it was shown that some metabolic products
(e.g., 3,4-dihydroxytoluene) were almost as efficient as the flavone
itself with respect to the antioxidative function as well as the
inhibition of metabolic pathways [138]. Thus, biotransforma-
tion and breakdown do not necessarily lead to inactivation. Sec-
ond, patients might be divided into responders (showing high
serum levels) and non-responders [137]. The basis for these in-
terindividual differences is not yet known, but may be due to
differences in metabolism by the intestinal microflora, in the
extent of absorption, and in biotransformation and excretion.
Since such question are of considerable importance, if herbal
medicines shall be used effectively, these aspects should be
investigated in more detail.

Conclusions

As demonstrated by recent studies in vivo and in vitro, plant an-
tioxidants, particularly flavonoids, show a remarkable potency to
block liver fibrogenesis of different etiology. Since the few exam-
ples studied so far have just opened a wide horizon, it is worth to
screen other plant extracts and natural compounds in appropri-
ate model systems and to look for further compounds combining
antioxidative properties with other effector functions. Such stud-
ies may lead to new drugs particularly suited and specifically tai-
lored to block liver fibrosis at early steps of pathogenesis. On the
basis of preliminary experimental results, it may be expected
that such drugs are suitable also for preventive care and for sup-
porting the endogenous regenerating capacity of the liver, once
fibrosis has already developed.

Publication of this article was sponsered by Redinomedica AG,
Munich.
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