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Introduction

CRISPR, or clustered regularly interspaced short palindromic
repeats, is a mechanism of the prokaryotic adaptive immune
system. The application of CRISPR-associated proteins (Cas)
along with recombinant DNA technology has revolutionized
thefields ofmedicine andmolecular biology by transforming
it into a powerful gene editing tool. Over time, CRISPR/Cas
technology has rapidly evolved, leading to the emergence of

new versions of genome editing tools. Notably, base editors
(BEs) and prime editors (PEs) are in the spotlight for their
ability to edit genomes without creating double-strand
breaks (DSBs), making them potent tools for gene therapy.1,2

Due to their remarkable ability to specifically edit genes in
organisms such as humans, mammals, and plants, CRISPR-
based genome editing tools have become a promising ap-
proach for treating genetic disorders, including hemophilia,
cystic fibrosis, and Duchenne muscular dystrophy (DMD),
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Abstract In the fields of medicine and bioscience, gene editing is increasingly recognized as a
promising therapeutic approach for treating pathogenic variants in humans and other
living organisms. With advancements in technology and knowledge, it is now under-
stood that most genetic defects are caused by single-base pair variants. The ability to
substitute genes using genome editing tools enables scientists and doctors to cure
genetic diseases and disorders. Starting with CRISPR (clustered regularly interspaced
short palindromic repeats)/Cas, the technology has evolved to become more efficient
and safer, leading to the development of base and prime editors. Furthermore, various
approaches are used to treat genetic disorders such as hemophilia, cystic fibrosis, and
Duchenne muscular dystrophy. As previously mentioned, most genetic defects leading
to specific diseases are caused by single-base pair variants, which can occur at many
locations in corresponding gene, potentially causing the same disease. This means
that, even when using the same genome editing tool, results in terms of editing
efficiency or treatment effectiveness may differ. Therefore, different approaches may
need to be applied to different types of diseases. Prevalently, due to the safety of
adeno-associated virus (AAV) vectors in gene therapy, most clinical trials of gene
therapy are based on AAV delivery methods. However, despite their safety and
nonintegration into the host genome, their limitations, such as confined capacity,
dosage-dependent viral toxicity, and immunogenicity, necessitate the development of
new approaches to enhance treatment effects. This review provides the structure and
function of each CRISPR-based gene editing tool and focuses on introducing new
approaches in gene therapy associated with improving treatment efficiency.
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which are characterized by variants in specific gene regions
and have hereditary traits.

Regardinghereditarydiseases,more than7,000 rarediseases
are recognized globally, and according to the National Organi-
zation forRareDisorders, hundreds ofmillions of patients suffer
from these conditions,with two-thirds being children.3While a
few drug-based treatments like antisense oligonucleotides
(ASOs) are approved to alleviate symptoms, no existing treat-
ments or therapies address the underlying genetic variants for
more than95%of thesepatients. Evenwithavailabledrug-based
treatments, patientsmust continuemedication for life, as these
do not correct the fundamental genetic issues.

However, the emergence of CRISPR-related gene therapy
has made it possible to correct these fundamental genetic
variants and has been applied for permanent gene modifica-
tion. Furthermore, based on the drawbacks of the necessity for
iterative medication and the display of a range of symptom
severities, hemophilia, cystic fibrosis, and DMD have become
primecandidates forCRISPR-relatedgenetherapy. Theseverity
of hemophilia ranges from mild to severe, depending on the
clotting factor level causedby various types of variants, suchas
gene deletions, missense variants, and nonsense variants.
Moreover, the severity of cystic fibrosis is categorized into
sixclasses,whichare also causedbysimilar typesof variantsas
those found in hemophilia. Lastly, a broad range of gene
deletions causes DMD, resulting in progressive muscle loss
or mild symptom called Becker muscular dystrophy (BMD).
Not only are these three disorders hereditary, but their wide
range and various types of variants also make them suitable
candidates for gene correction using CRISPR-related therapy.
Therefore, by correcting the underlying variants that cause
these diseases, therewill be no possibility of passing down the
diseases to future generations and no necessity to devise
treatments for each variant. Owing to its safety features,
such as nonintegration into the host genome and relatively
low immunogenicity, most clinical trials for these genetic
disorders have utilized gene therapy methods employing
adeno-associated virus (AAV) as a delivery vector. Neverthe-
less, limitations such as dosage-dependent toxicity, potential
for immune responses, low transduction efficiency due to
preexistingneutralizingantibodies (Nabs), and limited loading
capacity pose challenges. Scientists are actively seeking ways
to overcome these obstacles to enhance the effectiveness of
gene therapy for genetic diseases.4–6

This review focuses on explaining themechanisms of gene
editing tools and their application across various approaches
to overcome the limitations of AAV-mediated gene therapy,
ultimately aiming for higher treatment efficiency. While it
primarily addresses overcoming the limitations of using
AAV-mediated gene therapy, it also introduces approaches
that enhance the efficacy of these AAV-mediated strategies.

Genome Editing Tools

CRISPR/Cas System
The CRISPR/Cas system is derived from the immune defense
mechanisms of bacteria and archaea, which fight against
foreign genetic materials from various sources, including

bacteriophages, transposons, and plasmids.7 The system
consists of sgRNA—a fusion of crRNA that binds to the target
sequence and tracrRNA, which maintains the activation of
the Cas protein—and the Cas protein itself, a nuclease that
cleaves DNA and creates DSBs.8 Before the creation of a DSB,
the gRNA guides the Cas protein to a “protospacer” located
near a suitable protospacer adjacent motif (PAM).9 The
introduction of the DSB by the Cas protein triggers the
DNA repair system, either through nonhomologous end-
joining (NHEJ) or homology-directed repair (HDR). In the
case of NHEJ, the cleaved DNA ends rejoin directly, poten-
tially causing knocked-out genes or frameshift variants due
to random nucleotide insertions or deletions (►Fig. 1A).

Conversely, if a homologous donor template is present, the
DSB initiates apreciseHDRpathway, resulting in a knock-in10,11

(►Fig. 1B). Furthermore, genome editing is conducted differ-
ently basedon the type of target nucleic acid and is appliedwith
different Cas protein complexes; the most utilized tools are
Classes 1 and 2. While Class 1 is composed of multisubunit
effector complexes containing multiple Cas proteins, Class 2
systems involve a single Cas protein and are commonly used in
the fields of biological and medical research.

Base Editing
As aforementioned, the DNA repair system is activated,
leading to two pathways: HDR and NHEJ. A major concern
with this genome editing tool is the potential for causing
undesired insertions and deletions (indels), which can dete-
riorate cellular conditions through mechanisms such as the
activation of p53 and undesired translocations. Consequent-
ly, one alternative strategy to overcome the limitations of the
CRISPR/Cas system is BE.12,13 Instead of using Cas9, the BE
technique employs Cas9 nickase, which cleaves only a single
strand of DNA.14 This technique also utilizes another protein
enzyme that modifies a single nucleobase—cytidine deami-
nase and deoxyadenosine deaminase.15 Cytidine deaminase
is an enzyme that catalyzes the hydrolytic deamination of
cytosine to uracil. To prevent the removal of the replaced
uracil, cytidine deaminase includes an additional protein
called uracil glycosylase inhibitor, which protects uracil from
uracil-DNA glycosylase. As the Cas9 domain opens the target
DNA site, creating a bubble, all cytosines in the unpaired DNA
are exposed to cytidine deaminase, resulting in the deami-
nation of cytosine within roughly a five-base window, creat-
ing a U:G mismatch.16 To induce the cell to replace the G
(guanine) on the nontargeted strandwith A (adenine), the BE
nicks the G-containing strand, leading the cell to use the
uracil-containing strand as the template. If the conversion
process proceeds correctly, the C–G base pair will be suc-
cessfully replaced with a U–A or T–A base pair (►Fig. 2A).

Similarly, adenine base editor (ABE) operates like cytosine
base editor (CBE) but uses deoxyadenosine deaminase in-
stead of cytidine deaminase. When applied to a targeted
strand containing A (adenine), deoxyadenosine deaminase
catalyzes the hydrolytic deamination of adenine to yield I
(inosine), which is recognized as G (guanine) in DNA system.
Using the same DNA repair method as CBE, the A:T base pair
is converted to G:C (►Fig. 2B).
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However, even though the BE has a low risk of producing
indels and demonstrates high performance in nucleotide
substitution, it still poses a potential risk of undesired editing.
This is caused by limitations in targeting due to confined PAM
requirements, bystander editing related to the width of the
activity window, and possible off-target effects.17

Overall, BE avoids the risk of DSBs, and the editing
efficiency of nucleotide substitution performed by BEs in
plants and animals is significantly higher than that of HDR-
mediated single base pair correction.1

Prime Editing
One notable difference between the standard CRISPR/Cas
system and PE is the presence of reverse transcriptase (RT),

which is an essential component of the PE system. The PE
consists of three parts: a fusion of Cas9 nickase and an
engineered RT protein, a prime editing guide RNA (pegRNA),
and a nicking guide RNA (ngRNA) (►Fig. 3A). The pegRNA
guides the fusion protein to bind with a target DNA strand,
which is then nicked by the Cas9 nickase. Once hybridized
with the nicked strand, the pegRNA serves as a template for
reverse transcription, leading to the creation of a flap that
plays a crucial role in precise genetic conversions (►Fig. 3B).
This involves accepting a newly created 3′ strand flap and
degrading the original 5′ strand18,19 (►Fig. 3C, D).

To enhance the efficiency rate of genetic alteration, the
ngRNA guides the fusion protein to the strand opposite the
flap-containing strand and nicks the nonedited strand. This

Fig. 1 Mechanism of the CRISPR/Cas system. (A) Nonhomologous end joining (NHEJ): this pathway ligates the ends of broken DNA without a
homologous template, potentially leading to nucleotide deletions or insertions. NHEJ can be activated in both dormant and proliferating cells.
(B) homology-directed repair (HDR): HDR is a DNA repair process that repairs double-strand breaks (DSBs) through homologous recombination
using a DNA template. The HDR pathway is primarily activated during the G2 and S phases of the cell cycle. The most common application of this
pathway in biology, utilizing the CRISPR/Cas system, is to knock in a target gene into a specific sequence for recombination (created with
BioRender.com).
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increases the probability of repairing the nonedited strand,
ultimately resulting in a completely edited homoduplex
double-stranded DNA1,20 (►Fig. 3E, F).

PE was developed to overcome the limitations of BEs and
the CRISPR/Cas system. It can convert genomes with almost
any intended changes, including all 12 types of transition and
transversion point variants, as well as insertions and dele-
tions (indels), without requiring DSBs or a donor DNA
template. Furthermore, it is reported that PE has the poten-
tial to correct up to 89% of more than 75,000 disease-
associated variants in humans.21However, despite its advan-
tage of processing genome editing without a DSB or donor
DNA, many challenges, such as determining the off-target
level, have not yet been fully addressed.2

Genetic Disorders Targeted for Gene Therapy
and Comparison between Editing Efficiency
of Those Genome Editing Tools Used in Gene
Correction

Many therapy attempts are focused on using the genome
editing tools described above. Specifically, the most targeted
and ongoing treatments for genetic disorders are for Hemo-
philia, cystic fibrosis, and DMD. Below, I will provide exam-
ples of treatments using gene editing methods and compare
the efficiency of these treatments across different genome
editing tools, including CRISPR/Cas, BEs, and PEs.

Hemophilia
Hemophilia A (HA) is an X-linked recessive hereditary
bleeding disorder caused by a deficiency in coagulation
factor VIII (FVIII) due to a variant in the F8 gene, located
at Xq28.22 Hemophilia B (HB) is also an X-linked recessive
hereditary bleeding disorder caused by a deficiency in
coagulation factor IX, resulting from a variant in the F9
gene, located at Xq27. Furthermore, both HA and HB are
caused by various variants affecting the entire regions of
the FVIII and FIX genes. Specifically, inversion variants in

intron 22 and intron 1 are responsible for 43% and 2% of
severe HA cases, respectively. Additionally, HA is affected
not only by inversions but also by a broad range of missense,
nonsense, frameshift, indels, and splicing variants. On the
other hand, inversion variants are not observed in HB;
however, most patients exhibit mild or moderate symptoms
resulting from missense variants.23 The possibility of suf-
fering from HA is approximately 1/5,000 and 1/25,000 in
live male births. The severity of hemophilia differs by the
plasma clotting factor levels. While patients with mild
symptoms have >5% of normal clotting factor level, patients
with residual factor level of >13% rarely go through severe
joint bleeding. However, more than half of patients have
blood factor level of <1% of normal. Before the gene therapy,
while HA was mostly treated with replacement therapy
using emicizumab, a bispecific monoclonal antibody that
mimics the role of FVIII,24 HB was generally treated with
plasma-derived factor IX and recombinant factor IX. Fur-
thermore, hemophilia has also been treated with antifibri-
nolytics, drugs like tranexamic acid or aminocaproic acid
that are often used in conjunction with factor IX concen-
trates, and desmopressin, which is mainly used for mild HA
and limited use in HB.25 However, traditional treatments for
hemophilia face limitations such as the short duration of
therapeutic effects, frequent intravenous injections, short
plasma half-life of recombinant coagulation factors, and the
production of Nabs against these clotting factors, known as
inhibitors.26 Consequently, scientists and doctors have been
searching for more effective and sustainable methods of
treating hemophilia.27 With the advent of CRISPR technol-
ogy, the possibility of correcting genes has positioned
hemophilia as a prime candidate for gene therapy. Com-
monly, due to its characteristics of existing as an episome
after transduction, low immunogenicity, and efficient entry
into quiescent cells, the AAV vector is employed in gene
therapy to treat hemophilia.28 Despite the many advantages
of using AAV vectors, their limitations, including immuno-
genicity, preexisting Nabs, dose-dependent toxicity, and

Fig. 2 Components and mechanisms of CBE (cytosine base editor) and ABE (adenine base editor). (A) CBE: cytidine deaminase mediates the
deamination of cytosine to uracil. An uracil glycosylase inhibitor (UGI) prevents the removal of uracil by uracil DNA glycosylase (UDG) during the
base excision repair pathway. (B) ABE: deoxyadenosine deaminase mediates the deamination of adenosine, resulting in the generation of
inosine, which is recognized as guanine by DNA polymerase (created with BioRender.com).
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limited capacity, mean that gene therapy using AAV vectors
is not yet perfectly administered.29–31

CRISPR/Cas System
To increase the treating efficiency of hemophilia, unlike
traditional gene therapies that target the F8 and F9 genes
directly,32–35 newapproaches involvebypass gene correcting
methods have been devised. Even though using AAV vector
has some limitations as earlier mentioned, this bypass
method of using AAV vector is used as permanent inserting

gene into host cells, not as a common usage of episome,
delivering the clotting factor mFVIIa to the Rosa26 locus, a
safe harbor for expressing genes of interest inmice.36 Sarangi
et al used three AAV vectors: two AAV8 vectors to load gRNA
and a donor template of mFVIIa, and one AAV2 to load
SpCas9.37 The editing efficiency showed frequencies of 20
to 42%, with a significant decrease in prothrombin time
observed in mice with a 22% indel frequency, from
11.07s�0.86 to 8.62s�0.4. However, this approach is chal-
lenging to apply in clinical trials due to the incomparable

Fig. 3 Mechanism of prime editor. (A) Components of prime editing and Cas9 nickase cleaves one strand of DNA. (B) PegRNA function: PegRNA
binds to the primer binding site (PBS) of the nicked strand, and reverse transcriptase (RT) begins to synthesize the desired cDNA sequence based
on the RT template. (C, D) Strand Integration: the synthesized 3′ flap containing the edited strand takes over after the 5′ flap containing
the unedited strand is removed by 5′ exonucleases. (E) Additional Cleavage: cleavage of the nonedited complementary original strand triggers
the substitution of the edited strand. (F) DNA repair mechanism: the desired edited strand is introduced by the DNA repair mechanism
(created with BioRender.com).
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level of FVIIa expression between patients with HA andmice,
and there is a potential risk of thrombosis.38

On the other hand, another bypass method uses the
CRISPR/Cas system delivered by lipid nanoparticles (LNP)
in vivo. Notably, instead of directly correcting the F8 or F9
genes, this method increases the activity of factor Xa and the
generation of thrombin by creating frameshifts in the anti-
thrombin (mAT) gene to suppress its protein expression
levels. LNPs consist of ionizable cationic lipids, polyethylene
glycol lipids, zwitterionic phospholipids, and cholesterol,
enhancing the efficiency of genome editing by improving
biocompatibility with anionic cell membranes and promot-
ing endosomal membrane destabilization.39 This approach
has positive effects such as rapid cargo delivery, low immu-
nogenicity, dose-dependent toxicity, and sophisticated tar-
get accuracy. Han et al injected LNP-CRISPR-mAT into mice
withHA, caused by inversion in 22 intron of FVIII gene, and B,
creating frameshift in SerpinC1 gene, encoding antithrombin
III, resulting in indel frequencies of 22 and 38% in the liver
tissues, respectively. Although this method successfully sup-
pressed AT protein expression using innovative bypass strat-
egies, it showed insufficient efficacy against externalwounds
due to the absence of clotting factors.40

Base Editor
As for BE methods, an approach to treat HB used a CBE. In
experiments using TAID-SpCas9-NG41 with gRNA3, where
TAID is a deaminase called PmCDA1,42 showednotable results.
After applying TAID-SpCas0-NG toHEK293 cellswith an I316T
variant in the F9 gene, FIX activity increased to 16.1�2.3%, an
average across eight clone cells with notably high measures.
Further invivo investigations involved injecting knock-inmice
with human F9 carrying the I316T variant using two AAV
vectors carrying TAID-SpCas9 with gRNA3 via an intein-me-
diated splitmethod.43Consequently, FIX activity levels andFIX
antigen expression increased to 3.8 and 2.4%, respectively,
with an editing efficiency of 1.74�0.31%. Even though this
approach uses AAV vector, it solves the vector capacity prob-
lem by using intein-mediated split.44

Meanwhile, another approach using the BE ABE8e and a
nonviral vector was performed successfully by Rong et al.
HEK293 cells and hepatocellular carcinoma cell line Huh7
with the R226Q point variant in exon 6 of the F9 gene, which
causes abnormal FIX activity,45 were observed to recover
their FIX activity after transfection with PLL-plasmid nano-
particles carrying ABE8e.46 The recovered FIX activity rates
in HEK293 cells and Huh7 cells were approximately 38 and
49% of the wild type, respectively,47 which are exceptionally
high considering the normal FIX activity rate ranges from 50
to 150%.48 This result could be significant for treating hemo-
philia if the safety conditions are fully determined.

Unfortunately, despite numerous examples of using CRISPR-
related gene editing methods, including BEs, there has been no
detectable approach that utilizes PEs for treating hemophilia.

Cystic Fibrosis
Cysticfibrosis is an autosomal recessive genetic disease caused
by variants in the CFTR (cystic fibrosis transmembrane

conductance regulator) protein. CFTR is an ion channel protein
responsible for channeling cyclic adenosine monophosphate
(cAMP)-activated chloride (Cl�) and bicarbonate (HCO3�)
across epithelial membranes, thus modulating the flow of
fluids such as mucus, sweat, saliva, tears, and digestive
enzymes. Therefore, abnormalities in ion transport can lead
to difficulty in water absorption, resulting in dehydration of
the airway surface liquid, altered mucus composition, and
compromised protection against bacterial infections. For ex-
ample, increased viscosity of themucus layer can lead to small
airway obstructions and adhere to the apical membrane of
epithelial cells, which could facilitate pathogen colonization.
Eventually, a patient with cystic fibrosis could end up with
severe respiratory failure, such as extensive bronchiecta-
sis.49,50 Cystic fibrosis is categorized into six classes based
on symptoms, functions, and protein output. In normal indi-
viduals, CFTR protein is formed and transferred to the cell
surface, where it controls the movement of chloride. People
with cystic fibrosis class 1, accounting for 22% of patients
worldwide, are unable to produce CFTR. Class 2, the most
common among thosewith cystic fibrosis, accounting for 88%,
can produce CFTR protein, but the protein is misfolded, which
disrupts its transfer to the cell surface, known as a trafficking
defect. Class 3, accounting for 6%, can produce and transfer the
protein to the surface but has defective channel regulation,
meaning the channel gate does not operate properly. Class 4,
also accounting for 6%, operates similarly to Class 3, but with
reduced functionality, resulting indefective chloride transport
through the channel. Class 5, accounting for 5%, has normal
CFTR protein but insufficient quantities. Class 6, also account-
ing for 5%, has normal ability to produce and transport the
protein to the cell surface, but as the protein reaches the
surface, its stability decreases, resulting in a reduced amount
of protein at the cell surface.51 As the symptoms differ, it is
clear that targeting genomic sites and applying techniques
vary aswell. Specifically, diseases related to the airwayepithe-
lial cell type are very difficult to cure comparedwith other cell
types affected by cystic fibrosis. Prevalently, AAV vector is
considered to be themost suitable gene therapy to treat cystic
fibrosis because of its efficiency of iterative dosing and safe-
ty.52,53 However, due to its limitations, such as the low
expression level of CFTR54,55 and a limited carrying capacity
of approximately 4.6 kb, many other gene therapy methods
have been developed to treat cystic fibrosis.

CRISPR/Cas System
One treatment approach using CRISPR/Cas targets the
3849þ10 kb C> T variant, which is a Class 5 cystic fibrosis
variant that creates an undesirable TAA stop codon in intron
22 between exons 22 and 23. This approach uses a nano-
complex as a delivery to delete the stop codon. Since the
airway epithelial cell is a dormant cell, its treatment is more
adequately addressed using the NHEJ pathway rather than
HDR, which is highly dependent on the cell cycle. The
treatment approach involves eliminating 178 bp of intron
22, after which DNA repair occurs via the NHEJ pathway. To
trigger the DNA repair pathway, ribonucleoprotein (RNP)
complexes (Cas9 and two gRNAs) are delivered to cystic
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fibrosis basal epithelial cells by receptor-targeted nanocom-
plexes. These nanocomplexes consist of bifunctional pepti-
des, featuring a cationic binding domain and cyclic peptide
motif for cell targeting, and lipids comprising a one-to-one
molar mixture of cationic DOTMA (1,2-dioleoyl-sn-glycerol-
3-phosphoethanolamine) and DOPE (1,2-dioleoyl-sn-glycer-
ol-3-phosphoethanolamine). This offers the advantage of
low immunogenicity and facilitates both RNP packaging
and receptor-mediated uptake. After four rounds of transfec-
tion, a 62% indel frequency is observed in alleles. This result
demonstrates the potential of this approach, surpassing the
recommended therapeutic levels of CFTR editing of higher
than 25%.56 Although this approach shows a relatively high
efficiency rate of genome editing, it has not yet shown
clinical usefulness in therapy. However, it is notable that
using the air–liquid interface (API), which resembles human
airway epithelial cells exposed to air on the apical side and to
fluid on the basal side, donor-free repair and nonviral vectors
seem to make genome editing relatively easier than other
approaches.57

Base Editor
An approach using BE ABE7.10, which converts adenine to
guanine (A>G), is applied to correct the stop codon (TGA) of
R553X variant causing class 1 cystic fibrosis, a severe disease
that results in undetectable levels of CFTR mRNA and the
absence of CFTR protein.58,59 In this approach, two types of
cell lines are used: the CuFi-3 cell line, an airway cell line that
is compound heterozygous for DF508 and R553X variants
typically used for cystic fibrosis-related experiments,60 and
primary human airway epithelial cells bearing R553X/G85E
variants, both cultivated in an API to mimic the condition of
airway epithelial cells. To increase editing efficiency and
overcome the limitations of Cas protein recognizing the
PAM sequence, a modified SpCas9 protein that recognizes
the “NG” PAM sequence is used.61 After the electroporation
method, ABE7.10–SpCas9–NG is transmitted to both cells
and shows an editing efficiency frequency of 82.1% in CuFi-3
cells and 54.5% in primary cells. Furthermore, in edited cells,
activation and inhibition of CFTR are observed by adding
forskolin and IBMX, and GlyH-101, respectively.62 This ap-
proach utilized electroporation and RNP delivery methods,
which avoid the immune responses associated with viral
vectors and risks of prolonged or off-target effects.63 Addi-
tionally, using a BE to correct genes in quiescent cells like
airway epithelial cells demonstrates higher efficiency in
genome editing and is more suitable than using the
CRISPR/Cas system with the HDR pathway.64

Prime Editor
As for using PE attempt to correct the CFTR W1282X variant
involves. The W1282X variant is also a Class 1 cystic fibrosis
variant that prevents the creation of any CFTR. To fix the
W1282X variant, codon 1282,which codes for the amino acid
tryptophan, needs to be changed fromTGA toTGG, as TGA is a
stop codon. However, it is noteworthy that due to the PE’s
large size, two to three lentiviruses or AAV are needed to
deliver the PE machinery into cells. To overcome this limita-

tion, the invention of helper-dependent adenovirus (HDAd),
which has a large capacity of 37 kb and shows efficient
transduction of airway cells and low toxicity by removing
all viral coding sequences, has made it possible to deliver the
PEmachinery into host cells efficiently.65,66 All pegRNAwith
an 11-nt primer binding site (PBS) and a 15-nt RT template,
PE, and the nick gRNA(-37)-1 are packaged in an HDAd and
then applied to induced pluripotent stem cell (iPSC)-derived
airway epithelial cells. The result demonstrates that
71.7�5.4% of cells received the PE machinery, but only
approximately 2.4�0.6% of cells were corrected. Although
editing efficiency showed low-frequency results, in the
Ussing chamber assay, the edited cells successfully showed
an increase in Isc (short-circuit current) after stimulation
with forskolin (FSK), which can raise the level of cAMP
resulting in activation of CFTR, aligning with the expected
CFTR function compared with the unedited iPSC-derived
airway epithelial cell showing no response. Even though
the PE is a safer genome editing tool that doesn’t require
any donor template or creation of DSBs, it is not yet permit-
ted for clinical trials because of its significantly low overall
editing efficiency. Since PE is a current genome editing
technique, it seems to require more experiments and infor-
mation before it is applied to clinical trials.67 However, this
approach showed the promising solution for capacity prob-
lem that delivery vector, including AAV vector, normally has.

Duchenne Muscular Dystrophy
DMD is a progressive muscle degenerative disease that
causes difficulties with movement, requires ventilation sup-
port, and ultimately leads to premature death due to heart
failure. Predominantly affecting males, patients with DMD
often become wheelchair-bound before the age of 12 and
may pass away in their early 20s. This condition is an X-
linked recessive disorder caused by variants in theDMD gene,
responsible for encoding dystrophin, a protein vital for
muscle function. These variants disrupt the production of
the muscle isoform of dystrophin. Dystrophin is a rod-
shaped cytoplasmic protein that links the cytoskeleton of a
musclefiber to the surrounding extracellular matrix through
the cell membrane. This linkage is facilitated by the dystro-
phin-associated protein complex (DAPC).Without a properly
formed DAPC, muscle tissue loses its functionality, leading to
cardiomyopathy.68

From a genetic standpoint, the DMD gene spans a full
length of 11.4 kb and hosts four internal promoters—Dp260,
Dp140, Dp116, and Dp71—that produce N-terminal truncat-
ed nonmuscle isoforms of dystrophin. Additionally, the Dp40
promoter initiates alternative splicing at the 3′-end and
alternative polyadenylation, creating an additional isoform.
The main domain of the DMD gene is segmented into four
parts: the “N-terminal F-actin-binding domain” encoded by
exons 1 to 8 (ABD), the “central rod domain” encoded by
exons 8 to 64, the “cysteine-rich domain” encoded by exons
64 to 70 (CR), and the “C-terminal domain” encoded by exons
71 to 79 (CT). Moreover, the rod domain is composed of 24
spectrin-like repeats and four interspersed hinges. DMD
manifests from frameshift variants that cause deletions or
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duplications in specific parts of the gene, and nonsense
variants, which result in incomplete dystrophin proteins.
Consequently, patients with DMD exhibit truncated exons,
leading to a deficiency of dystrophin and a disruption in the
connections between the cytoskeleton and the extracellular
matrix. However, BMD, characterized by the presence of
partially functional dystrophin that includes the main
domains—ABD, CR, and CT—presents with milder symptoms
of DMD.69

As mentioned about BMD, it is notable to see that if DMD
gene is truncated but maintaining the reading frame, dystro-
phin protein can still be partially functional resulting in mild
symptoms of DMD.70–72 By using this knowledge, methods of
mitigating symptoms of DMD have been invented.

In recentdevelopments, ASOs have emerged as a promising
therapeutic option to address or alleviate the symptoms of
DMD variants. ASOs, utilizing an exon skipping method, can
restore a reading framebyskippingoneormoreexons, thereby
producing functional dystrophin. Innovations in this area have
led to the emergence of a new generation of ASO drugs,
including peptide-conjugated phosphorodiamidate morpho-
lino oligomers (P-PMO) and Tricyclo-DNA (tcDNA).73,74

Although ASOs are considered one of the most promising
methods for treating DMD, they require repeated adminis-
tration as they do not permanently alter the underlying
genetic defect. Consequently, permanent gene correction
therapy is necessary for DMD patients. Commonly, the
AAV vector is used as a delivery method for treating DMD
due to its safety and stability. While there is currently a
micro-dystrophin gene therapy that employs an AAV vector
in an episomal form,75 the approaches described here focus
on gene correction methods, including exon deletion,
reframing, and skipping.

CRISPR/Cas System
An experiment using the CRISPR/Cas system with an AAV
delivery vector has been devised to correct the mutated DMD
gene inanmdxmouse. This approachemploysexondeletionto
restore the reading frameof theDMD geneby deleting an exon
where a nonsense variant has occurred. Two AAV8 vectors
were employed: one vector contained two gRNAs targeting
introns 22 and 23, respectively, and the other vector carried
SaCas9, aiming to delete the mutated exon 23 using the NHEJ
pathway. The editing efficiency achieved was approximately
2%, leading to restored dystrophin expression. This restoration
significantly improved muscle morphology and enhanced
both skeletal and cardiac muscle functions, with restored
dystrophin protein at 8 and 67% of muscle fibers testing
positive for dystrophin compared with the wild type.76 This
approach is recognized as one of the common gene therapy
methods for treatingDMDthroughexondeletion. Toovercome
the limited capacity of AAV vectors, Nelson et al utilized two
AAV8 vectors. Although this strategymayaddress the capacity
issue of AAV vectors, it introduces the potential for dosage
problems, which could lead to viral toxicity and potentially
result in low-editing efficiency.

On the other hand, the purpose of exon reframing and
skipping is to restore a functional reading frame and produce

a truncated yet functional dystrophin protein by creating
indels in specific parts of the mutated DMD gene. To demon-
strate this approach for clinical approval, an experiment was
performed on a humanizedDMDmousemodel. This involved
inserting human exon 51, commonly mutated in human
DMD, and deleting mouse exon 50, by creating an indel
with the NHEJ pathway between the premature termination
codon 5′-TGA-3′, the PAM sequence for Cas9 protein in this
experiment, and the 5′-AG-3′ splice acceptor. The result was
a reframing by either one nucleotide insertion (3nþ1) or
two nucleotides deletion (3n�2). Additionally, the indelwas
large enough to potentially disrupt the 5′-AG-3′ splice donor,
which could lead to the skipping of exon 51. To facilitate this,
SpCas9-VRQR and two copies of sgRNA-9, recognizing the 5′-
TGA-3′ PAM sequence in human exon 51, were incorporated
into an AAV9 vector and a scAAV vector, respectively. These
were then introduced into the tibialis anterior, triceps,
diaphragm, and heart of the mDmd DEx50; hDMD Ex51
knock-in humanized DMDmouse model. As a result, dystro-
phin protein expression reached 18 to 25% of wild-type levels
in all targeted tissues, with indel frequencies of 11, 15, 13,
and 17% in the tibialis anterior, triceps, diaphragm, and
heart, respectively. Reframing events—either one nucleotide
insertion (þT) or two nucleotides deletion (�GT)—accounted
for an average of 55 to 65%, and exon skipping events
occurred at an average rate of 4.5 to 12.8%.

While this approach yielded notable results and
addressed the issue of limited vector capacity, it cannot be
universally applied due to potential safety challenges in
clinical settings. The experiment indicated that alterations
in amino acid residues around the reframed exon could
generate neoantigens. Additionally, there is a risk of liver
damage in large animals due to the injection of high doses of
AAV, the viral vector used.77–79

Base Editor
In their efforts to develop new treatments forDMD, Chemello
and colleagues turned to advanced gene editing tools. They
applied anABE to amousemodelwith exon 51deletion in the
DMD gene causing DMD (DEx51), which results in a stop
codon in exon 52. Seeking to enhance the functionality of the
dystrophin protein, albeit in a truncated form, they experi-
mented with skipping either exon 50 or exon 52 by employ-
ing a single-swap base pair transition at either the splice
donor site (SDS) or splice acceptor site of the introns.

After numerous trials to find the most effective gRNA and
BE combination for this base transition, the researchers
chose ABEmax–SpCas9–NG41,80 and a sgRNA targeting the
antisense strand of the SDS region of exon 50 (5′-AC-3′). This
setup, which showed the highest editing efficiency among
the various combinations tested, was then packaged into an
AAV9 vector. Due to the size constraints of the AAV vector,
which has a packaging limit of less than 5 kb and the
ABEmax–SpCas9–NG BE size of 5.8 kb, a dual AAV9 system
utilizing a split-intein system was used for delivery.43 Each
half of the ABEmax–SpCas9–NGwas fused with halves of the
DnaE intein from Nostoc punctiforme (Npu)81 and then
transduced into DEx51 mice.
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The on-target editing efficiency in these experiments was
approximately 35%, resulting in 54% of dystrophin expression
relative to thewild typeandrestored96.5%ofmyofibers. To see
if this method could be applied to humans, 51-deleted human
iPSC-derived cardiomyocytes (DEx51 iPSC) were generated.
Using the same BE strategy of skipping exon 50, sgRNA-1
targeting theSDSofhumanDMDexon50andABEmax–SpCas9
were injected intoDEx51 iPSC, which showed a relatively high
on-target efficiency of 87.7%.82 The benefit of using SpCas9–
NG is itsmore relaxedPAMrecognition,which increases target
availability. Furthermore, this approach does not cause DSBs
and addresses the problem of vector capacity using a split-
intein system. However, since the approach utilizes dual AAV
vectors, it exceeds the Food and Drug Administration-recom-
mended dosage for AAV vectors, which could lead to signifi-
cant viral toxicity.83

Prime Editor
Buildingonthis,ChemelloandtheteamexploredusingPEhEx52-
PEandsgRNA-4,previouslyusedinBEfor itsefficiency, toreframe
exon 52 by inserting dinucleotides 5′-AC-3′ into its antisense
strand. They also employed two types of sgRNA to increase
editing efficiency: one causing a nick 29 nucleotides upstream
(nick-1) and another 52 nucleotides downstream (nick-2) on the
sense strand of the same cells.2 They detected a 20.2% efficiency
for introducing aþ2-nt GT insertion using hEx52-PEwith nick-1,
and a 54.0% efficiencywith hEx52-PE andnick-2. Comparedwith
healthy control iPSC-derived cardiomyocytes, the expression of
dystrophin proteinwas 24.8%with nick-1 and 39.7%with nick-2.
Moreover, the percentage of arrhythmic calcium traces in these
human cardiac iPSC models of DMD, which was approximately
64%, decreased to 38 and 41% after injectionwith hEx52-PE and
nick-1, and hEx52-PE and nick-2, respectively.82

Despite these promising results, the progression toward
clinical trials has been complicated by uncertainties regard-
ing the appropriate viral dosage, highlighting the need for
more precise dosing strategies to ensure safety and efficacy
in clinical applications.

Discussion

CRISPR-related treatments represent a versatile and promis-
ing technology capable of addressing virtually any disease by
correcting the genetic abnormalities that underlie specific
conditions. As technology advances, we anticipate the devel-
opment of more advanced genome editing tools, akin to the
emergence of BE and PE. This review examines the mecha-
nisms of these genome editing tools and their application in
treating hereditary and typically genetic disorders.

In the context of hemophilia, there is currently no substan-
tial evidence or experimental data to demonstrate effective
treatment using PE. Instead, various alternative treatments
have been devised, including the bypass method, which does
not target the mutant gene directly. Similarly, for conditions
such as cysticfibrosis andDMD, thebypassmethod employing
ASOshasbeenused.74,84Nevertheless, this reviewemphasizes
that most genome correction strategies for these diseases,
includingPE, focusondirectly rectifying theresponsiblegenes.

Furthermore, the methods described for enhancing treat-
ment efficacy primarily aim to address the existing limita-
tions of genome editing, such as immunogenicity, dosage-
dependent toxicity of viral vectors, and limited vector capac-
ity. For example, using a nanocomplex as a delivery vector
could potentially mitigate the immunogenicity associated
with viral vectors. However, while promising safety results in
gene therapy have been demonstrated, challenges persist,
particularly in using nanoparticles for treating respiratory
diseases like cystic fibrosis.85 Regarding PE, despite its
potential to correct 89% of human genetic diseases due to
its extensive editing range, the mechanisms and challenges
impacting editing efficiency—including the length of the PBS
and pegRNA, target cell type, and challenges in finding a
suitable vector due to its full size—remain inadequately
understood.86

It’s important to note that overcoming one limitation does
not always guarantee desired outcomes. Numerous factors
must be considered, including the choice of vector (e.g.,
lentivirus, AAV, or nonviral vectors), chromatin accessibility,
cell cycle presence, the length of the donor template, the type
of Cas protein used, and cell types. This review does not
account for all these variables or extensively compare results.
It primarily focuses on enhancing treatment efficiency
through methods that address the limitations of current
gene therapy, predominantly using AAV vectors. Therefore,
for a comprehensive comparisonofeditingefficiencies and to
achieve high treatment outcomes as described here, onemust
refer to further studies and conduct additional investigations.

Moreover, for those researching ways to enhance editing
efficiency, it is encouraging to note that many novel methods
and technologies are continually being developed, potential-
ly leading to significant therapeutic outcomes.87–91
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