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Abstract Background The early diagnosis of Alzheimer’s disease (AD) and mild cognitive
impairment (MCI) remains a significant challenge in neurology, with conventional
methods often limited by subjectivity and variability in interpretation. Integrating deep
learning with artificial intelligence (AI) in magnetic resonance imaging (MRI) analysis
emerges as a transformative approach, offering the potential for unbiased, highly
accurate diagnostic insights.
Objective A meta-analysis was designed to analyze the diagnostic accuracy of deep
learning of MRI images on AD and MCI models.
Methods A meta-analysis was performed across PubMed, Embase, and Cochrane
library databases following the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines, focusing on the diagnostic accuracy of deep
learning. Subsequently, methodological quality was assessed using the QUADAS-2
checklist. Diagnostic measures, including sensitivity, specificity, likelihood ratios,
diagnostic odds ratio, and area under the receiver operating characteristic curve
(AUROC) were analyzed, alongside subgroup analyses for T1-weighted and non-T1-
weighted MRI.
Results A total of 18 eligible studies were identified. The Spearman correlation
coefficient was -0.6506. Meta-analysis showed that the combined sensitivity and
specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds
ratio were 0.84, 0.86, 6.0, 0.19, and 32, respectively. The AUROC was 0.92. The
quiescent point of hierarchical summary of receiver operating characteristic (HSROC)

received
February 22, 2024
received in its final form
April 24, 2024
accepted
May 6, 2024

DOI https://doi.org/
10.1055/s-0044-1788657.
ISSN 0004-282X.

Editor-in-Chief: Hélio A. G. Teive.
Associate Editor: Sonia Maria
Dozzi Brucki.

© 2024. The Author(s).
This is an open access article published by Thieme under the terms of the

Creative Commons Attribution 4.0 International License, permitting copying

and reproduction so long as the original work is given appropriate credit

(https://creativecommons.org/licenses/by/4.0/).

Thieme Revinter Publicações Ltda., Rua do Matoso 170, Rio de
Janeiro, RJ, CEP 20270-135, Brazil

THIEME

Original Article 1

Article published online: 2024-08-15

https://orcid.org/0000-0002-8368-5513
https://orcid.org/0000-0002-1915-0186
https://orcid.org/0009-0001-6746-6003
https://orcid.org/0009-0001-3290-9898
https://orcid.org/0009-0004-1530-0564
https://orcid.org/0009-0002-2410-8764
mailto:Jieli_btch@163.com
https://doi.org/10.1055/s-0044-1788657
https://doi.org/10.1055/s-0044-1788657


INTRODUCTION

A study has shown that Alzheimer’s disease (AD), the most
common neurodegenerative cause in patients with demen-
tia, is primarily characterized bya decline in brain function in
multiple areas, includingmemory, reasoning, and language.1

Patients with AD account for 50–70% of all patients with
neurodegenerative dementia. Unfortunately, with the trend
towards an aging population, the number of patientswith AD
is expected to surge. Xia, P. et al. investigated that there were
approximately 6.08million cases of AD in the United States in
2017, but the number is expected to reach 1.5 billion by
2060.2 Besides, according to Klyucherev, T. O. et al., the
healthcare expenditure on caring for dementia patients
was estimated to be $700 million in the United States in

2020, and the economic cost spent on AD patients exceeded
the cost of cancer or cardiovascular disease,3 which brought
great trouble to mankind. Based on previous studies, it is
known that AD is a complex, heterogeneous, and progressive
disease. The predominant molecular mechanism of AD is the
formation of toxic amyloid-β oligomers and protein aggre-
gates, as well as the formation of neurofibrillary tangles
composed of Tau Protein Hyperphosphorylation, thereby
leading to region-specific reduction of brain glucose metab-
olism synaptic dysfunction, andmitochondrial dysfunction.4

There are 4 main stages in the development of AD, including
the presymptomatic stage, the prodromal stage of mild
cognitive impairment (MCI), and the clinical form of AD.
Although the efficacy of pharmacological treatments for AD
is unsatisfactory, cognitive and physical activity treatments

was 3.463. Notably, the images of 12 studies were acquired by T1-weighted MRI alone,
and those of the other 6 were gathered by non-T1-weighted MRI alone.
Conclusion Overall, deep learning of MRI for the diagnosis of AD and MCI showed
good sensitivity and specificity and contributed to improving diagnostic accuracy.

Resumo Antecedentes O diagnóstico precoce da doença de Alzheimer (DA) e do compro-
metimento cognitivo leve (CCL) continua sendo um desafio significativo na neurologia,
com métodos convencionais frequentemente limitados pela subjetividade e variabili-
dade na interpretação. A integração da aprendizagem profunda com a inteligência
artificial (IA) na análise de imagens de ressonância magnética surge como uma
abordagem transformadora, oferecendo o potencial para insights diagnósticos impar-
ciais e altamente precisos.
Objetivo Uma metanálise foi projetada para analisar a precisão diagnóstica do
aprendizado profundo de imagens de ressonância magnética emmodelos de DA e CCL.
Métodos Uma metanálise foi realizada nos bancos de dados das bibliotecas PubMed,
Embase e Cochrane seguindo as diretrizes Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA), com foco na precisão diagnóstica do aprendizado
profundo. Posteriormente, a qualidade metodológica foi avaliada por meio do checklist
QUADAS-2. Medidas diagnósticas, incluindo sensibilidade, especificidade, razões de
verossimilhança, razão de chances diagnósticas e área sob a curva característica de
operação do receptor (area under the receiver operating characteristic curve [AUROC])
foram analisadas, juntamente com análises de subgrupo para ressonância magnética
ponderada em T1 e não ponderada em T1.
Resultados Um total de 18 estudos elegíveis foram identificados. O coeficiente de
correlação de Spearman foi de -0,6506. A metanálise mostrou que a sensibilidade e a
especificidade combinadas, a razão de verossimilhança positiva, a razão de verossimi-
lhança negativa e a razão de chances de diagnóstico foram 0,84, 0,86, 6,0, 0,19 e 32,
respectivamente. A AUROC foi de 0,92. O ponto quiescente do resumo hierárquico da
característica de operação do receptor (hierarchical summary of receiver operating
characteristic [HSROC]) foi 3,463. Notavelmente, as imagens de 12 estudos foram
adquiridas apenas por ressonância magnética ponderada em T1, e as dos outros 6
foram obtidas apenas por ressonância magnética não ponderada em T1.
Conclusão Em geral, a aprendizagem profunda da ressonância magnética para o
diagnóstico de DA e CCL mostrou boa sensibilidade e especificidade e contribuiu para
melhorar a precisão diagnóstica.
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in the early stages of AD, such as the MCI period, play a
positive role in reducing cognitive decline.5 Therefore,
researchers have concluded that early detection of brain
changes associated with AD is the key to more effective
clinical interventions and prevention of disease progression
andmorbidity.6 Hence, early diagnosis is particularly impor-
tant for AD patients.

Currently, imaging modalities are used to identify the
early diagnostic and prognostic factors of AD in clinical
practice. Among them, magnetic resonance imaging (MRI)
is an essential method often used to explore the neuropath-
ological mechanisms and clinical diagnosis of AD and MCI.7

MRI, asmorphometry primarily based on voxel, is a valid and
noninvasive method to quantify volumetric brain atrophy
caused by severe neuronal loss. Moreover, the integrity of
white matter fiber bundles within axonal projections can be
assessed in vivo using diffusion tensor imaging.8 MRI can
clearly define the pattern of brain injury. On the one hand,
MRI measurements of medial temporal lobe atrophy are
considered to be a valid marker for clinical AD diagnosis,
which can distinguish AD from other brain disorders. On the
other hand, MRI can also determine the risk of developing AD
or other brain abnormalities from MCI.9 Due to the high
utility of MRI for the diagnosis of AD and MCI, several rating
scales have also been established to aid in diagnosis.10

Besides, a number of studies have begun to develop comput-
er software for automatic MRI assessment to increase diag-
nostic accuracy and consistency. However, in the process of
clinical transformation, the reliability of automatic diagnos-
tic results is not ideal as a wide range of disease character-
istics are not specific. Luckily, with the development of
artificial intelligence (AI) technology and the popularity of
medical applications, diagnostic algorithms can be built
through deep learning of clinical data. Such algorithms can
be optimized repeatedly to minimize errors.

Moreover, there are many studies today that deep learn-
ing—a branch of AI that utilizes layered neural networks to
model and analyze vast amounts of data—based on MRI
images is employed for the diagnosis of AD. This method is
able to reliably capture and quantify a variety of subtle MRI
changes throughout the brain, and then amplify the com-
plexity and heterogeneity of AD and brain aging.11 In
addressing the complexities of AD and MCI diagnosis, the
role of deep learning cannot be overstated.12 Specifically,
within the domain of MRI analysis, deep learning techniques
have the potential to revolutionize diagnostic processes by
autonomously identifying and extracting pivotal features
from imaging data, a task that traditionally required exten-
sive manual intervention.13 The application of these ad-
vanced AI models to neuroimaging data has been shown to
significantly enhance the detection of early and subtle
neuroanatomical changes indicative of AD and MCI, thereby
offering promising avenues for timely and accurate diagno-
ses.14Nonetheless, no studies have evaluated the accuracy of
deep learning in MRI for diagnosing AD and MCI. The objec-
tive of this paper was to collect relevant studies on deep
learning of MRI for diagnosis of AD and MCI and conduct a
meta-analysis to verify the diagnostic accuracy of these

articles. These findings have the potential to significantly
enhance the diagnostic process for Alzheimer’s disease and
mild cognitive impairment, leading to earlier and more
accurate identification of these conditions. Such advance-
ments could greatly improve patient outcomes by enabling
timely intervention and personalized treatment strategies,
ultimately contributing to a better quality of life and slower
disease progression.

METHODS

Literature search strategy
This study was conducted on the grounds of the regulations
in the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA).15 Taking MRI, deep learning, AD,
MCI, and diagnostics as keywords, the data were searched
from PubMed, EMbase and Cochrane library database, and
the results of different queries were combined using Boolean
operator AND. Also, the reference lists of the included studies
were manually searched to identify any relevant articles.

Inclusion and exclusion criteria
Among the collected studies, the research complying with
the following inclusion criteria was enrolled for meta-
analysis:

• observational project: a meta-analysis of MRI-based deep
learning diagnosis of AD and MCI;

• subjects: patients with AD and MCI;
• intervention (subgroups): deep learning modeling group;

and
• evaluation metrics: sensitivity, specificity, positive likeli-

hood ratio, negative likelihood ratio, diagnostic odds ratio,
and area under the receiver operating characteristic curve
(AUROC).

Exclusion criteria included magazine publication types
(e.g., reviews, letters to the editors, editorials, conference
abstracts); and scientific publication types, such as case
reports, meta-analyses, literature reviews, and cross-sec-
tional studies; full-text not available; data not extracted;
and participants with AD and other mental illnesses. Also,
the subjectsmust not have been the study ofMRI-based deep
learning for differential diagnosis of AD and MCI.

Data extraction
A standardized form was developed to capture information
including first author, country, year of publication, type of AI
model, number of patients, patient characteristics (-
mean/median age, gender), and diagnostic efficiency. The
above information was extracted independently by two
evaluators from each eligible study. In addition, data such
as AUROC, sensitivity, specificity, and accuracy were
extracted for data processing and forest mapping.

Quality assessment
The risk of bias was initially assessed independently by two
evaluators. Then, a third evaluator was responsible for
reviewing each study using the Quality Assessment of
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Diagnostic Accuracy Studies-2 (QUADAS-2) guidelines.16 The
QUADAS-2 tool could be used to assign the risk of bias to
“low”, “high”, or “uncertain” based on a “yes”, “no”, or
“uncertain” response to the relevant marked question con-
tained in each section. For example, if the answer to all
landmark questions in the scope was “yes”, then it could be
rated as a low risk of bias; if the answer to all information
questions was “no”, then the risk of bias was rated as “high”.
To ensure the accuracy and reliability of the information
gathered, all data were initially extracted independently by
two evaluators. In cases where discrepancies arose, a pre-
defined protocol was employed to resolve these differences.
This involved a detailed discussion between the evaluators to
reach a consensus. If consensus could not be achieved, a
third, senior evaluator was consulted to make the final
decision. This rigorous procedure was designed to minimize
subjective interpretation and bias, thereby enhancing the
reliability of the data extraction process.

Statistical analysis
In this study, Stata 16.0 software was used to calculate the
combined sensitivity and specificity of each study to assess
the accuracy of themeta-analysis, and the combined positive
likelihood ratio, combined negative likelihood ratio, and
combined diagnostic ratio were also calculated. The total
receiver operating characteristic (ROC) curvewas also drawn
to calculate AUC. Hierarchical summary of receiver operating
characteristic (HSROC) curves with credible and predictive
regions were simultaneously constructed. The Spearman’s
correlation coefficient test was calculated to determine
whether there was heterogeneity caused by the threshold
effect. Deek’s funnel plot was plotted to assess the publica-
tion bias more intuitively. p<0.05 indicated a statistically
significant difference.

RESULTS

Literature screening
The literature search process is shown in the PRISMA flow-
chart in►Figure 1. There were 257 studies identified, and 40
duplicate studies were removed. The remaining studieswere
screened. Of them, 175 did not meet the inclusion criteria
based on title and abstract. The remaining 42 complete
manuscripts were individually assessed, and finally, 35 stud-
ies were eligible for inclusion in our systematic review. 15
papers were available for meta-analysis,17–31 and 20 articles
were excluded due to insufficient data.

The included studies were published from 2019 to 2023.
Among them, 1 study involved 3 research projects, and 1
study included 2 research projects. Therefore, we collected
data from 18 studies. Of them, 6 of these studies were
conducted in China, 4 in South Korea, 2 each in Spain, Italy,
and Iran, and 1 each in India and Singapore (►Table 1). The
adopted AI learning models in these studies included CNN
(EfficientNet), 3D CNN, CNNþ Transfer Learning, Long Short-
Term Memory (LSTM) networksþCNN, CNNþ iterated Ra-
dio Frequency (RF), 2D CNNs, Support VectorMachine (SVM)
þAuto-Encoder Neural Networks, CNNþXGBoost, 3D CNN

þ SVM and 3D CNNþComputer Aided Engineering (CAE)
(►Table 2). The results of the quality assessment of the
included literature are shown in ►Table 3 and ►Figure 2.

Meta-analysis results
Among the 18 studies included in this research, the Spearman
correlation coefficient test showed that the coefficient was
-0.6506, (p¼0.0035), suggesting the presence of a threshold
effect. A random-effectsmodel was adopted for meta-analysis
owing to the heterogeneity of the included studies (I2¼31%,
95% CI¼0–100). The sensitivity and specificity of deep learn-
ing in MRI for diagnosing AD and MCI were combined and
analyzed. The results suggested that the combined sensitivity,
combined specificity, positive likelihood ratio, negative likeli-
hood ratio, and diagnostic odds ratio were 0.84 (95% CI: 0.77–
0.89), 0.86 (95% CI: 0.79–0.91), and 6.0 (95% CI: 3.8–9.4), 0.19
(95%CI: 0.12–0.28), 32 (95%CI: 14–72), respectively (►Figures

3A andB). In addition, theAUROC curve (►Figure 3C)was 0.92
(95% CI: 0.89–0.94), indicating that MRI-based deep learning
had high accuracy in differentiating the diagnosis for AD and
MCI in terms of sensitivity and specificity. Then, HSROC
analysiswasperformed to avoid the threshold effect that could
adversely affect the results (►Figure 3D). The Q-point of the
HSROC curve was 3.463. The results of HSROC suggested that
MRI-based deep learning exhibited good sensitivity and spec-
ificity in diagnosing AD and MCI, as well as a high diagnostic
odds ratio.

Analysis of publication bias in the literature
Deek’s funnel plot was adopted to assess whether there was
publication bias in the collected literature. The results
showed (►Figure 4) that the collected studies were approxi-
mately distributed along the central axis of symmetry in
Deek’s funnel plot (p¼0.77). This data illustrated the absence
of publication bias in our collected literature.

Figure 1 PRISMA flowchart outlines the process of studies’ selection.
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Subgroup analysis
As shown in ►Table 1, structural MRI (sMRI) was used in 1
study, T1-weighted brain MR images17,18,22,23,25,27–31 were
used in 12 studies, and T1 and T2-weighted brain MR images
were used in 2 studies.20 In addition, therewas 1 study, using
T2-weighted brain MR images21 and fMRI24 for diagnosis,
and 1 study did not specify the diagnostic method.19 These
diagnosticmethods could be reduced to twoMRI techniques,
namely, the T1-weighted MRI alone group (containing 12
studies) and the non-T1-weighted MRI alone group (con-
taining 6 studies).

According to ►Table 4, the combined sensitivity of T1-
weightedMRIwas 0.84 (95% CI: 0.74–0.91), whichwas similar
to that of non-T1-weighted MRI (0.84, 95% CI: 0.72–0.91), but
therewasno significantdifference. Additionally, the combined
specificity, negative likelihood ratio, positive likelihood ratio,
and combined diagnostic ratio of T1-weighted MRI and non-
T1-weighted MRI were not significantly different. However,
the positive likelihood ratio of T1-weighted MRI was 5, while
the positive likelihood ratio of non-T1-weighted MRI was 8.3,
indicating that thepositive likelihoodof non-T1-weightedMRI
was higher. Therefore, when the result was positive, the
patients may be diagnosed as positive more accurately by
non-T1-weighted MR. Moreover, the AUC for T1-weighted
MRI was 0.91, and for non-T1-weighted MRI was 0.93, both

indicating gooddiagnostic accuracy. Thesedata suggested that
the two MRI techniques were similar in terms of sensitivity,
negative likelihood ratio, and AUC, but non-T1-weighted MRI
had a slight advantage in specificity and positive likelihood
ratio. Nevertheless, these differences may be not statistically
significant due to the overlapping of CI.

DISCUSSION

The data of many images, such as MRI, computed tomogra-
phy, and positron emission tomography, need to be collected
and generated during the diagnosis and treatment of AD or
MCI.32 Clinically, medical staff usually evaluate this data
subjectively and formulate treatment plans based on expe-
rience. Accurate early diagnosis of AD andMCI is essential for
treatment. However, the features of the imaging data ob-
served only relying on the naked eye of the medical staff
were limited andmaymakemany potential imaging data not
fully revealed.33 In recent years, many researchers have
attempted to use sophisticated mathematical and statistical
algorithms to extract hard-to-observe quantitative informa-
tion to increase the diagnostic accuracy of AD and the
potential to predict the worsening progression of MCI.34

In this study, we collected 15 articles from 2019 to 2023
and analyzed the diagnostic accuracy of deep learning

Table 1 Basic characteristics of the included studies

Author Year Country MRI Sample size Database Type of
researchAD MCI

Li H26 2023 China structural Magnetic
Resonance Imaging(sMRI)

151 142 ADNI Retrospective

Agarwal D17 2023 Spain T1-weighted brain MRI 229 229 ADNI Retrospective

Tanveer M30 2022 India T1-weighted brain MRI 187 398 ADNI Retrospective

Gao L23 2022 China T1-weighted brain MRI 154 145 ANDI Retrospective

Chen X21 2022 China T2-weighted brain MRI 43 97 ADNI Retrospective

Agarwal D18 2022 Spain T1-weighted brain MRI 245 229 ADNIþ IXI Retrospective

Mehmood A27 2021 China T1-weighted brain MRI 85 70 ADNI Retrospective

Kang W25 2021 China T1-weighted brain MRI 187 382 ADNI Retrospective

Hedayati R24 2021 Iran Functional magnetic
resonance imaging (fMRI)

100 100 ADNI Retrospective

Akramifard H19 2021 Iran Not explicitly stated 156 338 ADNI Retrospective

Suh C H29 2020 South Korea T1-weighted brain MRI 161 363 Asan Medical Center Retrospective

Suh C H29 2020 South Korea T1-weighted brain MRI 68 63 Kyung Hee University
Hospital at Gangdong

Retrospective

Suh C H29 2020 South Korea T1-weighted brain MRI 178 317 ADNI Retrospective

Feng W22 2020 China T1-weighted brain MRI 130 133 ADNI Retrospective

Wee C Y31 2019 Singapore T1-weighted brain MRI 592 899 ADNI Retrospective

Oh K28 2019 South Korea T1-weighted brain MRI 198 101 ADNI Retrospective

Basaia S20 2019 Italy T1 and T2-weighted
brain MRI

418 533 ADNIþMilan dataset Retrospective

Basaia S20 2019 Italy T1 and T2-weighted MRI 294 510 ADNI Retrospective

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; MCI, mild cognitive impairment; MRI, magnetic
resonance imaging.
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methods based on brain MRI data in AD and MCI through
meta-analysis. These studies were performed based on con-
volutional neural network (CNN) in conjunction with differ-
ent algorithms. CNN involves a great many deep learning
techniques and has been proven to be effective in diagnosing
non-dementia, particularly mild dementia, mild dementia,

and moderate dementia.35 Jo T et al. collected the deep
learning papers on AD published from 2013 to 2018 and
performed a meta-analysis. In their study, they concluded
that deep learning had 83.7% accuracy for AD classification;
the accuracy for predicting progression from MCI to AD was
as high as 96.0%.36 Spasov et al. collected the data of 192

Table 3 Quality assessment results of the quality assessment of diagnostic accuracy studies 2 of the included literature

Author Year Patient selection Index test Reference standard Flow and timing

Li H26 2023 low unclear low low

Agarwal D17 2023 unclear unclear low low

Tanveer M30 2022 unclear low low low

Gao L23 2022 unclear unclear low low

Chen X21 2022 unclear unclear low low

Agarwal D18 2022 unclear unclear low low

Mehmood A27 2021 low low low low

Kang W25 2021 unclear low low low

Hedayati R24 2021 unclear unclear low low

Akramifard H19 2021 low low low low

Suh C H29 2020 low low low low

Feng W22 2020 unclear unclear low low

Wee C Y31 2019 low low low low

Oh K28 2019 unclear low low low

Basaia S20 2019 low low low low

Table 2 Characteristics of artificial intelligence learning models of the included literature

Author Year Modeling Test Set TP FP FN TN

Li H26 2023 CNN (EfficientNet) AD:30,MCI: 30 27 2 3 28

Agarwal D17 2023 3D CNN (EfficientNet-B0) AD:29,MCI: 29 29 4 0 25

Tanveer M30 2022 CNNþ Transfer Learning 20% 37 1 1 79

Gao L23 2022 LSTM networksþCNN AD:31,MCI:18 25 2 6 16

Chen X21 2022 CNNþ iterated RF AD:30,MCI: 30 28 2 2 28

Agarwal D18 2022 3D CNN (DenseNet264) AD:29,MCI: 29 27 10 2 19

Mehmood A27 2021 CNNþ Transfer Learning 20% 13 2 2 12

Kang W25 2021 2D CNNs 20% 26 35 12 42

Hedayati R24 2021 CNN AD:20,MCI: 20 17 1 3 19

Akramifard H19 2021 SVMþAuto-Encoder Neural Networks 10% 8 6 8 28

Suh C H29 2020 CNNþXGBoost 20% 23 19 10 54

Suh C H29 2020 CNNþXGBoost 20% 10 3 4 10

Suh C H29 2020 CNNþXGBoost 20% 24 19 12 45

Feng W22 2020 3D CNNþ SVM AD:23,MCI: 24 22 1 1 23

Wee C Y31 2019 CNN 10% 42 13 18 77

Oh K28 2019 3D CNNþCAE 10% 15 3 5 8

Basaia S20 2019 3D CNN 10% 35 6 7 48

Basaia S20 2019 3D CNN 10% 25 6 5 45

Abbreviations: CAE, Computer Aided Engineering; CNN, Convolutional Neural Networks; LSTM, Long Short-Term Memory; RF, Radio Frequency;
SVM, Support Vector Machine.
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patients with AD and 409 patients with MCI and then built a
deep learning algorithm to distinguish the MCI patients
developing into AD within 3 years from those MCI patients
with stable condition in the same period; the AUCwas 0.925,
the 10-fold cross-validated accuracy was 86%, the sensitivity
was 87.5%, and the specificity of 85%.37 Wei et al. utilized
three-dimensional convolutional neural networks (3D-
CNNs) and MRI to build binary and ternary disease classifi-
cationmodels. Through thesemodels, they observed that the
ternary classification accuracy of the 3D-CNN-support vec-
tor machine (3D-CNN-SVM) for the diagnosis of MCI and AD
were 96.82% and 96.73%, respectively.22 The above findings
revealed the significance of deep learning in improving the
accuracy of MRI-based diagnosis of AD and MCI. The meta-
analysis of this study showed that the deep learning of MRI
had good sensitivity and specificity in diagnosing AD and
MCI overall.

The variability across different deep learning architec-
tures presents both challenges and opportunities for enhanc-
ing diagnostic performance in neurodegenerative diseases.
Studies have demonstrated that the choice of architecture,
from CNNs to more complex models like Recurrent Neural
Networks (RNNs) and their hybrids, can significantly affect
the model’s ability to learn and generalize from neuroimag-
ing data.38 Furthermore, the diversity in training datasets—
spanning various demographics, disease stages, and imaging
protocols—introduces additional layers of variability that can
influence diagnostic outcomes.39 Notwithstanding these
challenges, adopting strategies such as transfer learning,
data augmentation, and ensemble learning models offers
promising pathways to achieving more consistent and reli-
able diagnostic predictions across diverse clinical settings.40

In the literature we collected, the uncertainty of hetero-
geneity was large, but there was no publication bias. More-
over, we did not find any significant difference in the
diagnosis of AD andMCI between the T1-weightedMRI alone
and non-T1-weighted MRI alone. However, it cannot be
ignored that multiple learning models were used in the
literature collected in this paper. These learning models
inevitably induced data bias and then affected the compari-
son of the overall diagnostic performance. The literature

collected in this study was also retrospective, and most of
the studies had no directly available data and deep learning
codes. Moreover, only internal validation or resampling
methods were used to judge the accuracy of deep learning.
Such validation methods lack generalization, and the inter-
nal validation tends to overestimate the AUC, especially for
out-of-distribution detection on 3D medical images.41 Si-
multaneously, what could not be ignored was that the
insufficiency of prospective studies on deep learning for
AD and MCI limited the integration of AI models with the
clinical setting.42 Therefore, externally validated predictive
models using images from different hospitals are required to
create reliable estimates of the performance level at other
sites. In addition, reports with incomplete data were re-
moved during the literature screening, which might affect
the estimates of diagnostic performance.43 Besides, the
results of the calculations may be geographically biased,
since the included studies were from geographically diverse
quantitative distributions; moreover, the type of scanner
used for diagnosis, the imaging protocol, and the diagnostic
criteria for AD and MCI may also affect the accuracy of
results.44 However, deep learning itself has great potential
because it can continuously improve the algorithms to
increase the accuracy. Therefore, future research should
prioritize the development of standardized protocols for
data acquisition and preprocessing. Additionally, there’s a
pressing need for collaborative efforts to establish large,
annotated datasets that reflect the diversity of the global
population. Moreover, the exploration of federated learning
approaches, where AI models are collaboratively trained
across multiple institutions while keeping data localized,
offers a promising direction.

In summary, our meta-analysis underscores the signifi-
cant potential of deep learning algorithms applied to MRI
images in enhancing the diagnostic accuracy for AD andMCI.
The analysis revealed that deep learning models exhibit high
sensitivity and specificity, indicating their reliability in
identifying AD and MCI from neuroimaging data. These
findings highlight the transformative impact of AI in the
field of neurology, offering a promising tool for early and
accurate disease diagnosis. Moving forward, it is imperative

Figure 2 Results of quality evaluation of the included literature. The quality of the literature was assessed by the Quality Assessment of
Diagnostic Accuracy Studies-2 (QUADAS-2). The color coding represents the assessed risk of bias, with green indicating a low risk of bias and
yellow representing some concerns about potential bias.
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Figure 3 Meta-analysis results. (A) Combined sensitivity and specificity forest maps for MRI-based deep learning to diagnose Alzheimer’s
disease and mild cognitive impairment; (B) Combined positive likelihood ratio and negative likelihood ratio for diagnosis of Alzheimer’s disease
and mild cognitive impairment using MRI-based deep learning; (C) The Receiver Operating Characteristic Curve of MRI-based deep learning
for diagnosing Alzheimer’s disease and mild cognitive impairment; (D) Hierarchical summary receiver operating characteristic curves for MRI-
based deep learning to diagnose Alzheimer’s disease and mild cognitive impairment

Table 4 Subgroup analysis

T1-weighted MRI alone Non-T1-weighted MRI alone

Number of studies 12 6

Combined sensitivity (95% CI) 0.84 (0.74, 0.91) 0.84 (0.72, 0.91)

Combined specificity (95% CI) 0.83 (0.73, 0.90) 0.9 (0.84, 0.94)

Positive likelihood ratio (95% CI) 5 (2.8, 8.9) 8.3 (5.0, 14.0)

Negative likelihood ratio (95% CI) 0.19 (0.10, 0.34) 0.18 (0.10, 0.33)

The combined diagnostic odds ratio (95% CI) 26 (9, 79) 46 (17, 127)

AUC 0.91 (0.88, 0.93) 0.93 (0.91, 0.95)

Abbreviations: AUC, Area Under Curve; CI, confidence interval; MRI, magnetic resonance imaging.
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for future research to focus on addressing the challenges of
model variability and data heterogeneity to further refine AI
applications in medical diagnostics. Clinically, integrating AI
into diagnostic workflows has the potential to revolutionize
patient care by enabling timely and personalized treatment
interventions. This research not only contributes to the
existing body of knowledge but also lays a foundational
path for leveraging AI to improve outcomes for individuals
with neurodegenerative disorders.

In conclusion, deep learning models based onMRI images
have the potential to improve diagnostic accuracy in AD and
MCI, which can not only provide clinicians with individual-
ized preoperative noninvasive auxiliary prediction tools but
also increase the early diagnosis rate of the patients with AD
and MCI to develop better treatment strategies. Further-
more, with the continuous improvement of deep algorithms,
more effective algorithms may be developed to further
improve the diagnostic accuracy of AI in AD and MCI.pt
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