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Introduction

Biocatalysis has attracted much attention in the field of
biopharmaceuticals. It has the advantages of mild reaction
conditions, environmental friendliness, strict regioselectiv-
ity, and stereoselectivity, and can be used to prepare pre-
cursors, intermediates, and final chiral products.1–3 For
example, iron- and α-ketoglutarate-dependent oxygenases
were engineered to improve the hydroxylation activity of
N-succinyl-threo-3,4-dimethyoxyphenylalanine to produce

N-succinyl-L-threo-3,4-dimethoxyphenylserine, a precursor
to a psychoactive drug, Droxidopa.4 (S)-Pregabalin, a drug for
the treatment of epilepsy, neuropathic pain, fibromyalgia,
and generalized anxiety disorders, can be synthesized using
regioselectivity of nitrilase and the chiral selectivity of
lipase.5 Throughout natural evolution, wild-type enzymes
are well-adapted to natural substrates but are less active
against unnatural substrates for industrial applications.Most
enzymes are not stable enough for industrial production.
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Abstract Biocatalysis has been widely used to prepare drug leads and intermediates. Enzymatic
synthesis has advantages, mainly in terms of strict chirality and regional selectivity
compared with chemical methods. However, the enzymatic properties of wild-type
enzymes may or may not meet the requirements for biopharmaceutical applications.
Therefore, protein engineering is required to improve their catalytic activities. Thanks
to advances in algorithmic models and the accumulation of immense biological data,
artificial intelligence can provide novel approaches for the functional evolution of
enzymes. Deep learning has the advantage of learning functions that can predict the
properties of previously unknown protein sequences. Deep learning-based computa-
tional algorithms can intelligently navigate the sequence space and reduce the
screening burden during evolution. Thus, intelligent computational design combined
with laboratory evolution is a powerful and potentially versatile strategy for developing
enzymes with novel functions. Herein, we introduce and summarize deep-learning-
assisted enzyme functional adaptive evolution strategies based on recent studies on
the application of deep learning in enzyme design and evolution. Altogether, with the
developments of technology and the accumulation of data for the characterization of
enzyme functions, artificial intelligencemay become a powerful tool for the design and
evolution of intelligent enzymes in the future.
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Therefore, protein engineering has become an important
method to solve this problem.6,7

From the perspective of the catalytic mechanism, en-
zyme-, substrate-, and cofactor-binding conformations that
are spatially and chemically conducive to the target reaction
are crucial to improving the enzyme’s catalytic activity.8–10

Enzyme function is affected by global sites, and there are
synergistic effects of multisite association.11 Through site-
specificmutations, efficientmutants can alter the networkof
residue interactions, further facilitating the formation of
favorable conformations in the reaction environment. These
mutation sites can be located near the catalytic center of the
enzyme or on the surface far away from the catalytic cen-
ter.12–14 For a protein sequence of length N, the number of
potential sequence combinations is 20N, as each site can be
occupied by any of the 20 amino acid residues. For the target
properties, locating the important sites of the enzyme to
obtain efficient mutants is the key problem of protein
engineering.

Three main approaches in protein engineering are direct-
ed evolution, semirational design, and rational design. Di-
rected evolution is combined with high-throughput
screening to obtain the target mutants through iterative
rounds of mutagenesis and screening.15 However, this ap-
proach is highly dependent on the screening strategy16 and
experimental costs. Semi-rational design is based on enzyme
sequences, three-dimensional (3D) structures, catalytic
mechanisms, selection of specific sites, and establishment
of small-scale mutant libraries to improve enzyme func-
tion.17 Therefore, there are high requirements for the struc-
ture resolution of enzymes and an understanding of the
catalytic mechanisms. A semi-rational design usually has a
strong advantage in the active pockets of enzymes, yet, is
more difficult to implement at sites far from the active
center. It can easily fall into local optimal solutions, which
limits its wide application in industry. Therefore, it is crucial
to develop novel methods in protein engineering that can
efficiently guide the development of enzyme catalysts and
reduce research and development costs.

In recent years, owing to the rapid developments of gene
sequencing and high-throughput experimental technology,
several large biological databases, such as GenBank, UniProt,
and the Protein Data Bank (PDB), have been established,
laying the foundation for the application of artificial intelli-
gence in life sciences. The artificial intelligence methods are
novel data-driven strategies independent of enzyme crystal
structure, catalytic mechanism cognition, multi-round iter-
ations, and screening strategies.18 The predicted mutation
sites cover various parts of the global protein, allowing for
the exploration of a larger portion of the protein sequence
structure. Moreover, deep learning is largely seen as a
supervised problem when applied to directed evolution. Its
main task is to learn a function, also named the protein
fitness landscape, from a set of protein sequences with
associated labels (e.g., catalytic activity, selectivity, and
stability), which can further predict the labels of previously
unseen sequences. In each evolution cycle, the function is
used to computationally evaluate a large number of protein

sequences, which are then updated with feedback from
laboratory results. As a result, deep learning achieves better
evolution efficiency than laboratory screening alone.19 Arti-
ficial intelligence, especially deep-learning-assisted enzyme
development, has become a new development trend.20,21

In this review, we summarize the progress of deep-
learning studies on enzyme evolution in recent years and
discuss the advantages and limitations of artificial intelli-
gence in assisting enzyme functional evolution to promote
the application of biocatalysis in the biopharmaceutical field.

Deep-Learning Methods

Deep learning is an important branch of artificial intelligence
that aims to design algorithms to help machines learn from
data and improve their performance of specific tasks. Deep
learning forms a deep network throughmultiple hierarchical
neurons and has strong high-dimensional abstract learning
capability.22 It can automatically extract features from data
without feature engineering, which makes it more advanta-
geous when dealing with massive data. Commonly used
deep-learning methods include the multilayer perceptron
(MLP), recurrent neural network (RNN), convolutional neu-
ral network (CNN), graph neural network (GNN), variational
autoencoder (VAE), generative adversarial network (GAN),
transfer learning, and embedding.

Multilayer Perceptron
MLP, also knownas an artificial neural network (ANN),23 is an
information-processing paradigm inspired by the way bio-
logical nervous system components, such as the brain,
process information. It consists of an input layer, a hidden
layer, and an output layer (►Fig. 1). The input layer receives
the input data x. The hidden layer transforms the input data
linearly, followed by the activation function to obtain the
hidden features. The hidden features are transformed linear-
ly to obtain the output y. The activation function introduces a
nonlinear representation capability into the model. A gradi-
ent-based optimization algorithm is used to determine the
model parameters. For model convergence, the maximum
likelihood criterion is typically used for classification tasks,
and the mean square error is often used as the loss function

Fig. 1 The structure of MLP. MLP, multilayer perceptron.
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for regression tasks. MLP is often used as the base module for
deep-learning models. MLPs have been used for enzyme
catalysis tasks such as enzyme function prediction.24

Recurrent Neural Network
RNN has a temporal relationship with ANNs (►Fig. 2).25 The
input xt of the current moment and the output ht�1 of the
previous moment jointly determine the output ot of the
current moment. RNN adopts a parameter-sharing mecha-
nism in a time series, whichmeans that the input x shares the
weightmatrixU, the output h of the previousmoment shares
the weight matrixW, and the output layer shares the weight
matrix V. RNN uses historical information, which gives it the
ability to remember. RNNs are also used to learn protein
sequence representations based on the approximately 24
million protein sequences in UniRef.26

Convolutional Neural Network
CNN is a deep-learning algorithm most often applied to
analyze and learn visual features from large amounts of
data.27 CNN consists of a convolutional layer, a pooling layer,
and a fully connected layer (►Fig. 3). Convolutional and
pooling layers are added for comparison with ANN. The
convolutional layer is the most important in a CNN and
uses convolutional kernels to extract local features from
the input data in a sliding window manner. CNN uses a
parameter-sharing mechanism, in which the weights of each
convolutional kernel in the convolutional layer are fixed.
Thus, CNN effectively reduces the number of weights to be
estimated and enables the network to learn in parallel. The
pooling layer uses down-sampling to reduce the dimension-

ality of the features, which is usually performed by max and
average pooling. The pooling layer is often located in the
middle of continuous convolutional layers and is used to
compress the feature data and various parameters to prevent
the neural network from overfitting. The output feature data
from the pooling layer are fed into the fully connected layer to
calculate the output prediction. CNN has features such as
parameter sharing and parallelizable learning that make it
advantageous for processing high-dimensional data and ex-
cellent for tasks such as image recognition. CNNs have been
used to encode protein sequences, and attention mechanisms
have subsequently been used to learn the relationship be-
tween each amino acid residue and the conversion rate.28

Graph Neural Network
GNN is a method that enables deep learning of graph data.29

One characteristic of graph data is that each node has unique
features and structural information. GNN receives feature
and structural information from the input graph, undergoes
a multilayer computational transformation, and finally out-
puts the graph (►Fig. 4). The multilayer computational
transformation is divided into three steps: node feature
information extraction, node-local structural information
fusion, and nonlinear transformation after information ag-
gregation. A nonlinear transformation can increase the ex-
pressiveness of the model. GNN is capable of end-to-end
learning of both feature and structural information of a node
and is presently the best model for graph data-learning tasks.
The results from GNN are superior to those of other methods
for tasks such as node classification and edge prediction.
GNNs have been used to learn the representation of 3D

Fig. 2 The structure of RNN. RNN, recurrent neural network.

Fig. 3 The structure of CNN. CNN, convolutional neural network.
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protein structures in protein function prediction and protein
folding classification.30

Variational Autoencoder
VAE is a generativemodel for a priori data distribution.31VAE
consists of two parts: an encoder and a decoder (►Fig. 5). The
encoder embeds the input data x into a low-dimensional
space, and the decoder reconstructs the original input data
from the low-dimensional features. The low-dimensional
features are referred to as the hidden features. VAE appends
additional distribution assumptions to the hidden features,
enabling the sampling of hidden features from the low-
dimensional feature distribution and then generating new
data samples using the decoder. The learning criterion of VAE
minimizes the difference between the original and recon-
structed data. VAEs have been used to generate protein
sequences that can then be used to generatemutant libraries
for enzyme evolution.32

Generative Adversarial Network
GAN, a generative model, learns data distribution using an
adversarial approach.33 GAN consists of two main parts:
generative and discriminative networks (►Fig. 6). The gen-
erative network generates samples from a random distribu-
tion, and the discriminative network identifies whether the

samples originate from the generative network or training
samples. When the discriminant network cannot distinguish
between the training samples and samples from the genera-
tor, the training of the model converges, leaving the trained
generative network to generate new data samples. GAN does
not need to explicitlymodel any data distribution to generate
realistic samples. GANs have been widely used in many
fields, such as imaging, text, speech, and mutant library
generation for enzyme design.34

Transfer Learning
Transfer learning draws on the idea that humans develop
knowledge in tasks and reuse existing knowledge in new and
relevant tasks.35 The information that can be transferred
includes data samples, feature information, model param-
eters, and variable relationships. In transfer learning, a
pretrained model in the relevant domain is typically used
as a starting point to train the target taskmodel on the target
dataset. The advantage of transfer learning is that it does not
require designing and training a completely new network for
the target task, which can reduce the required data volume
for the target task, shorten model development time, and
improve the model performance. Transfer learning has been
successfully used in the image and text domains and for the
generalization improvement of the conditional protein se-
quence generation model.36–38

Embedding Technology
The embedding technology focuses on transforming high-
dimensional sparse variables into dense vectors to facilitate
downstream task processing. This technology was first ap-
plied to the textual domain for transforming words from
one-hot-encoded vectors into dense D-dimensional vectors.
In subsequent scenarios, the vectors were used as static
vectors to represent words, involvingmodels such asWord2-
Vec, GloVe, and FastText.39–42 The static vector representa-
tion, in which each word is represented as a fixed vector,

Fig. 4 The structure of GNN. GNN, graph neural network.

Fig. 5 The structure of VAE. VAE, variational autoencoder.
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cannot effectively distinguish the semantics of the same
word in different contexts; thus, a dynamic vector represen-
tation is then developed. The models involved in dynamic
vector representation are Embeddings from Language Mod-
el,43Generative Pre-trained Transformer,44 and Bidirectional
Encoder Representations from Transformers (BERT).45 The
embedding technology can be used to represent discrete
words, discrete nodes in graph data, amino acid residues in
protein sequence data, and nodes in 3D protein structure
data. For protein sequence representation, UniRep was
trained based on approximately 2.4 million sequence data
in the UniRef50 database, which can be used for downstream
protein function prediction tasks.26 In terms of 3D protein
structure representation, the embedding technology is used
to train the Uni-Mol model for predicting protein-binding
pocket structure based on 3 million protein-binding pocket
data.46 The embedding technology has a strong comprehen-
sive information representation capability and a low
online deployment threshold, making it widely used in the
industry.

Deep-Learning-Assisted Adaptive Evolution
Strategy for Enzyme Engineering

Enzyme engineering promotes the evolution of natural
enzymes tomeet synthetic production requirements. However,
the sequence space of enzymes is large. Rational design
approaches that require protein structures and catalytic mech-
anisms are difficult to scale up efficiently. Recently, deep-
learningmethodshavebeenapplied inseveral studies topredict
protein structures,47 such as AlphaFold and Uni-Fold, as well as
to learn sequence–function relationships from experimental
data,20,48–50 such as DLKcat.27 This adaptive evolution strategy
is consistentwithwet characterization, showsgreat potential to
facilitate automated and intelligent protein design, and effec-
tively aids protein design and evolution. The adaptive evolution
strategy contains the following four modules: sequence–func-
tion data, sequence–function relationship model, virtual mu-
tant generation, and mutant selection (►Fig. 7).51

The sequence–function data module is a database for adap-
tive evolution strategies. This module collects sequence–

Fig. 6 The structure of GAN. GAN, generative adversarial network.

Fig. 7 Overview of adaptive protein engineering strategy.
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function data of proteins, such as catalytic activity of enzymes,
regioselectivity, and stereoselectivity, from public databases
(►Table 1)52–64 and self-produced laboratory data to build a
new database that acts as data foundation for deep-learning
modeling.

The sequence–function relationship modeling module
determines whether an input sequence has a target function
or not, and is, therefore, a key modeling process of the
adaptive evolution strategy. This module establishes a rela-
tional model by applying deep-learning algorithms like MLP
and RNN to learn the sequence–function relationship. The
model outputs the predicted values related to the target
functions based on the input protein sequence. The repre-
sentation of protein sequences and deep-learning methods
are crucial in this module. One-hot sparse representation
and embedding-technology-based dense representation are
the two main methods for representing protein sequences.
Sparse representation learns limited sequence information;
thus, it is difficult to represent inter-sequence relationships
effectively. Embedding-based dense representation is bor-
rowed from the field of natural language processing, which
can effectively learn semantics and bring similar protein
sequences closer to the encoding space. This feature is
consistent with the fact that similar protein sequences
have similar functions. Therefore, a dense representation is
more conducive to predictingdownstreamprotein functions.
In addition, dense representations can make full use of
several unlabeled protein sequences for characterization
learning, effectively alleviating the problem of limited la-
beled data. Deep-learning methods, such as MLP, RNN, and
CNN, can achieve end-to-end learning without manual fea-
ture processing. However, these are black-box models with
data volume requirements.

The virtual mutant generationmodulewas used to build a
virtual mutant library to create important reservoirs for an
adaptive evolution strategy. For protein sequences of length
N, the module decides which mutants are selected from the
sequence space of 20N to build a virtualmutant library for the
next step of function prediction. There are two common
methods for building virtual mutant libraries. The first is
based on sequence consistency and semi-rational design.
The second is to use generative models to generate mutant
libraries. The available neural network generative models
include VAE and GAN.

Themutant selectionmodule is used to identify candidate
mutants for further characterization by wet experiments.
The simplest method is to select the top N based on the
ranked output of the sequence–function relationship model.
However, this approach tends to select similar sequences,
which is not conducive to improving the generalization of the
model. Another method is to select N sequences from multi-
ple local optima with high confidence, based on the predic-
tion confidence given by the model. This approach increases
the diversity of sequences and improves the generalization
ability of the model.

In the adaptive evolution strategy, relevant sequence–
function data are first collected for the target function to
build a database. Based on the established database, the
sequence–function relationship and virtual mutant genera-
tion models are established using a deep-learning method.
The virtual mutant generation model is used to generate the
mutant library, and the sequence–function relationship
model is used to predict its function. Finally, the mutant
selectionmodule is used to select candidatemutants accord-
ing to the predicted value. The following wet experiment
provides feedback results for the above strategy and

Table 1 Commonly used database

No Database name Database type Ref.

1 UniProt Protein sequences annotated with
functional information

52

2 Protein Data Bank 3D macromolecular structure data 53

3 ProThermDB Thermodynamic database for proteins and mutants, including protein information,
structural information, experimental conditions, literature information, and
experimental thermodynamic data

54

4 FireProtDB Experimental thermostability data for single-point mutants 55

5 IntEnzyDB Structure and kinetics enzymology database 56

6 CAZy database Functions and literature information for carbohydrate-active enzyme 57

7 CasPEDIA Database Protein sequences and function information for class 2 CRISPR-Cas enzymes 58

8 GotEnzymes Turnover numbers of enzyme–compound pairs 59

9 INTEDE Interactome of drug-metabolizing enzymes 60

10 M-CSA Enzyme reaction mechanisms and active sites 61

11 MetaCyc database Metabolic pathways and enzymes 62

12 SABIO-RK Biochemical reactions and their reaction kinetics 63

13 EzCatDB Enzyme reactions, active-site structures, catalytic mechanisms, literature information,
protein sequences, and structures

64
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continuously optimizes the sequence–function relationship,
the virtual mutant generation modules, and the mutant
selection strategy. In this repeated cycle, enzyme evolution
proceeds adaptively.

Applications of Deep Learning in Enzyme
Evolution

Deep learning is a useful tool in enzyme engineering. In
particular, an adaptive evolution strategy based on the
synergy between deep learning and wet experiments is
expected to drive enzyme evolution toward automation
and intelligence. The sequence–function relationship model
is the core module of the adaptive evolution strategy, which
determineswhether a sequencewith a target function can be
recognized. The mutant generation module establishes a
virtual mutant library that provides an important reservoir
for the adaptive evolution strategy and determines the upper
limit of the quality of the final mutants obtained. The
sequence–function relationship model and mutant genera-
tion module are crucial to the effectiveness of the adaptive
evolution strategy. This section focuses on the progress of
deep-learning applications in both the sequence–function
relationship model and protein sequence generation.

Deep Learning in Protein Sequence–Function
Relationship Modeling
The performance of sequence–function relationship models
depends on whether the protein representation model can
effectively extract the relevant feature information from the
protein sequence and structure, and if the deep-learning
model can effectively learn the relationships from protein
representation.

Representation of Protein Sequence and Structure
The protein sequence determines its high-level structure,
which, in turn, determines its function. In deep-learning-
based sequence–function relationship modeling, the protein
sequence and structure are represented in vector form as the
input data of the deep-learning model. Representation of
protein sequences and structures is crucial in modeling of
sequence–function relationship. Effective extraction of pro-
tein information from sequences and structures has become
a popular research topic.

Protein sequences are chains consisting of 20 essential
amino acids that are very similar in form to natural lan-
guages. Protein sequences contain different functional infor-
mation similar to the semantic concepts of natural language.
Therefore, natural language processing can be used to effec-
tively extract protein sequence information.65–67 Wang and
Zhao processed protein sequences using theword separation
technology in natural language, and constructed a protein
sequence dictionary containing 630,598 words using
100,000 protein sequences in the PDB database as a corpus
and nine amino acids as the maximum word length.68

Comparison of subword-based protein sequence segmenta-
tion and protein secondary structures showed that subword-
based protein sequence segmentation was more efficient at

the level of information representation. Asgari et al used a
subword-based method to process protein sequences and
found that this approach is more efficient than traditional
methods in protein functional module discovery and protein
sequence classification.69 Due to technological develop-
ments, the bag-of-words (BoW) model has been applied to
protein sequence processing. The basic assumption of the
BoW model is that articles using a similar vocabulary have
similar topics, and the BoW model focuses on the frequency
of occurrences of vocabulary in an article. Based on 524,529
unannotated sequences in the UniProt database, Arnold and
colleagues used the BoW model to learn protein sequence
representation and used it for protein function classification
tasks, such as chiral selectivity.70 The BoW model-based
protein representation is more effective than the traditional
amino acid representation.

The BoW model mainly provides statistical information
about the data and does not provide information about the
contextual association of protein sequences, whereas the
protein functions are affected by the relationship of the
anterior–posterior position of amino acids in the sequences
and the physicochemical properties of amino acids. Protein
sequence representation based on embedding technology
can extract contextual information from protein sequences
and learn evolutionary information embedded in billions of
protein sequences across various species.71,72AlQuraishi and
colleagues used an RNN model to learn protein sequence
representation based on approximately 24 million protein
sequence data in UniRef50,26 to obtain the protein sequence
representation model UniRep, which was used for tasks such
as protein stability prediction. Elnaggar et al used autore-
gressive models such as Transformer-XL and XLNet, autoen-
codingmodels such as BERT, Albert, Electra, and T5, aswell as
protein sequences from the UniRef and Big Fantastic Data-
base as training data, to obtain the protein sequence repre-
sentation model ProtTrans,73 which performed well in the
subsequent amino acid residue prediction tasks. Rao et al
developed a pretrained protein embedding model called
TAPE.74 Pfam, a database of 31 million protein domains,
was used as the pretraining corpus for TAPE, and TAPE was
tested using five protein biology tasks. The pretrainedmodel
TAPE outperforms other models without self-supervised
pretraining on almost all tasks. Self-supervised pretrained
embedding is helpful, especially in protein engineering tasks.
Min et al developed a novel pretraining model, PLUS-RNN,
consisting of masked language modeling and a protein-
specific pretraining task.75 The PLUS-RNN was tested using
seven widely used protein biology tasks and outperformed
other language models (LMs) without protein-specific pre-
training in six tasks.

Natural language processing technology can effectively
extract protein sequence information for subsequent se-
quence–functional relationship learning. However, the func-
tion of a protein is determined by its high-level structure.
Since only a few protein crystal structures have been re-
solved through an enormous experimental effort, learning
the representation of high-level protein structures is much
more difficult than learning protein sequences.
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Computational methods for predicting 3D protein struc-
tures from protein sequences provided useful alternatives
when protein crystallization is not possible. However, tradi-
tional computational methods, such as MODELLER,76 fall far
short of atomic accuracy, especially when no homologous
structure is available. Deep learning–based structure-pre-
diction tools provide accurate computational approaches
even when similar structures are not known, which makes
large-scale structural bioinformatics possible.77 AlphaFold2,
developed by DeepMind, predicts protein structures from
amino acid sequences with much higher accuracy than
previous methods.78 AlphaFold2 views the prediction of
protein structures as a graph inference in a 3D space, where
the edges of the graph are defined by residues in proximity.
The AlphaFold2 network was trained on the structural data
from the PDB, which contains 200,000 crystal structures of
proteins and nucleic acids. AlphaFold2 uses attention-based
deep neural networks to extract spatial and evolutionary
relationships from amino acid sequences. Currently, the
predicted structure database using AlphaFold2 (https://
alphafold.com/) contains over 200 million entries and is
continuously growing. However, despite its breakthrough
accuracy and performance to predict protein structures,
AlphaFold2 model still has limitations. It is difficult to
predict the structures with metal ions, cofactors, and other
ligands, or posttranslational modifications, such as glycosyl-
ation, methylation, and phosphorylation.79 Another impor-
tant aspect is that the use of evolutionary information from
larger multiple sequence alignments (MSAs) requires pow-
erful computing processors and is time-consuming to pre-
dict the structure of proteins as their length increases.80

Recently, new modeling methods have been developed to
overcome some of the limitations of AlphaFold2. Lin et al
developed ESMfold, a masked transformer-based protein
language model that operates without the use of MSAs.
This omission significantly simplifies the neural architecture
required for inference.81 Comparedwith AlphaFold2without
MSA, ESMFold performed better on TM scores and achieved
comparable accuracy to AlphaFold2 when predicting struc-
tures with high confidence. The approach significantly
improves prediction speed while maintaining resolution
and accuracy, as it does not require the construction of an
MSA. The ESMMetagenomic Atlas (https://esmatlas.com/) is
a database of predicted structures using ESMfold, which
contains more than 617 million structures and 225 million
structures predicted with high confidence from metage-
nomic databases. Recent advances have taken the problem
of protein structure prediction to another level, in some
cases to an experimental-like level of accuracy. Nevertheless,
improvements are needed to overcome the limitation to
predict conformer with ligands, and the inability to predict
the effects of mutation on protein structure.

Protein sequence combined with high-level structural in-
formation ismore efficient for functional prediction. Recently,
deep learning networks have been trained to extract informa-
tion fromhigh-level protein structures, called high-level struc-
tural representation. Zhou et al obtained a protein
representation model, Uni-Mol, using a transformer architec-

ture to train on protein-binding pockets.46 Uni-Mol
performed well in predicting the protein receptor–ligand
binding conformation. Gao et al developed a co-supervised
pretraining (CoSP)model, a representativemodel of high-level
protein structures, using aGNN to train on thebinding pockets
of protein receptors and small-molecule ligands.82 CoSPs can
be used for protein-binding pocket search and virtual screen-
ing. Zhang et al used GNN to train 3D protein structures and
obtainedGearNet, a representativemodel ofhigh-level protein
structures.83 GearNet outperforms the best models based on
protein sequences and requires less data for tasks such as the
prediction of protein function and protein folding classifica-
tion. Torng and Altman demonstrated a general framework
that applied 3D CNNs (3DCNN) to detect protein functional
sites from protein structures.84 This framework can automati-
cally extract task-dependent features from raw atom distri-
butions, and be tested using the PROSITE family, nitric oxide
synthase, and trypsin-like enzymes. The model can discover
features from raw data that outperform predefined features
and can be generally applied to any functional site, given the
available data, without manual adjustments.

The high-level structure of a protein more directly deter-
mines its function, thus, incorporating high-level structure
information into protein sequence models can effectively
improve the performance of the model. Koohi-Moghadam
et al developed a deep-learning approach to predict muta-
tions occurring at the metal-binding sites of metallopro-
teins.85 The approach uses five types of probes to generate
energy-based grid maps from the 3D structures of metal-
binding sites. The spatial and sequential features of the
metal-binding sites were fed into multichannel CNNs
(MCCNNs). The MCCNN model was trained and evaluated
using integrated data from MetalPDB, CancerResource2,
ClinVar, and UniProt Humsavar. The MCCNN could predict
mutations in both the first and second spheres of metals in
metalloproteins. The spatial characteristics of the metal-
binding sites improved the performance ofMCCNN.Mansoor
et al found a protein-embedding approach using joint train-
ing on protein sequences and structures.86 Pretrained Evo-
lutionary Scale Modeling-1b was used to generate one-
dimensional (1D) and two-dimensional features from the
masked sequence. The SE(3) transformer was trained to
output a 128-dimensional embedding for generating the
final 1D representation from the masked structure and
sequence representation. trRosetta2was used as the training
and validation dataset. A subset of the ProTherm dataset,
consisting of 1,042 mutants from 126 wild-type proteins,
was used to fine-tune the single-mutant effect prediction.
Joint training with sequence and structural information
improved the prediction of the effect of single mutations
on thermal stability. Wang et al described a novel LM-GVP
method composed of a protein LM and a GNN.87 The protein
LM was used to extract information from 1D amino acid
sequences, and the GNNwas used to obtain information from
the 3D protein structures. The LM-GVP was tested using
various property prediction tasks, including fluorescence,
protease stability, and protein functions from gene ontology.
LM-GVP outperformed the protein LMs in all tasks.
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Protein Sequence–Function Relationship Learning
Efficient protein representation of sequences and structures
combined with deep-learning models can help learn protein
sequence–function relationships to guide enzyme evolution.
Artificial intelligence-based methods for enzyme function
evolution reduce experimental workload and improve the
success rate of experiments.

Arnold colleagues used algorithms such as MLP to model
the sequence–function relationship of nitric oxide dioxyge-
nase,88 and after only two rounds of screening for mutation
site prediction, two target mutants with seven-site co-muta-
tions were obtained, which were then used to achieve
carbon–silicon bond formation in R- and S-conformations.
Carbon–silicon bond-forming enzymes, which do not exist,
were synthesized. The application of artificial intelligence in
assisted enzyme-directed evolution helps to create new
enzymes, reduce the number of rounds of directed evolution,
and reduce the cost and time of research and development.
Enzyme conversion rate (Kcat) is a core indicator of an
enzyme’s catalytic performance. Nielsen and colleagues
used a GNN and CNN to establish a Kcat prediction model
based on substrate structure and enzyme sequence, known
as DLKca.28 The model used GNN to encode the substrate
structure, and CNN to encode the protein sequence, and
subsequently used the attention mechanism to learn the
relationship between each amino acid residue concerning
the conversion rate. DLKcat can be used to predict the
conversion rates of enzymes and their mutants into sub-
strates. This study provided important information for en-
zyme mutation design and performance prediction. Shroff
et al used a CNN to build amutant predictionmodel based on
the 3D protein structure.89 This model was used to assist in
the evolution of blue fluorescent proteins, phosphomannose
isomerase, and TEM-1 β-lactamase, with a 6- to 30-fold
functional improvement. Alper and colleagues developed a
3DCNN-based mutant prediction model, MutCompute, to
assist in evaluating polyethylene terephthalate (PET) hydro-
lase.90 Then, a highly efficient PET hydrolase variant was
obtained, with a 38-fold increase in plastic hydrolysis capac-
ity at 50°C, capable of degrading 51 different unprepared
thermoformed PET products within 1 week. Wong and
colleagues used various neural network models to assist
directed evolution and increase the gene-editing capability
of the clustered regularly interspaced short palindromic
repeats (CRISPR)-associated protein 9 (Cas9) of CRISPR-
Cas9.91 The use of artificial intelligence models reduced
the wet experimental workload by 95%. This study demon-
strates the potential of artificial intelligence-supervised
learning models for various enzyme evolution applications.

Deep-learning models trained using protein sequences
with functional tags have achieved many results in protein
evolution. However, there are a few protein sequences con-
taining functional tags. Thus, adopting a transfer learning
strategy to make full use of the existing resources without
tags in large databases such as GenBank and UniProt, to
reduce the reliance on tagged data, and to improve the
generality of models has become a new trend in artificial
intelligence-assisted protein evolution research.

Church and colleagues used a transfer learning strategy to
learn the general features of proteins based on >20 million
protein sequences in UniRef50, followed by fine-tuning the
target protein sequence–function data to learn global and
local features.92 The strategy uses only a small amount of
identified protein sequence–function data to learn se-
quence–function relationships and obtain protein represen-
tation models for building sequence-based protein function
prediction models. With this strategy, green fluorescent
protein and TEM-1β-lactamase achieved an increase in
protein activity through only one round of mutation, reduc-
ing experimental workload and cost. Zhao and colleagues
used a transfer learning strategy to develop a protein func-
tion prediction model, ECNet.36 For amino acid representa-
tion, the pretrained model TAPE, based on the attention
mechanism, was fine-tuned to represent the global evolu-
tionary information, which generated 768-dimensional re-
presentation vectors for each amino acid. For sequence–
function relationship learning, a bidirectional long short-
term memory network (BiLSTM) algorithm followed by a
two-layer fully connected neural networkwas used to build a
functional prediction model. Amino acid residues were one-
hot-encoded into the embedding layer to output a 20-di-
mensional representation vector, which was then spliced as
input to the functional prediction model using the evolu-
tionary information generated by the TAPE model. Evolution
of TEM-1 β-lactamase using ECNet yielded mutants that
were eightfold more functional than the wild type.

Combining protein sequence structure representation
and supervised learning models to aid in enzyme evolution
has shown high potential for application, but it currently
covers only a small number of enzyme families. The intro-
duction of transfer learning can improve the generalization
of the model and is expected to be used for more enzyme
families.

Deep Learning in Protein Sequence Generation
The protein sequence–function relationship model allows
rapid screening for efficient target function mutants. Be-
cause protein sequences are large, protein sequence func-
tional relationship model screening using all protein
sequences is computationally expensive and inefficient.
The protein sequence generation models provide a new
solution to this problem. They learn data distribution fea-
tures from several protein sequences and automatically
generate candidate sequences,34,50,93,94 forming a virtual
mutant candidate pool for functional screening.

The generative model samples the sequence space where
the target function is located to generate multi-residue
mutants with high target performance. This method has a
higher sampling efficiency compared with traditional meth-
ods based on sequence alignment. The generative models
have been used for the sequence generation of many pro-
teins.95–98 The main generative models currently used in
protein engineering are VAE, GAN, and autoregressive mod-
els. Lobzaev et al used the VAE model and natural language
processing technology to address the problems of low activ-
ity and instability in the blood, and susceptibility to immune
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reactions of human-derived sphingosine-1-phosphate lyases
as therapeutic enzymes.99 A protein sequence generative
model based on 1,147 protein sequences of sphingosine-1-
phosphate lyase was developed to generate a library of
sphingosine-1-phosphate lyase mutants, which were evalu-
ated in terms of hydrophobicity, isoelectric point, stability,
and structure, and possessed the target properties. Hawkins-
Hooker et al trained a VAE based on 70,000 luciferase protein
sequences to generate protein sequences with luminescence
functions.32 Giessel et al used generative models to assist in
the functional evolution of human-derived ornithine trans-
carbamylase (OTC) to improve the enzyme activity and
thermal stability.100 They collected 3,818 OTC sequences
with 45% sequence similarity and trained a VAE generative
model. The model generated 87 OTC sequences with an
average mutation of eight residues compared with the wild
type, 86% of the mutants were more active than the wild
type, and the average melting temperature was 12°C higher
than the wild type. In contrast, only 42.5% of the mutants
obtained by the conventional consensus method were more
active than the wild type, and the average melting tempera-
ture was only 8°C higher than that of the wild type. In
addition, the mutants produced by the generative model
improved both activity and thermal stability, whereas the
mutants produced by the conventional consensus method
improved only thermal stability but reduced activity. This
result shows that the generativemodel can sample the target
protein sequence space more efficiently. Repecka et al devel-
oped ProteinGAN,101 a protein sequence generation model
based on a GAN, by introducing an attention mechanism.102

The model learned information about protein sequence
evolutionary relationships from a complex amino acid se-
quence space and generated new sequences with natural
properties such as solubility and physicochemical activity.
Using this model to learn the malate dehydrogenase protein
(MDH) sequences, 24% of the new sequences generated were
soluble and had MDH catalytic activity. Surprisingly, a mu-
tant with 106-residues mutation, equivalent to 34% of the
wild-type protein sequence, still maintained catalytic activ-
ity compared with the wild type, whereas 50% of the protein
sequence was usually co-mutated resulting in its inactiva-
tion. This study showed that protein sequence generation
models can learn key features of target protein sequences
and explore the sequence mutation space that is difficult to
reach by traditional methods. However, the methods men-
tioned above are mainly applicable to certain classes of
protein families and lack generality.

A transfer learning strategy can solve the problem of the
generality of protein sequence-generative models. Madani
et al used a transfer learning strategy to obtain a conditional
sequence generation model ProGen, based on 280 million
protein sequence data using an autoregressive model and an
attention mechanism network.37,38 The model generates
protein sequences with target functions based on input
functional tags and is suitable for multiple protein families.
ProGen was used to learn the sequences of antibacterial
lysozyme superfamily proteins, and 90 newly generated
sequences were selected for activity testing. The lysozyme

activity was 73%, and some sequencesweremore active than
the control, indicating that the model developed had the
potential to generate efficient mutants. Sevgen et al devel-
oped ProT-VAE, a generative model, using a transfer learning
strategy by combining a pretrained attention mechanism
model with the framework of the VAE.103 ProT-VAE mode
comprises three blocks. The first block is a pretrained trans-
former-based T5 encoder and decoder model called
ProtT5nv. ProtT5nv is trained starting from a pretrained T5
model from NLP data and further trained with 46M protein
sequences from UniRef50. The second block is a generic
dimensionality-reduction block that efficiently compresses
a high-dimensional transformer hidden state into a parsi-
monious intermediate-level representation. This block was
pretrained using UniProt’s mean-squared error reconstruc-
tion objective. The third block is a three-layer fully connected
maximum mean discrepancy VAE (MMD-VAE). This block
compresses the flattened output of the dimensionality re-
duction block. This block was initialized and trained from
scratch for each target protein family of interest. The ProT-
VAE model allows alignment-free training, whereas VAE
models frequently require arranging sequences within
MSAs. The computational complexity of MSAs grows expo-
nentially with the number of proteins. ProT-VAEP was
assayed using phenylalanine hydroxylase (PAH). Of the
PAH proteins generated from ProT-VAE, 69 were active, 19
of which were more active than wild-type hPAH. ProT-VAE
demonstrated the capacity to learn functional and phyloge-
netic separationwithin the latent spacewithout the need for
MSAs. The ProT-VAE model can generate highly mutated
sequences (>100 mutations; up to 130 mutations for the
highest activity) that are still functional. The ProT-VAE is an
accurate, generative, fast, and transferable model for data-
driven protein engineering.

Efficient protein sequence-generativemodels can provide
high-quality candidate mutants for enzyme evolution. How-
ever, the bias of the training dataset causes the generative
models to learn biased distributions, thus, the data balance of
the training set needs to be considered in practical
applications.

Conclusion

Artificial intelligence technology based on deep learning,
representation learning, transfer learning, and generative
modeling is helping enzyme engineering researchers to learn
and apply protein sequence structure–function relationships
from large amounts of data, exploring a larger protein
sequence space, and providing more diverse and novel
possibilities. Adaptive enzyme evolution strategies combin-
ing computational and experimental modes have a high
potential to improve efficiency and reduce cost and have
become a new trend in enzyme evolution. However, the
application of artificial intelligence technology in enzyme
evolution is still in its early stages, and many issues need to
be addressed to fully exploit the potential of artificial intelli-
gence in thisfield. First, since databases such as GenBank and
UniProt were not designed for deep learning when theywere
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first established, the quality and quantity of data from these
databases (especially datawith annotations) can hardlymeet
the requirements of deep learning. To reduce the dependence
of deep learning on big data, representation learning, and
transfer learning provide more possibilities; however, how
to balance global and local features requires further research.
Second, due to the lack of experimental data on complex
conformation, it remains challenging to represent and un-
derstand the association between protein conformation and
function. Artificial intelligence technology has studied struc-
ture–function relationships much less than sequence–func-
tion relationships. Combining data with physical knowledge
may provide more possibilities for this study. Finally, con-
sidering that most current sequence–function relationship
models are built for a certain superfamily, the generality of
the deep learning model to cover multiple enzyme families
would greatly promote the development of artificial intelli-
gence-based enzyme engineering. With the development of
technology and the accumulation of data, artificial intelli-
gence will become a powerful tool for protein engineering,
assisting biocatalysis and synthetic biology in solving key
problems in the field of biopharmaceuticals, and promoting
drug development and production in the future.
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