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Introduction

From its inception, research in artificial intelligence (AI) has
challenged the human monopoly on knowledge and creativ-
ity.1 Descriptions of AI invariably refer to mimicking differ-
ent aspects of human cognition in a machine—in recent
iterations, particular interest has been devoted to learning
from experience without explicit programming. Turing
(1950) first distilled this mimetic conception of AI in his
now-famous Test, which he called “the imitation game.”

Turing proposed that the criterion for a machine deemed
capable of “thinking” is if it can “trick” a human into believing
it is another human. Like humans, we might expect these
devices to learn, reason, self-correct, and create indepen-
dently by processing vast amounts of visual, textual, and
speech data. Based on these capabilities, many definitions of
AI have emerged over time.2 JohnMcCarthy coined “artificial
intelligence,” defining AI as “the science and engineering of
making intelligent machines, especially intelligent computer
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Abstract Artificial intelligence (AI) is poised to transform health care across medical specialties.
Although the application of AI to neuroanesthesiology is just emerging, it will undoubtedly
affectneuroanesthesiologists in foreseeableandunforeseeableways,withpotential roles in
preoperative patient assessment, airway assessment, predicting intraoperative complica-
tions, and monitoring and interpreting vital signs. It will advance the diagnosis and
treatment of neurological diseases due to improved risk identification, data integration,
early diagnosis, image analysis, and pharmacological and surgical robotic assistance.
Beyond direct medical care, AI could also automate many routine administrative tasks in
health care, assist with teaching and training, and profoundly impact neuroscience
research. This article introduces AI and its various approaches from a neuroanesthesiology
perspective. A basic understanding of the computational underpinnings, advantages,
limitations, and ethical implications is necessary for using AI tools in clinical practice and
research. The update summarizes recent reports of AI applications relevant to neuro-
anesthesiology. Providing a holistic view of AI applications, this review shows how AI could
usher in a new era in the specialty, significantly improving patient care and advancing
neuroanesthesiology research.
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programs. It is related to the similar task of using computers to
understand human intelligence, but AI does not have to confine
itself to biologically observable methods.”3

Health care relies strongly on perception, cognition, and
judgment, which human intelligence alone has been able to
provide for most of history; introducing any substitute will
fundamentallychange thedeliveryof health care. Since the time
of Hippocrates, health care has relied on trust in other humans
and often their subjective judgments. Howwillwe evaluate life-
impactingdecisionsmadebyalgorithms?4,5Ahigh-level under-
standing of themodernfield of AI, including a frank assessment
of its capabilities and limitations, is necessary to answer this
question. While reports of the impact of AI on anesthesiology
are rapidly emerging,6–9 there are very few reports of AI
applications to neuroanesthesiology.10 The role of AI in neuro-
anesthesiology was addressed by a review in this journal in
2020.11 This article provides greater insights into underlying
computational models, enumerates the advantages and disad-
vantages of AI, and includes novel reports of AI-anesthesiology
applications developed since then. AIwill have a transformative
impact on neuroanesthesiology directly and indirectly, but also
raises serious legal and ethical questions regarding transparen-
cy, privacy, data security, trust calibration, concealed bias,
intellectual property, and professional liability that must be

acknowledged.5 Neuroanesthesiology should develop a tem-
pered optimism for AI, embracing enthusiasm while acknowl-
edging significant limitations (►Fig. 1).

An overview of AI and Data Processing

Central to cognition, biological or engineered, is acquiring,
processing, and acting on information from the environment.
►Fig. 2 shows the data preparation needed for AI analysis
and the overlap between various AI fields. Chae recently
provided a detailed technical review of AI in anesthesiolo-
gy.12Wefirst remark that three closely related terms inAI are
often (erroneously) used interchangeably:

• AI is an umbrella term for computationally replicating
human cognition and problem-solving.

• Machine learning (ML) is a subset of AI. It describes the
approach of using large datasets to learn patterns implicitly
that enable a system to perceive, reason, predict, or interact
with its environment. The entity inML that learns from the
data and holds the learned information is called themodel.

• Deep learning (DL) is a subfield of ML that uses a specific
class of algorithms, called neural networks, to learn input–
output relationships from large amounts of data. It is the

Fig. 1 Anticipated impact of AI on neuroanesthesiology patient care. AI, artificial intelligence.
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most successful paradigm in modern AI. Neural networks
can learning functionsusing sufficient rawdata (e.g., image,
text, speech) that would be very difficult to program
manually. Nonetheless, human involvement is still required
in designing the architecture of the network, selecting data
onwhich it will be trained, and evaluating its performance

Non-ML approaches, such as search algorithms and sym-
bolic reasoning, have played a significant role in the history
of AI and have experienced a resurgence in some domains.
Nonetheless, as medicine is a data-driven field, most of the
questions of interest can be reframed asML questions; hence,

this review is devoted to discussing techniques that broadly
fall within the ML subset of AI.

Input and Output
Modern AI systems encode their inputs and outputs as vectors.
Many forms of data can be encoded as vectors; for example,
binary data can be encoded as 0 or 1; laboratory values can be
encoded as a list of numbers; radiographic images or pathology
slides can be encoded as lists of pixel values; multimodal data
can be created simply by concatenating these lists together. The
input unit to a model, which may correspond to a set of

Fig. 2 Data processing for artificial intelligence, machine learning, and deep learning.
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laboratory values, a pathology slide, or a magnetic resonance
image, is called a “sample.”A sampleusually consistsofmultiple
“features”: the individual values in a basic metabolic profile or
each pixel in an image or video, whichmust be used together to
produce the desired output. The input and output data sizes are
predetermined before training the model. The steps in data
processing are shown in ►Figs. 2 and 3. For example, a model
may take a fluoroscopic image from an angiogram as input and
extract the features to produce an output, such as whether the
image contains a normal vessel, distal, or proximal vasospasm.

Organization of Neural Networks

Neural networks have become the most popular model in ML
due to their capacity for learning highly complex input–output
relationships. It has been mathematically proven that any

function can be encoded into a sufficiently large neural
network. Thesimplest neuralnetwork, theperceptron, consists
of a single neuron that accepts a vector of features as input and
returns a binary (0 or 1) output. Deep neural networks have
many such connected neurons (►Fig. 3).

Biological neurons inspired perceptron development. A
perceptron receives a set of input features (its “dendrites”).
Different synaptic “weights” are applied to each feature,
representing the importance that the neuron places on the
feature. The sum of theseweighted features passes through a
nonlinear activation function and generates an output value
(in the simplest case, 0 or 1: no spike or spike) (carried along
its “axon”). To train the perception, pairs of inputs and known
outputs are provided, and the weight and bias are iteratively
adjusted so that the output matches the ground truth. A
limitation of the perceptron is that only linear functions of its

Fig. 3 The concept of an electronic neuron is shown at the top, and that of a fully connected convoluted neural network showing the stages of an
angiographic image analysis is shown at the bottom.
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inputs can be learned. This limitation can be circumvented by
networking many perceptrons in a neural network.

Neural Networks
In a neural network, many neurons are linked, drawing inspira-
tion fromthehumancortex.13Likethecortex, theneurons inthe
network are organized in layers, with the neurons of each layer
feeding input to thenext, asdescribed inanearlier review in this
journal.11 The number of neurons can describe each layer of a
neuralnetwork itcontains (as itswidth), andtheneuralnetwork
asawholecanbecharacterizedbythenumberof layers ithas (as
its depth).11,12 ►Table 1 describes the several types of neural
networks. Byconvention, thefirst layer is referred to as the input
layer, the final layer as the output layer, and any intermediate
layers are called hidden layers. A neural network is called deep if
it has many hidden layers; as the depth of a network grows, it
gains the ability to learn more complex functions but also
requires more data to train effectively.

Information Flow through a Neural Network
In the simplest deep neural network, each neuron in a layer
simultaneously applies a nonlinear activation function to the
weighted sum of its inputs. The output of every neuron in the
layer is then fed to every neuron in the next layer of neurons
via a layer of synaptic weights. In a fully connected network,
if one layer has N neurons and the next has M neurons, the
two layers are connected by N�M weight represented by a
matrix. This process is repeated for each subsequent layer
until the output layer is reached. Thus, information from the
input can be recombined several times before reaching the
output, allowing complex relationships among the input
features to be learned. The number of weights in the network
grows exponentially with the depth of the network; a fully
connected network with L layers where each layer has N
neurons will have NL weights.

Training a Neural Network
Neural networks are trained using the backpropagation algo-
rithm. The mathematical details of this algorithm are outside
the scope of this review but are available in web tutorials.14

However, the intuition of the backpropagation algorithm is
similar to the intuition of the perceptron training algorithm:
pairs of inputs and ground-truth outputs are presented, and
the weights in the network are adjusted to minimize the loss,
the difference between the network output and the desired
ground-truth output. This procedure requires modifying the
weight layers of the network in reverse order (i.e., fromoutput
to input, calculating a newerror at each layer to be used as the
loss of the previous layer), hence the name. Because this
procedure requiresweights in the network to be bidirectional,
most neuroscientists do not consider backpropagation to be
plausible in biological networks.

Steps in Applying AI to a New Problem

Planning
The first step in applying AI to a new problem is to define the
project’s objective and scope with key participants and Ta
b
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experts. These projects are resource- and time-intensive and
should be periodically assessed to ensure success. From the
beginning, major AI projects should involve all stakeholders,
including investigators, data scientists, patients, ethicists,
and health care professionals. Trained personnel should be
available to troubleshoot technical problems and assess
progress. Additionally, at the planning stage, the entire
impact of the project has to be holistically reviewed, keeping
the final product performance in mind. The assessment of
AI/ML models includes problem fit, data availability quality
and quantity, model testing frequency and scope, scalability
and integration, interpretability and explainability, flexibili-
ty and customization, ethical and regulatory concerns, and
marketing support and monitoring.

Data Acquisition and Processing
AI’s main strength is its ability to learn from vast amounts of
data with or without human intervention to discover pat-
terns humans cannot articulate or program explicitly. The
volume of data needed to train DL applications is sometimes
in the petabyte range, or approximately 500 billion printed
pages. As shown in ►Fig. 2, many data types and sources are
used for health care purposes. Insufficient data, mislabeled
or noisy data, incomplete data, obsolete data, or biased data
can all adversely affect the performance of an AI model. The
resulting predictionsmay be incorrect or invisibly reproduce
undesirable biases present in the training data.

Once the data are identified from a source, it has to be
standardized and cleaned. It has to be assessed for outliers,
errors, missing values, and overlapping features. Features in
a dataset can be deleted due to lack of significance, redun-
dancy, sparsity, missing values, or dimensionality reduction
techniques (discussed later) that can represent the same data
using fewer features.13

Types of ML Model
Most ML models can be categorized as supervised, unsuper-
vised, or reinforcement learning. Some newer models, par-
ticularly transformers (onwhich large-languagemodels such
as ChatGPT are based) do not easily fit into the traditional
categorization. The technical details of the underlying algo-
rithms used are beyond the scope of this review but are
discussed by Hastie et al (2009), Bishop (2006), and Good-
fellow et al (2016).15–17

• Supervised learning: supervised learning models are
trained on labeled datasets, where each input is associat-
ed with a corresponding ground-truth output. The mod-
el’s parameters (for example, the weights of a neural
network) are updated using these ground-truth input–
output pairs to improve subsequent predictions. The goal
of training is to find a set of parameters that generalize
well to unseen data—a model that performs well on the
training data but poorly on new data is said to be over-
fitted to the training set (akin to a student who has
memorized an exam answer key but is unable to apply
the information to answer different questions). To detect
overfitting, the available data may be divided into a

training set (used to train themodel) and a test set (used to
evaluate the performance model after training). Because
the model has not seen the test data during training, the
test data can be used to determine how the model might
perform in the real world.
– Classification is the subcategory of supervised learning

that assigns a discrete label (such as yes/no or a choice
from a list of possibilities) to each data sample. Tech-
niques used for classification include decision trees,
random forests, support vector machines, logistic re-
gression, and neural networks.

– Regression is the subcategory of supervised learning
that assigns a continuous numerical label to each
sample. Regression techniques include linear and non-
linear models.18

• Unsupervised learning: unsupervised learning uses unla-
beled data and lets the algorithmdetermine the underlying
patterns without human intervention or guidance. Unsu-
pervised techniques are helpful for data exploration or
hypothesis generation, anomaly reduction, dimensionality
reductions, and data clustering. Clinically, unsupervised
learning could identify clusters of patients based ongenetic
markers that may have different responses to treatments.
– Clustering of the data refers to discovering groups based

on its natural distribution rather than on external labels.
Clusters can then be examined to determine what drives
the differences between those groups.

– Dimensionality reduction refers to transforming data
with hundreds or thousands of features to data with a
small number of transformed features (often only two or
three for visualization) while preserving essential fea-
tures such as distances between samples. The projection
of a 3D globe onto a 2D map is an everyday example of
dimensionality reduction, although, in practice, di-
mensionality reduction is generally much more dramat-
ic. Algorithms for dimension reduction include principal
component analysis, factor analysis, and nonnegative
matrix factorization.

• Reinforcement learning: reinforcement learning attempts
to learn optimal actions based on real-time observations
to achieve a goal (i.e., maximize reward and/or minimize
punishment). It is also used in agent-based robotics to
process images of the environment.

• Beyond supervised/unsupervised: since the early 2000s, DL
has fueled the rapid growth of AI technologies. DL models
include, but are not limited to, recurrent neural networks,
convolutional neural networks, and transformers, some of
which are briefly described in ►Table 1.13 This approach
has greatly advanced image, text, and speech processing.
However, generating sufficient labeled data to train such
models is extremely expensive and time-consuming. Self-
supervised learning involves using data not labeled man-
ually to train models to learn complex tasks. In self-
supervised learning, a model may be asked to predict
masked words in a sentence based on context. The mask-
ing needed for the model can be performed programmat-
ically without manual labeling.
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– Large language models (LLMs): LLMs use large datasets
to comprehend, summarize, create, and predict text
contents. These models require training on unlabeled
data in the petabyte range. Transformer models that
can assess context are generally used for LLMs. Exam-
ples of LLMs are:
& ChatGPT.
& Google Bard.

– Generative AI: generative AI uses vast amounts of
unlabeled data to create new data, such as an essay,
report, or a piece of music, using techniques such as
stable diffusion and autoregressive modeling. Genera-
tive AI creating images from text often consists of an
image generation network layered on top of an al-
ready-trained LLM. Examples of generative AI include:
& Dall-E.
& Midjourney.

Evaluation of Supervised Learning Models
ML models must be tested initially after validation. Testing
is periodically needed to check for drifts after adding new
features or any hyperparameter corrections. To test the
model, labeled data are compared with the predictions by
the model. The familiar true-positive, true-negative, false-
positive, and false-negative rates from statistics can also
be used to evaluate the performance of ML models.
Depending on the objective, tests are undertaken as listed
in ►Table 2.12

Capabilities and Limitations of AI

• Capabilities: AI can:
– Assess and quickly analyze vast amounts of language,

image, and text data beyond human, statistical, or
traditional programming capabilities.

– Find unforeseen patterns and solutions using large
datasets.

– Self-learn and self-correct to find better solutions over
time.

– Control devices in remote and extreme situations such
as deep space, nuclear sites, weapons disposal, and
toxic spills.

– Enhance personal and organizational capabilities.
– Rapid progress is anticipated with improved AI soft-

ware and hardware.

• Limitations: AI:
– Has a high cost for developing and training newmodels.
– Needs large amounts of current and reliable data that

are not easy to obtain and may create security, privacy,
and ethical concerns.

– May perform worse than human decision-making.
– Lacks the ability to process outliers.
– Is affected by systemic biases in the data, leading to

biased output.
– Lacks true creativity, as the AI solutions require human

input.
– Lacks abstraction and generalization, which limits its

use in atypical situations.
– Needs human oversight in decision-making.
– Has high energy requirements. The current hardware

with CPU–memory separation energy is inefficient and
consumes considerable energy. Better hardware, such
as integrated CPU memory, is needed to decrease
energy consumption.

– Raises the question of trust due to a lack of transparency/
interpretability and contextual awareness.

– Can “hallucinate,” resulting in grossly erroneous out-
put unexplainable by the data.

– Lacks emotive factors while assessing complex situa-
tions, particularly in health care.

– Raises concerns regarding liability and accountability
when the technology fails.

– Regulatory oversight is poorly developed, variable, and
lagging.

– Often developed by for-profit entities whose interests
are not necessarily aligned with the public’s.

Table 2 Assessment of AI and ML models:

Test parameter Characteristics

Accuracy Number of correct prediction/total predictions

Precision True positives/total positives (true and false)

Recall True positives/total positives (true positivesþ false negatives)

The area under the curve Compares models by plotting false positive rates (x-axis) to true positive rates (y-axis). The
closer the values are to the y-axis the better the model.

Log loss Compare model prediction probability to actual values as 0 (certainty) or 1 (improbability)
—a suitable parameter for comparing models.

F1 score Fraction of correct predictions made by the model, ideally >0.9

Confusion matrix This is a graphic plot of a multiclass classification of actual versus predicted outcomes for
each class. It is easy to comprehend, as the diagonal values show correct results.

Abbreviations: AI, artificial intelligence; ML, machine learning.
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Applications of AI Relevant to
Neuroanesthesiology

Very little literature assesses the direct impact of AI on neuro-
anesthesiology. One recent report evaluated the usefulness of
accurately reporting the Society of Neuroanesthesiology and
Critical Care guidelines and recommendations using Chat GPT
and found it inadequate.10 Without more original research
publications selectively relevant to neuroanesthesiology, one
has to take a more holistic view of the field because changes in
neuroanesthesiology practice will be a subset of the changes in
the overall practice of medicine, such as in health care delivery,
hospital operations, neurology, anesthesiology, and research.

• Health care delivery applications: AI’s role in health care
management can be divided into three phases 19:
– Early phase: Administration, health information, and

electronic data acquisition and analysis.
– The intermediate phase is related to telemedicine,where

there are current deficiencies to justify risks.
– Late phasewith AI-based medical applications directly

involved in clinical decision-making, which carries the
risk of medical liability.

One advantage of AI is developing dynamic management
strategies with built-in social and ethical concerns20 that can
ensure a fair allocation of resources acrossgenders and races.21,22

• AI’s impact on hospital-wide operations4: AI can signifi-
cantly improve hospital management. This includes per-
sonnel oversight, scheduling, secretarial assistance,
patient outreach, and satisfaction surveys.23,24 By voice-
to-text transcription alone, AI could reduce physicians’
work time by 17% and nurses by 51%.5

• AI’s impact on neurology:
– AI-enhanced neuroimaging: contextual interpretation

of imaging data using radiomics for better diagnosis
and prognostication.25–28

– Automated handwriting and gait analysis and rapid
electroencephalogram (EEG) signal processing will
assist in diagnosing neurological diseases using AI.29,30

– Building the connectome for understanding cortical
functioning31 and how it is affected by aging.32,33

– AI-assisted diagnosis of diseases that require neuro-
anesthesia care, including stroke,34 Parkinson’s dis-
ease,35 epilepsy,35,36 and intracranial hemorrhage.37,38

Early and reliable diagnosis and classification of brain
tumors.27,39,40

• AI’s impact on anesthesiology: the application of AI in
anesthesiology was recently reviewed by several
authors.41–47 The applications range from scheduling the
operating room to reviewing the electronic medical record
(EMR) to predicting outcomes, as recently described by
Cascella et al.45 AI can direct anesthetic drug dosing to
maintain a targeted level of EEG activity,48 predict the
likelihood of perioperative complications,44 assess difficult
intubation,49,50 predict drug doses and delivery,43 antici-
pate intraoperative complications such as hypoxia51 and

hypotension52,53 by closely analyzing the vital signs and/or
EMRdata, improve the reliability of vital sign alarms,54help
with postoperative monitoring,55 pain treatment,47 mor-
tality,56andanesthesia training.57Despite concerns regard-
ing privacy and liability, there is optimism that AI will
improvedecision-making in theoperating roomandduring
perioperative care.42 However, assessing the airway, pre-
dicting hypotension, and improving EEG monitoring are
areas of technological development of immense relevance
to neuroanesthesiology.

• AI andEEGanalysis: EEG is a powerful neurological tool that
provides real-time information on the functioning of the
cortex. AI-assisted advances in EEG monitoring are highly
relevant to treating epilepsy by establishing convulsions’
nature, source, and severity. EEG is routinely monitored
during neurovascular surgery and helps assess the depth of
anesthesia.58 Li et al found that long short-term memory
with a sparse denoising autoencoder method could better
predict thedepth of anesthesia comparedwith convention-
al EEG parameters such as α ratio or permutation entropy
during sevoflurane anesthesia.59 Since the early 1990s, EEG
monitoring has been simplified to numerical values to
assess the depth of anesthesia and help titrate anesthetic
drugs.48Wanget al reported thatwithML inputofeightEEG
parameters and demographic features, they could predict
Bispectral Index Score (BIS) changes during propofol infu-
sion.60 Recently, EEG, electrocardiographic (ECG), and
electromyographic data have been used to assess the depth
of anesthesia with ML. Nsugbe et al reported that in some
situations, ECG could better reflect the depth of anesthesia
compared with EEG analysis.61

• AI in assessing the airway: AI has been used to predict
difficulty in intubation using photographic images. Using
DL, Hayasaka et al found that supine-side-mouth-base
position photographs best predict difficult intubation.50

Lin et al, aware of the DL approach’s lack of explainability,
used ML to determine difficult intubation while mimick-
ing a clinical protocol.49 Wang et al applied semi-super-
vised DL to satisfactorily predict difficulties in mask
ventilation and intubation using head and neck images
from nine viewpoints. 62 Yamanaka et al determined that
ML models could predict successful first-pass intubation
and difficult intubation in the emergency department
compared with modified LEMON (look, evaluate Mallam-
pati, obstruction, neck movability) criteria.63 The tech-
nology for robotic intubations has also advanced in recent
years.64 Wang et al successfully used a remote intubation
device in pigs.65 Biro et al successfully demonstrated the
robotic navigation of an endoscope to intubate.66 Robotic
intubation that enables remote intubations today could
function autonomously in the future. AI can detect the
correct placement on chest X-ray films once the tube has
been placed.67

• AI can predict intraoperative events such as hypoxia and
hypotension: one of AI’s important applications is accu-
rately predicting the outcome of surgery and anticipated
intraoperative complications. Lundberg et al reviewed
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data from 50,000 EMRs to anticipate the risk of hypoxia
during surgery. WithML, they found a twofold increase in
anticipation based on patient and procedure character-
istics.68 Park et al used vital signs and ventilatory data to
predict episodes of intraoperative hypoxia in pediatric
patients with three ML approaches.51 Kendale et al
reviewed EMR for comorbidities, drug treatment, and
vital signs to reliably predict postinduction hypotension
with ML.52 Hatib et al successfully predicted the same
with a high analysis of arterial waveforms.69 One concern
about using AI in clinical settings is the lack of transpar-
ency. To circumvent this issue, van der Ven et al used a
standardized patient management algorithm to predict
hypotension.70 Hypotension and hypoxia are two critical
concerns during neuroanesthesia, which are further com-
pounded by variations in the patient’s position during
surgery. The ability to predict such complications is,
therefore, clinically highly relevant.

• Impact of AI on neuroscience research:
– Bench research: AI can significantly enhance drug

discovery,71–73 develop better peptide carriers design
to deliver drugs to the brain,74,75 and help develop
better pharmacokinetic models.76

– Clinical trialplanningandmonitoring:AIwill significantly
impact future clinical trialdesignbyassistingwithpatient
selection40 and ensure protocol compliance.77

– Radiomics is an AI application that quantifies images of
tissue characteristics. Such image features have been
correlated with cellular characteristics, and changes in
the features can be tracked over time to assess thera-
peutic response.78,79 Thus, radiomics-based research
could generate new insights through the ability to
accurately predict outcomes for a given patient and
the response to interventions.
& Stroke: combining radiomics features with clinical

characteristics best predicts the outcome of stroke
patients, such aswith endovascular interventions.80,81

& Gliomas: radiomics, in combination with genomics,
can better predict treatment outcomes. Radiomics
and tumor tissue characterization could help assess
drug delivery and the extent of pseudo-progression
of the tumor.82,83

& Traumatic brain injuries: AI-assisted outcome as-
sessment of traumatic brain injury with multipa-
rameter image assessment will improve patient
classification for better outcome predictions and
clinical trials.84–87

Conclusion

AI use in anesthesiology is likely to advance rapidly. Few
publications currently directly address neuroanesthesia appli-
cations, but that is likely to change in the future. This review
summarizes the underlying concepts and describes AI’s
potential and concerns. An overview of AI is necessary to
meaningfully understand AI-generated publications, research

analysis, and clinical applications. While there is growing
enthusiasm about AI, significant concerns with AI, such as
privacy, lack of transparency, legal liability, and unrecognized
bias, have to be carefully addressed. It is a dangerous fallacy to
think of AI as transcending humanity; AI reflects humanity for
good and ill. AI mimics our human faculties to perceive, reason,
and interact with the world. AI learns and reproduces the
humanbiasespresent in thedata it is trainedon. It is reasonable
to surmise that the future impacts of AI on health care and
societywill mirror our collective choices about howhealth care
and society are organized: concentrating control over this
technology in thehandsof a fewwillworsen existing inequality,
but democratizing could improve the lives of many. From a
narrower perspective, one can safely conclude that AIwill play a
significant role in neuroanesthesia practice and research well
into the future.

Conflict of Interest
None declared.

References
1 Chalmers DJ. The singularity: a philosophical review. J Conscious

Stud 2010;17:7–65
2 Garg PK. Chapter 1: Overview of artificial intelligence. In:Sharma

L, Garg PK. eds. Artificial Intelligence Technologies, Applications,
and Challenges. Boca Raton, FL: CRC Press, Taylor & Francis Group;
2022:3–18

3 McCarthy J. What is Artificial Intelligence. Accessed 6 June 2024
at: http://www-formal.stanford.edu/jmc/

4 Asan O, Bayrak AE, Choudhury A. Artificial intelligence and
human trust in healthcare: focus on clinicians. J Med Internet
Res 2020;22(06):e15154

5 Hazarika I. Artificial intelligence: opportunities and implications
for the health workforce. Int Health 2020;12(04):241–245

6 Feinstein M, Katz D, Demaria S, Hofer IS. Remote monitoring and
artificial intelligence: outlook for 2050. Anesth Analg 2024;138
(02):350–357

7 Wu YH. Huang KY, Tseng AC. Development of an artificial intelli-
gence-based image recognition system for time-sequence analy-
sis of tracheal intubation. Anesth Analg 2024 (e-pub ahead of
print). Doi: 10.1213/ANE.0000000000006934

8 Fritz BA, Pugazenthi S, Budelier TP, et al. User-centered design of a
machine learning dashboard for prediction of postoperative
complications. Anesth Analg 2024;138(04):804–813

9 Nathan N. Robotics and the future of anesthesia. Anesth Analg
2024;138(02):238

10 Blacker SN, Kang M, Chakraborty I, et al. Utilizing artificial intelli-
gence and chat generative pretrained transformer to answer ques-
tions about clinical scenarios in neuroanesthesiology. J Neurosurg
Anesthesiol 2023 (e-pub ahead of print). Doi: 10.1097/
ANA.0000000000000949

11 Rajagopalan V, Kulkarni DK. Artificial intelligence in neuroanes-
thesiology and neurocritical care. J Neuroanesthesiology Critical
Care 2020;7:11–18

12 Chae D. Data science and machine learning in anesthesiology.
Korean J Anesthesiol 2020;73(04):285–295

13 Anonymous. Types of Neural Networks and Definition of Neural
Networks. Updated 23 Nov 2022. Accessed 6 June 2024 at: https://
www.mygreatlearning.com/blog/types-of-neural-networks/

14 Logunova I. Backpropagation in Neural Networks. Updated 18 Dec
2023. Accessed 6 June 2024 at: https://serokell.io/blog/
understanding-backpropagation

Journal of Neuroanaesthesiology and Critical Care © 2024. The Author(s).

Artificial Intelligence in Neuroanesthesia Liao et al.

http://www-formal.stanford.edu/jmc/
https://www.mygreatlearning.com/blog/types-of-neural-networks/
https://www.mygreatlearning.com/blog/types-of-neural-networks/
https://serokell.io/blog/understanding-backpropagation
https://serokell.io/blog/understanding-backpropagation


15 Bishop CM. Pattern Recognition andMachine Learning. NewYork,
NY: Springer Inc.; 2006

16 Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical
Learning: DataMining, Inference, and Prediction. Vol 2. NewYork,
NY: Springer Inc.; 2009

17 Goodfellow IJ, Bengio Ya, Courville A. Deep Learning. Cambridge,
MA: MIT Press; 2016

18 Anonymous. Machine learning techniques. Accessed 6 June 2024
at: https://www.javatpoint.com/machine-learning-techniques

19 Spatharou A, Solveigh H, Jenkins J. Transforming healthcare with
AI: The impact on the workforce and organisations. McKinsey &
Company. 2020. Accessed 6 June 2024 at: https://www.
mckinsey.com/industries/healthcare/our-insights/transforming-
healthcare-with-ai

20 Blobel B, Ruotsalainen P, Brochhausen M, Prestes E, Houghtaling
MA. Designing and managing advanced, intelligent and ethical
health and social care ecosystems. J Pers Med 2023;13(08):1209

21 Özdemir V. Digital is political: whywe need a feminist conceptual
lens on determinants of digital health. OMICS 2021;25(04):
249–254

22 Hernandez-Boussard T, Siddique SM, Bierman AS, Hightower M,
Burstin H. Promoting equity in clinical decision making: disman-
tling race-based medicine. Health Aff (Millwood) 2023;42(10):
1369–1373

23 Davenport TH, Glaser JP. Factors governing the adoption of artifi-
cial intelligence in healthcare providers. Discov Health Syst 2022;
1(01):4

24 Seah J, Boeken T, Sapoval M, Goh GS. Prime time for artificial
intelligence in interventional radiology. Cardiovasc Intervent
Radiol 2022;45(03):283–289

25 Henssen D, Meijer F, Verburg FA, Smits M. Challenges and oppor-
tunities for advanced neuroimaging of glioblastoma. Br J Radiol
2023;96(1141):20211232

26 de Godoy LL, Chawla S, Brem S, Mohan S. Taming glioblastoma in
“real time”: integrating multimodal advanced neuroimaging/AI
tools towards creating a robust and therapy agnostic model for
response assessment in neuro-oncology. Clin Cancer Res 2023;29
(14):2588–2592

27 Asif S, ZhaoM, ChenX, Zhu Y. BMRI-NET: a deep stacked ensemble
model formulti-class brain tumor classification fromMRI images.
Interdiscip Sci 2023;15(03):499–514

28 Aggarwal K, Manso Jimeno M, Ravi KS, Gonzalez G, Geethanath S.
Developing and deploying deep learning models in brain mag-
netic resonance imaging: a review. NMR Biomed 2023;36(12):
e5014

29 Vinny PW, VishnuVY, Padma SrivastavaMV. Artificial intelligence
shaping the future of neurology practice. Med J Armed Forces
India 2021;77(03):276–282

30 Davey Z, Gupta PB, Li DR, Nayak RU, Govindarajan P. Rapid
response EEG: current state and future directions. Curr Neurol
Neurosci Rep 2022;22(12):839–846

31 Rabinowitch I. What would a synthetic connectome look like?
Phys Life Rev 2020;33:1–15

32 Harms MP, Somerville LH, Ances BM, et al. Extending the human
connectome project across ages: imaging protocols for the life-
span development and aging projects. Neuroimage 2018;
183:972–984

33 Sun L, Zhao T, Liang X. et al. Functional connectome through the
human life span. bioRxiv. Sep 19 2023 Doi: 10.1101/2023.09.
12.557193

34 Corrias G, Mazzotta A, Melis M, et al. Emerging role of artificial
intelligence in stroke imaging. Expert Rev Neurother 2021;21
(07):745–754

35 Raghavendra U, Acharya UR, Adeli H. Artificial intelligence tech-
niques for automated diagnosis of neurological disorders. Eur
Neurol 2019;82(1–3):41–64

36 Hakeem H, FengW, Chen Z, et al. Development and validation of a
deep learning model for predicting treatment response in

patients with newly diagnosed epilepsy. JAMA Neurol 2022;79
(10):986–996

37 Cortés-Ferre L, Gutiérrez-Naranjo MA, Egea-Guerrero JJ, Pérez-
Sánchez S, Balcerzyk M. Deep learning applied to intracranial
hemorrhage detection. J Imaging 2023;9(02):37

38 Warman R, Warman A, Warman P, et al. Deep learning system
boosts radiologist detection of intracranial hemorrhage. Cureus
2022;14(10):e30264

39 Surianarayanan C, Lawrence JJ, Chelliah PR, Prakash E, Hewage C.
Convergence of artificial intelligence and neuroscience towards
the diagnosis of neurological disorders-a scoping review. Sensors
(Basel) 2023;23(06):3062

40 Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial
intelligence in diagnosis, classification and clinical management
of glioma. Semin Cancer Biol 2023;91:110–123

41 Song B, Zhou M, Zhu J. Necessity and importance of developing AI
in anesthesia from the perspective of clinical safety and informa-
tion security. Med Sci Monit 2023;29:e938835

42 Lopes S, Rocha G, Guimaraes-Pereira L. Artificial intelligence and
its clinical application in Anesthesiology: a systematic review. J
Clin Monit Comput 2024;38(02):247–259

43 SinghM, Nath G. Artificial intelligence and anesthesia: a narrative
review. Saudi J Anaesth 2022;16(01):86–93

44 Yoon HK, Yang HL, Jung CW, Lee HC. Artificial intelligence in
perioperative medicine: a narrative review. Korean J Anesthesiol
2022;75(03):202–215

45 Cascella M, TraceyMC, Petrucci E, Bignami EG. Exploring artificial
intelligence in anesthesia: a primer on ethics, and clinical appli-
cations. Surgeries (Basel) 2023;4:264–274

46 Mathis MR, Kheterpal S, Najarian K. Artificial intelligence for
anesthesia: what the practicing clinician needs to know: more
than blackmagic for the art of the dark. Anesthesiology 2018;129
(04):619–622

47 Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G.
Artificial intelligence in anesthesiology: current techniques, clin-
ical applications, and limitations. Anesthesiology 2020;132(02):
379–394

48 Lee HC, Ryu HG, Chung EJ, Jung CW. Prediction of bispectral index
during target-controlled infusion of propofol and remifentanil: a
deep learning approach. Anesthesiology 2018;128(03):492–501

49 Lin Q, Chng C-B, Too J, et al. Towards artificial intelligence-enabled
medical pre-operative airway assessment. Paper presented at:
2022 IEEE International Conference on E-health Networking,
Application & Services (HealthCom); 17–19 October 2022,
Genoa, Italy

50 Hayasaka T, Kawano K, Kurihara K, Suzuki H, NakaneM, Kawamae
K. Creation of an artificial intelligence model for intubation
difficulty classification by deep learning (convolutional neural
network) using face images: an observational study. J Intensive
Care 2021;9(01):38

51 Park JB, Lee HJ, Yang HL, et al. Machine learning-based prediction
of intraoperative hypoxemia for pediatric patients. PLoS One
2023;18(03):e0282303

52 Kendale S, Kulkarni P, Rosenberg AD, Wang J. Supervised ma-
chine-learning predictive analytics for prediction of postinduc-
tion hypotension. Anesthesiology 2018;129(04):675–688

53 Lee S, Lee M, Kim SH, Woo J. Intraoperative hypotension predic-
tion model based on systematic feature engineering andmachine
learning. Sensors (Basel) 2022;22(09):3108

54 Maciąg TT, van Amsterdam K, Ballast A, Cnossen F, Struys MM.
Machine learning in anesthesiology: detecting adverse events in
clinical practice. Health Informatics J 2022;28(03):1460458
2221112855

55 Bellini V, Valente M, Gaddi AV, Pelosi P, Bignami E. Artificial
intelligence and telemedicine in anesthesia: potential and prob-
lems. Minerva Anestesiol 2022;88(09):729–734

56 Lee CK, Hofer I, Gabel E, Baldi P, Cannesson M. Development and
validation of a deep neural network model for prediction of

Journal of Neuroanaesthesiology and Critical Care © 2024. The Author(s).

Artificial Intelligence in Neuroanesthesia Liao et al.

https://www.javatpoint.com/machine-learning-techniques
https://www.mckinsey.com/industries/healthcare/our-insights/transforming-healthcare-with-ai
https://www.mckinsey.com/industries/healthcare/our-insights/transforming-healthcare-with-ai
https://www.mckinsey.com/industries/healthcare/our-insights/transforming-healthcare-with-ai


postoperative in-hospital mortality. Anesthesiology 2018;129
(04):649–662

57 Angel MC, Rinehart JB, Canneson MP, Baldi P. Clinical knowledge
and reasoning abilities of AI large language models in anesthesi-
ology: a comparative study on the ABA exam. medRxiv. May 16
2023. Doi: 10.1101/2023.05.10.23289805

58 Roy S, Kiral I, Mirmomeni M, et al; IBM Epilepsy Consortium.
Evaluation of artificial intelligence systems for assisting neurol-
ogists with fast and accurate annotations of scalp electroenceph-
alography data. EBioMedicine 2021;66:103275

59 Li R, Wu Q, Liu J, Wu Q, Li C, Zhao Q. Monitoring depth of
anesthesia based on hybrid features and recurrent neural
network. Front Neurosci 2020;14:26

60 Wang Y, Zhang H, Fan Y, et al. Propofol anesthesia depth moni-
toring based on self-attention and residual structure convolu-
tional neural network. Comput Math Methods Med 2022;
2022:8501948

61 Nsugbe E, Connelly S, Mutanga I. Towards an affordable means of
surgical depth of anesthesia monitoring: an EMG-ECG-EEG case
study. BioMedInformatics 2023;3:769–790

62 WangG, Li C, Tang F, et al. A fully-automatic semi-supervised deep
learning model for difficult airway assessment. Heliyon 2023;9
(05):e15629

63 Yamanaka S, Goto T, Morikawa K, et al. Machine learning
approaches for predicting difficult airway and first-pass success
in the emergency department: multicenter prospective observa-
tional study. Interact J Med Res 2022;11(01):e28366

64 KhanMJ, Karmakar A. Emerging robotic innovations and artificial
intelligence in endotracheal intubation and airwaymanagement:
current state of the art. Cureus 2023;15(07):e42625

65 Wang X, Tao Y, Tao X, et al. An original design of remote robot-
assisted intubation system. Sci Rep 2018;8(01):13403

66 Biro P, Hofmann P, Gage D, et al. Automated tracheal intubation in
an airway manikin using a robotic endoscope: a proof of concept
study. Anaesthesia 2020;75(07):881–886

67 Brown MS, Wong KP, Shrestha L, et al. Automated endotracheal
tube placement check using semantically embedded deep neural
networks. Acad Radiol 2023;30(03):412–420

68 Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-
learning predictions for the prevention of hypoxaemia during
surgery. Nat Biomed Eng 2018;2(10):749–760

69 Hatib F, Jian Z, Buddi S, et al. Machine-learning algorithm to
predict hypotension based on high-fidelity arterial pressure
waveform analysis. Anesthesiology 2018;129(04):663–674

70 van der Ven WH, Veelo DP, Wijnberge M, van der Ster BJP, Vlaar
APJ, Geerts BF. One of the first validations of an artificial intelli-
gence algorithm for clinical use: the impact on intraoperative
hypotension prediction and clinical decision-making. Surgery
2021;169(06):1300–1303

71 Lavecchia A. Deep learning in drug discovery: opportunities,
challenges and future prospects. Drug Discov Today 2019;24
(10):2017–2032

72 Stephenson N, Shane E, Chase J, et al. Survey of machine learning
techniques indrugdiscovery. CurrDrugMetab2019;20(03):185–193

73 Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N,
et al. A reviewonmachine learning approaches and trends in drug
discovery. Comput Struct Biotechnol J 2021;19:4538–4558

74 de Oliveira ECL, da Costa KS, Taube PS, Lima AH, Junior CSS.
Biologicalmembrane-penetrating peptides: computational predic-
tion and applications. Front Cell Infect Microbiol 2022;12:838259

75 Sharma S, Borski C, Hanson J, et al. Identifying an optimal neuro-
inflammation treatment using a nanoligomer discovery engine.
ACS Chem Neurosci 2022;13(23):3247–3256

76 Gupta S, Basant N, Singh KP. Qualitative and quantitative struc-
ture-activity relationship modelling for predicting blood-brain

barrier permeability of structurally diverse chemicals. SAR QSAR
Environ Res 2015;26(02):95–124

77 Getz K, Smith Z, Shafner L, Hanina A. Assessing the scope and
predictors of intentional dose non-adherence in clinical trials.
Ther Innov Regul Sci 2020;54(06):1330–1338

78 Beig N, Bera K, Tiwari P. Introduction to radiomics and radio-
genomics in neuro-oncology: implications and challenges. Neu-
rooncol Adv 2021;2(Suppl 4):iv3–iv14

79 McCague C, Ramlee S, Reinius M, et al. Introduction to radiomics
for a clinical audience. Clin Radiol 2023;78(02):83–98

80 DragoșHM, Stan A, Pintican R, et al. MRI radiomics and predictive
models in assessing ischemic stroke outcome-a systematic
review. Diagnostics (Basel) 2023;13(05):857

81 Ramos LA, van Os H, Hilbert A, et al. Combination of radiological
and clinical baseline data for outcome prediction of patients with
an acute ischemic stroke. Front Neurol 2022;13:809343

82 Mammadov O, Akkurt BH, Musigmann M, et al. Radiomics for
pseudoprogression prediction in high grade gliomas: added value
of MR contrast agent. Heliyon 2022;8(08):e10023

83 Sakly H, Said M, Seekins J, Guetari R, Kraiem N, Marzougui M.
Brain tumor radiogenomic classification of O6-methylguanine-
DNA methyltransferase promoter methylation in malignant glio-
mas-based transfer learning. Cancer Contr 2023;30:10732748
231169149

84 Åkerlund CAI, Holst A, Stocchetti N, et al; CENTER-TBI Participants
and Investigators. Clustering identifies endotypes of traumatic
brain injury in an intensive care cohort: a CENTER-TBI study. Crit
Care 2022;26(01):228

85 Brossard C, Grèze J, de Busschère JA, et al. Prediction of therapeutic
intensity level fromautomaticmulticlass segmentation of traumat-
ic brain injury lesions on CT-scans. Sci Rep 2023;13(01):20155

86 Pease M, Arefan D, Barber J, et al; TRACK-TBI Investigators.
Outcome prediction in patients with severe traumatic brain
injury using deep learning from head CT scans. Radiology 2022;
304(02):385–394

87 Luo X, Lin D, Xia S, et al. Machine learning classification of mild
traumatic brain injury using whole-brain functional activity: a
radiomics analysis. Dis Markers 2021;2021:3015238

88 Huang L, Chen X, Liu W, Shih PC, Bao J. Automatic surgery and
anesthesia emergence duration prediction using artificial neural
networks. J Healthc Eng 2022;2022:2921775

89 Hetherington J, Lessoway V, Gunka V, Abolmaesumi P, Rohling R.
SLIDE: automatic spine level identification system using a
deep convolutional neural network. Int J CARS 2017;12(07):
1189–1198

90 Miyaguchi N, Takeuchi K, Kashima H, Morita M, Morimatsu H.
Predicting anesthetic infusion events using machine learning. Sci
Rep 2021;11(01):23648

91 Enarvi S, Amoia S, Del-Agua Teba M, et al. Generating Medical
Reports from Patient-Doctor Conversations using Sequence-to-
Sequence Models. Association for Computational Linguistics;
2020:22–30

92 Jiao Y, Xue B, Lu C, Avidan MS, Kannampallil T. Continuous real-
time prediction of surgical case duration using a modular artifi-
cial neural network. Br J Anaesth 2022;128(05):829–837

93 He Y, Peng S, Chen M, Yang Z, Chen Y. A transformer-based
prediction method for depth of anesthesia during target-con-
trolled infusion of propofol and remifentanil. IEEE Trans Neural
Syst Rehabil Eng 2023;31:3363–3374

94 Dresp B, Liu R, Wandeto J. Surgical task expertise detected by a
self-organizing neural network map. 2021

95 Cascella M, Scarpati G, Bignami EG, et al. Utilizing an artificial
intelligence framework (conditional generative adversarial
network) to enhance telemedicine strategies for cancer pain
management. J Anesth Analg Crit Care 2023;3(01):19

Journal of Neuroanaesthesiology and Critical Care © 2024. The Author(s).

Artificial Intelligence in Neuroanesthesia Liao et al.


