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Introduction

We report a 4-year-old girl with neurodevelopmental abnormalities who has maternal
uniparental isodisomy of chromosome 2 leading to homozygosity for a likely patho-
genic variant in SPR, and a variant of uncertain significance in ZNF142. Biallelic
pathogenic variants in SPR lead to sepiapterin reductase deficiency (SRD), a dopa-
responsive dystonia. Pathogenic variants in ZNF142 are associated with an autosomal
recessive neurodevelopmental disorder characterized by impaired speech and hyper-
kinetic movements, which has significant clinical overlap with SRD. Our patient showed
dramatic improvement in motor skills after treatment with levodopa. We also reviewed
67 published reports of uniparental disomy of chromosome 2 (UPD2) associated with
various clinical outcomes. These include autosomal recessive disorders associated with
loci on chromosome 2, infants with UPD2 whose gestations were associated with
confined placental mosaicism for trisomy 2 leading to intrauterine growth restriction
with good postnatal catchup growth, and normal phenotypes in children and adults
with an incidental finding of either maternal or paternal UPD2. These latter reports
provide support for the conclusion that genes located on chromosome 2 are not
subject to imprinting. We also explore the mechanisms giving rise to UPD2.

UPD is known as trisomy rescue, where a mitotic nondisjunc-
tion event in a trisomic conceptus leads to restoration of

Uniparental disomy (UPD) is the inheritance of two homolo-
gous chromosomes or two homologous segments of a chro-
mosome from one parent. This hypothetical concept was first
proposed by Engel in 1980, who recognized that the high
frequency of aneuploidy in gametes made it possible for two
aneuploid gametes to produce a euploid zygote.'

UPD is often associated with a meiotic nondisjunction event
leading to an aneuploid gamete followed by a mitotic nondis-
junction event in the conceptus. The most common cause of
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euploidy in most or all cell lineages.? A less common cause
of UPD is gamete compensation where a monosomic embryo is
rescued by duplication of the monosomic chromosome. Other
rare mechanisms have also been reported, including gamete
complementation where a disomic and nullisomic gamete
unite, as initially proposed by Engel. UPD can involve a whole
chromosome or a chromosomal segment.

Failure of homologous chromosomes to separate in meiosis
[ followed by a postzygotic trisomy rescue event can lead to the
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inheritance of two nonidentical chromosomes from the same
parent, known as heterodisomy. Failure of sister chromatids to
separate in meiosis II followed by a trisomy rescue event can
lead to the inheritance of two identical chromosomes from the
same parent is known as isodisomy.

The incidence of UPD for any chromosome was initially
reported to be 1 in 3,500.3 A recent study of 32,067 whole
exome sequencing trios found an overall prevalence of UPD
of 1in 500.% In the setting of a parent who carries a balanced
Robertsonian translocation, the risk of UPD in a child who
inherits the balanced translocation is estimated at 1 in 150.°

UPD may have adverse effects on development for several
reasons. These include the inheritance of two pathogenic
variants in a gene from the same parent resulting in an
autosomal recessive disorder, or an imprinting disorder due
to lack of expression of a functional gene. If UPD is associated
with a trisomy or monosomy rescue event during early
embryogenesis, there also could be adverse effects on devel-
opment related to an aneuploid cell line in the fetus which
may be cryptic, and/or aneuploidy in the placenta.

We report the first case of maternal uniparental isodis-
omy of chromosome 2 leading to homozygosity for variants
in the genes SPR and ZNF142. SPR is located on chromosome
2p13.2 which encodes sepiapterin reductase, an enzyme
involved in the biosynthesis of tetrahydrobiopterin (BH,), a
cofactor in the synthesis of monoamine neurotransmitters.
Pathogenic variants in this gene lead to sepiapterin reductase
deficiency (SRD), a dopa-responsive dystonia with autoso-
mal recessive inheritance. ZNF142 is located on chromosome
2q35, encodes a zinc finger transcription factor with in-
creased expression in the cerebellum. Pathogenic variants in
ZNF142 have recently been associated with a recessive
neurodevelopmental disorder characterized by impaired
speech and hyperkinetic movements (NEDISHM).

We also reviewed 66 published reports of uniparental
disomy of chromosome 2 (UPD2) which has been observed in
association with various autosomal recessive disorders with
loci on chromosome 2, confined placental mosaicism for
trisomy 2 leading to intrauterine growth restriction (IUGR)
with good postnatal catch-up growth, and normal pheno-
types in children and adults with an incidental finding of
either maternal or paternal UPD2. These latter reports
provide preliminary support for the conclusion that genes
located on chromosome 2 are not subjected to imprinting.
Lastly, we explore the mechanisms giving rise to UPD2.

Case Presentation

A 4-year 2-month-old girl was referred to genetics clinic for
evaluation of developmental delay and abnormal eye move-
ment. She was accompanied by her parents.
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The patient was born at 41 weeks’ gestation to a 24-year-
old gravida 1 para 0 mother and a 28-year-old father after an
uncomplicated pregnancy and vaginal delivery. Family his-
tory of the patient was noncontributory. Consanguinity was
denied.

Her birth weight was 3.3 kg (50th percentile), and her
length was reportedly average. Information about Apgar
scores was not available. Her immediate postnatal course
was unremarkable.

At about the age of 3 months, frequent upward deviation
of her eyes was noted. An electroencephalogram (EEG) was
performed, which did not capture seizures. At the age of
5 months, the patient was hospitalized for seizure-like
activity, and she was treated with anticonvulsants. Workup
included an EEG which was reportedly normal, and a brain
MRI at the age of 6 months which did not identify specific
abnormalities. At 7.5 months, her parents took her home
from the hospital and stopped all medication due to lack of
improvement in symptoms.

Shortly after, another EEG was performed at a third hospital,
which did not capture seizures. She was evaluated by an
ophthalmologist who diagnosed her with vertical periodic
nystagmus. She was also evaluated by a clinical geneticist who
ordered biochemical testing. Urine organic acids and plasma
amino acids were reportedly normal.

The patient had global developmental delays. She sat
unassisted at 1.5 years of age, and she took independent
steps at 4 years of age. At the time of genetic evaluation, her
speech was limited to a few single syllables, and she was able
to use made-up hand signs to communicate with her family.
Her receptive language was better than expressive language.
The family moved to the United States at 3 years 9 months to
seek medical care. In the United States, she started to receive
occupational therapy, physical therapy, and speech therapy,
which helped her make developmental progress. Repeated
brain MRI was also ordered in the United States, which was
reportedly normal.

On physical examination, she held a chin-up position and
her eyes rolled back intermittently. Head circumference was
48 cm (15th percentile), height was 100.9 cm (40th percen-
tile), and weight was 15.5 kg (37th percentile). No significant
dysmorphic features were noted. Her musculoskeletal exam
revealed bilateral pes planus and joint laxity. Her neurologic
exam showed brisk reflexes, generalized truncal hypotonia,
and unsteady gait. Nystagmus was not noted.

Whole exome sequencing analysis revealed excessive homo-
zygous rare variants on chromosome 2 (~Fig. 1). A detailed
evaluation of the variants on chromosome 2 confirmed
complete isodisomy of chromosome 2 with detection of a
homozygous frameshift likely pathogenic variant in SPR
(p.Leu222CysfsTer4, chromosome 2p13.2; =Fig. 2A) and a
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Fig.1 This graph shows areas with loss of homozygosity across the genome of the proband. Heterozygous variants are in black and homozygous
variants are in red. Only homozygous variants in red are observed across the entire chromosome 2.
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Fig.2 (A)SPRvariants from the proband, and the parents in the Integrative Genomics Viewer (IGV), demonstrating the proband is homozygous
and the mother is heterozygous for the variant and the father does not carry the variant. Variant: SPR:NM_003124:exon3:c.661delG:p.p.
Leu222CysfsTer4 (chr2:73118540) [hg19]. The read count of the variant in proband is 172 (homozygous) and is 33 out of 66 in the mother
(heterozygous). The father does not carry the variant. (B) ZNF142 variants from the proband, and the parents in the IGV, demonstrating the
proband is homozygous and the mother is heterozygous for the variant and the father does not carry the variant. Variant: ZNF142:
NM_001105537:exon8:c.G2468A:p.Arg823GIn (chr2:219508771) [hg19]. The read count of the variant in proband%-4? is 268 (homozygous)
and is 61 out of 134 in the mother (heterozygous). The father does not carry the variant.

homozygous missense variant of uncertain significance (VUS) in Analysis of parental DNA indicated that neither variant
ZNF142 (p.Arg823GIn, chromosome 2q35; ~Fig. 2B). Biallelic ~ was paternally inherited. Instead both were maternally
pathogenic variants in SPR cause SRD, a dopa-responsive dysto-  inherited, compatible with maternal UPD2 in the patient
nia. Biallelic pathogenic variants in ZNF142 cause NEDISHM. (=Figs. 2A, B). Paternity was confirmed by genome-wide
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rare allele analysis. A peripheral blood karyotype was not
obtained because the family did not have health insurance.

The diagnosis of SRD was made and the patient was
treated with levodopa. Follow-up shortly after showed dra-
matic improvement in her motor skills, but her expressive
speech remained delayed with only a few syllables. Her
receptive language, however, continued to be more advanced
and she was able to follow multistep instructions.

A year later, the patient had almost normal gross motor
skills. She could run, jump, and had nearly normal playground
activities. Her fine motor skills remained delayed, but she was
able to draw and color, and could feed herself using utensils.
She was toilet trained and could dress herself, although she
could not fasten buttons. She used single-syllable words and
technology-assisted methods to communicate. Her receptive
language remained advanced and she was bilingual. She
interacted well with other children in school.

The diagnosis of NEDISHM remains uncertain because
she does not have the abnormal movements or seizures
described in affected individuals.

Discussion of Case

Our patient has a clinical presentation consistent with features
of both SRD and NEDISHM, disorders that have significant
clinical overlap. This is the first reported case of UPD2 leading
to homozygosity for a likely pathogenic variant in SPR and a
VUS in ZNF142. The pathogenicity of both variants was inter-
preted according to 2015 American College of Genetics and
Genomics (ACMGG) guidelines.®

SRD is a rare, autosomal, recessive dopa-responsive dystonia
caused by biallelic pathogenic variants in SPR, which encodes an
aldo-keto reductase involved in the biosynthesis of BH4. BH, is a
cofactor in the biosynthesis of neurotransmitters.

Our patient carried a homozygous 1-bp deletion in SPR, a
gene with three exons. This change creates a premature stop
codon in the last exon, which results in a truncated protein.
Pathogenic variants have been reported in all three exons.”
Two downstream nonsense variants (p.K230%; p.K251*) have
previously been reported in patients with SRD.%19-12 Taking
all evidence together, this 1-bp deletion is classified as a
likely pathogenic variant (PVS1, PM2).%13

The clinical phenotype of SRD ranges from mild to severe
motor and neurologic deficits.' Our patient’s upward devi-
ation of the eyes is likely to be oculogyric crisis, one of the
major features of SRD present in more than 65% of affected
individuals.® It is possible that oculogyric crises in our
patient were mistaken for seizures given her normal EEG,
although seizures may also occur in SRD. Our patient has
other major features of SRD, including axial hypotonia and
speech delay. Additional features of SRD which are also
present in our patient include intellectual disability, brisk
reflexes, and tremors when she was younger. This is the first
report of UPD2 as a disease mechanism for SRD.

NEDISHM is a neurodevelopmental disorder caused by
biallelic pathogenic variants in ZNF142. ZNF142 is a zinc
finger transcription factor expressed in all tissue types
with high levels of expression in the cerebellum (GTEx
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database). A 2019 study by Khan et al identified seven
affected individuals from four unrelated families with bial-
lelic ZNF142 mutations causing NEDISHM.'> The clinical
presentation of these individuals included cognitive im-
pairment, speech deficits, motor impairment, tonic-clonic
seizures, tremor, and dystonia. The homozygous missense
variant in ZNF142 found in our patient results in an arginine-
to-glutamine substitution. In silico tools did not consistently
support a deleterious effect of this change on the gene
product (REVEL: 0.156); it has not previously been reported
as disease-causing. The allele frequency of this variant is 18
in 1,613,950 alleles in gnomAD v4.0; 4 in 280,892 alleles in
gnomAD v2.1. Based on the available evidence, it is classified
as a VUS (ACMGG guideline: PM2 only). Given the significant
overlap in phenotypic abnormalities between SRD and
NEDISHM, we cannot draw a definitive conclusion about
the ZNF142 variant’s contribution to our patient’s phenotype.
A peripheral blood karyotype was not performed in this
case. However, there was no indication of trisomy 2 mosai-
cism based on whole exome sequencing analysis. Thus,
cryptic mosaicism for a trisomy 2 cell line as a contributor
to the patient’s phenotype is unlikely but cannot be excluded.
Nonpaternity as an explanation for the molecular findings
has been excluded by genome-wide rare allele analysis.

Review of Published Reports of Uniparental
Disomy of Chromosome 2

In addition to our case, we found 66 published reports of UPD2
for which clinical information is available. »Table 1 adds 37
additional cases of UPD2 reported since Haudry et al's 2012
review, and also adds 12 additional cases of UPD2 published
prior to 2012 and not cited by Haudry et al'® In
addition, =Table 1 includes reports of phenotypically normal
individuals in whom UPD2 was incidentally found via paternity
testing, testing for a familial disease, or single nucleotide
polymorphism chromosome microarray of amniocyte DNA
performed for maternal age.

There are a number of reasons why an abnormal pheno-
type may be present in the setting of UPD2. The mechanism
most commonly reported is exposure of an autosomal reces-
sive disorder, as illustrated by our case. In our review of the
literature, maternal or paternal uniparental isodisomy of
chromosome 2 was identified as the cause of an autosomal
recessive disorder in 42 cases (=Fig. 1). In addition, the
presence of UPD2 also raises the possibility of cryptic mosai-
cism for a trisomy 2 (or, less likely, monosomy 2) cell line in
the embryo. There also may be adverse effects on develop-
ment due to placental dysfunction caused by confined
placental mosaicism for a trisomy 2 cell line or a cell line
with UPD2. There are no reports suggesting that chromo-
some 2 contains imprinted genes that are a cause of adverse
outcomes in the setting of UPD2.

There are five reports of unrelated infants with UPD2
whose mothers had presumptive confined placental mosai-
cism for trisomy 2. These pregnancies were complicated by
severe IUGR and oligohydramnios. Postnatally, the infants
were found to have normal karyotypes as determined by
Vol. 11
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analysis of cord blood, peripheral blood cells, and/or skin
fibroblasts. One case reported growth below the 10th centile
at 14 months but otherwise normal motor and intellectual
development.'” Another case reported weight 3.5 standard
— deviations (SD) below the mean at 6 months but otherwise
normal development without dysmorphic features.'® Webb
et al described a patient whose postnatal course was com-
plicated by renal failure, congenital pyloric stenosis, and
hiatal hernia requiring multiple surgeries and gastrostomy
tube placements.'® At 5 years, the child was nondysmorphic
with normal development and weight had improved from
less than 5 SD below the mean at 8 months to 25th to 50th
percentile.®? One case resulted in neonatal death due to
complications of severe IUGR.2? Another case had normal
development at 1-year follow-up.21 Long-term follow-up
into adulthood is not available for the infants whose ges-
tations were complicated by presumptive confined placental
mosaicism for a trisomic cell line. This is a significant
limitation to counseling about the potential for long-term
adverse effects on development due to the effects of UPD2,
placental mosaicism for a trisomy 2 cell line, and the possi-
bility of cryptic chromosomal mosaicism in a child.

A case involving UPD2 caused by the presence of two
maternal isochromosomes (46,XY,i[2][p10];i[2][10]) had
some clinical features similar to the cases of presumed
confined placental mosaicism, including IUGR and oligohy-
dramnios. However, this patient also had hypospadias, pre-
auricular ear pits, pectus carinatum, and fifth-finger
clinodactyly. At 8 years of age, height remained below 2 SD
of the mean. No information about neurodevelopment was
provided.22 Whole exome sequencing and chromosome
microarray were not performed.

Eight cases of phenotypically normal individuals who
were incidentally found to have complete UPD2 have been
reported. These cases were identified by paternity testing,
genetic analysis performed as part of a family or research
study, and SNP array performed after amniocentesis for a
nonfetal indication. Two of these cases had complete mater-
nal UPD2; four had complete paternal UPD2; one had com-
plete maternal isodisomy resulting from two maternal
isochromosomes i(2q) and i(2p).2>~?° Parental origin was
not reported in one case.>?

The ages at which individuals with UPD2 and a normal
phenotype was reported ranged from 18 months to 36 years.
Three cases did not report age. In addition, four cases of UPD2
associated with presumptive confined placental mosaicism
with fetal growth restriction and oligohydramnios have been
reported with normal neurological development at ages
ranging from 6 months to 5 years.”‘]g’21 Reports of normal
phenotypes associated with both maternal and paternal
UPD?2 provide support for the conclusion that genes located
on chromosome 2 are not imprinted.

We note that a recent report by Tan et al speculated that
imprinting might account for the severe IUGR noted in two
fetuses with UPD2, one of whom died in utero.3' However, this
report did not include information about cytogenetic studies
of the placentas and thus could not exclude the possibility of
confined placental mosaicism for trisomy 2 cells for their cases.

Number of
patients

Type of UPD
Isodisomy

Segmental or
complete UPD
Complete

ZNF142, SPR

Gene

Age at
assessment of
normal
phenotype

Sepiapterin reductase deficien-
cy and neurodevelopmental
disorder with impaired speech
and hyperkinetic movements

Phenotype

Parental
origin
Maternal

Reference

bIncidental finding during testing for a familial disease.
“Identified via paternity testing.

2023 | Current report

Year

Abbreviations: IUGR, intrauterine growth restriction; N/A, not applicable; SGA, small for gestational age; UPD, uniparental disomy.

Adapted from Haudry et al.’®
?Papers included in Haudry et al review.

Table 1 (Continued)
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It is well established that placental mosaicism for trisomy
2 cells, which can be associated with fetal UPD2 due to a
trisomy rescue event, can result in placental dysfunction
leading to IUGR.>>33 Placental mosaicism for trisomy 2 cells
is a far more likely explanation for the findings of Tan et al,
given the strong evidence that genes located on chromosome 2
are not subject to imprinting.

Among most reported cases of autosomal recessive dis-
orders caused by UPD, the phenotypes could be fully
explained by the expression of biallelic pathogenic variants,
providing indirect evidence against imprinted genes on
chromosome 2. Three papers report cases of UPD2 with an
abnormal phenotype including multiple congenital anoma-
lies without a known monogenic cause, although whole
exome sequencing was not performed in two of the
cases.>*3> Carmichael et al reported a case of maternal
isodisomy of chromosome 2 in association with a complex
phenotype including skeletal and renal dysplasia, immune
deficiencies, growth failure, retinal degeneration and ovarian
insufficiency.® The patient underwent whole exome se-
quencing which detected 18 rare homozygous variants on
chromosome 2 and another 5 genes on other chromosomes
with compound heterozygous possibly pathogenic variants.
No definitively causal pathogenic variant(s) was identified.

Factors Underlying Uniparental Disomy of
Chromosome 2

Including our case report, 53 cases of complete UPD2 have
been identified. Of these cases, 27 were maternal and 26
were paternal. Similarly, Haudry et al in 2012 found that
cases of maternal and paternal UPD2 occurred with equal
frequency. However, a 2021 review of UPD across all chro-
mosomes using 32,067 whole exome parent-child trios
referred for a diverse set of indications including neuro-
developmental abnormalities found complete maternal UPD
to occur significantly more frequently than complete pater-
nal UPD (69 maternal UPD cases and 30 paternal UPD cases).*
The lower prevalence of complete maternal UPD cases in our
and Haudry et al’s literature reviews could be explained by
the underreporting of maternal heterodisomy cases because
they are not associated with autosomal recessive conditions.

This hypothesis is supported by our finding that most
cases of heterodisomy for UPD2 were maternal in origin (11
out of 12). Scuffins et al also found that, among cases of
heterodisomy and mixed UPD for all chromosomes (defined
as complete heterodisomy with segmental isodisomy), the
parent of origin was maternal in 55/60 events (91.6%).* In a
2004 Austrian study, Kotzot reported 145 pregnancies
complicated by UPD for any chromosome; among the 80
cases of heterodisomy, the parent of origin was maternal in
74/80 (92.5%).37 The increased prevalence of maternal
heterodisomy provides support for Kotzot’s speculation
that maternal meiosis I nondisjunction, rather than paternal
meiosis I nondisjunction, is the major contributor to unipa-
rental heterodisomy.

Of the 43 cases of complete or suspected complete chro-
mosome 2 isodisomy listed in =Table 1, only 18 of 43 (42%)

Uniparental Disomy for Chromosome 2  Kelkar et al.

were maternal in origin. Similarly, in cases of complete
isodisomy, Scuffins et al found that the parent of origin
was maternal in 14/39 events (35.9%).* A high proportion
of paternal UPD cases are isodisomic. Almost 80% (28/34) of
cases of paternal UPD in Kotzot’s large series were associated
with isodisomy; in contrast, only one-third (37/111) of
maternal UPD in the Kotzot study were associated with
isodisomy. In the Scuffins study, of the 27 cases of complete
paternal UPD, 92.6% (25 cases) were isodisomy.* The high
proportion of paternal isodisomy provides evidence that in
the setting of normal parental karyotypes, paternal UPD
more commonly arises due to either meiosis Il nondisjunc-
tion or postzygotic monosomy rescue, both of which would
result in isodisomy. Support for monosomy rescue being a
major contributor to paternal isodisomy is the lower fre-
quency of aneuploidy in sperm than in ova.>’

The risk of meiotic nondisjunction is directly correlated
with maternal age, and therefore maternal age is a risk factor
for fetal UPD. Scuffins et al found that the average maternal
age of maternal UPD cases (37.4 years) was significantly
higher than maternal age of cases without UPD (30.3 years
[p=0.000001]).% In 2004, Kotzot reported 111 pregnancies
complicated by UPD for any chromosome (excluding chro-
mosome 15) in which maternal age was reported, and 34
pregnancies complicated by UPD (excluding chromosome
15) in which paternal age was reported. The mean maternal
age for 74 cases of maternal heterodisomy was 34.8 years,
which is significantly older than the mean maternal age of
pregnant women in the general Austrian population of
30 years (p<0.0001). In contrast, the mean maternal age
of 29 years for the 37 cases of maternal isodisomy was not
significantly different than the mean maternal age in the
general Austrian population.37 These data suggest that mei-
osis I errors, which can lead to heterodisomy, occur with
greater frequency with advancing maternal age whereas
meiosis II errors, which lead to isodisomy do not appear to
be influenced by maternal age.

The mean paternal age in the 28 cases of paternal iso-
disomy in the Austrian study was 31.2 years, which is the
same as the mean paternal age in the Austrian population.37
Due to the small number of cases of paternal heterodisomy,
the mean paternal age was not reported. We could not
evaluate the association of parental age with UPD2 in our
literature review because parental ages were reported for
only 13 cases. Including parental age in future case reports
about UPD is strongly encouraged and would provide more
insight into the mechanisms by which UPD occurs.

The presence of two or more autosomal recessive disor-
ders with loci on the same chromosome in an individual is
one of several indications to test for UPD. In our case,
homozygosity at two alleles on different arms of chromo-
some 2 and the results of SNP analysis strongly suggest
complete maternal uniparental isodisomy of chromosome
2. Current information suggests that chromosome 2 does not
contain imprinted genes. The Scuffins whole exome trio
analysis also did not find evidence of imprinting disorders
on chromosome 2.# Additional reports of UPD2 will continue
to provide information about this possibility as well as
Vol. 11
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information about the pathogenicity of rare gene variants
located on chromosome 2. From the genetic counseling
perspective, diagnosing a child with an autosomal recessive
disorder caused by UPD reduces the risk of recurrence of
another affected child from 25% to close to the general
population risk in parents who have normal karyotypes.
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