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Nonalcoholic Fatty Liver Disease:
Symptoms, Pathogenesis, and the Role of
Hepatic Innervations

Nonalcoholic fatty liver disease (NAFLD) is the most com-
mon chronic liver disorder, with a prevalence of approxi-
mately 25 to 30% in the Western countries.1–3 NAFLD is a
systemic disease and it is considered as the hepatic mani-
festation of the metabolic syndrome. NAFLD is usually
associated with visceral obesity, insulin resistance, in-
creased blood pressure, fasting hyperglycemia, and dysli-
pidemia.3 Nearly 70% of type-2 diabetes patients have
NAFLD comorbidity.4 Moreover, NAFLD is associated with
renal and cardiovascular complications.5 Indeed, the most
common cause of death in NAFLD is cardiovascular-related.6

Currently, the therapeutic options are palliative, limited to
lifestyle and dietary changes, with no consensus on phar-
macological therapy.

ThespectrumofNAFLDmayvary fromearly-onset steatosis
(intrahepatic triglyceride accumulation), via nonalcoholic
steatohepatitis (NASH; up to 30% of all NAFLD cases),7,8 to
end-stage liver cirrhosis and hepatocellular carcinoma.9 Mild
forms of liver steatosis can be considered as a relatively benign
condition; however, NASH is a severe disease, which is charac-
terized by large-scale steatosis, chronic lobular inflammation,
hepatocellular injury, and progressive fibrosis.9

The pathogenesis of NAFLD implies initial metabolic dis-
turbances, such as insulin resistance, which may lead to
steatosis. The transition between steatosis and NASH could
be described by a “multiple-hit” model. Namely, impaired
lipid partitioning, oxidative stress caused by lipotoxicity,
proinflammatory cytokine-mediated hepatocyte injury and
cell death, as well as further metabolic abnormalities may
contribute to the development of NASH.10 Since NAFLD is the
hepatic manifestation of a multisystem metabolic disorder
that is heterogeneous in its underlying causes and presenta-
tion, some authors recently suggested calling it as “metabolic
dysfunction-associated fatty liver disease” (MAFLD).11

The liver has a complex innervation with significant
interspecies differences among mammalian species. Ana-
tomical and physiological studies revealed that efferent
hepatic innervations have a complex role in the regulation
of liver lipid and glucose metabolism, hemodynamics, im-
mune-processes, bile secretion, and tissue regeneration.
Furthermore, sensory (afferent) liver nerves play important
role in metabolic (glucose and lipid) sensing, osmotic sens-
ing, and ion sensing.12–15

Despite such relevance, hepatic innervations have been
understudied until recently, especially concerning their po-
tential involvement in liver pathologies. This was perhaps
because of methodical limitations in manipulating and visu-
alizing hepatic nerves, or because liver functions did not
appear seriously compromised after orthotopic liver trans-
plantation (OLT).16 However, long-term follow-up studies
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Abstract Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder.
Increased sympathetic (noradrenergic) nerve tone has a complex role in the etiopa-
thomechanism of NAFLD, affecting the development/progression of steatosis, inflam-
mation, fibrosis, and liver hemodynamical alterations. Also, lipid sensing by vagal
afferent fibers is an important player in the development of hepatic steatosis.
Moreover, disorganization and progressive degeneration of liver sympathetic nerves
were recently described in human and experimental NAFLD. These structural alter-
ations likely come along with impaired liver sympathetic nerve functionality and lack of
adequate hepatic noradrenergic signaling. Here, we first overview the anatomy and
physiology of liver nerves. Then, we discuss the nerve impairments in NAFLD and their
pathophysiological consequences in hepatic metabolism, inflammation, fibrosis, and
hemodynamics. We conclude that further studies considering the spatial-temporal
dynamics of structural and functional changes in the hepatic nervous system may lead
to more targeted pharmacotherapeutic advances in NAFLD.

Lay Summary

Nonalcoholic fatty liver disease (NAFLD) is the most
common hepatic disorder, with prevalence around 25%
globally. Nearly 70% of patients with type-2 diabetes have
fatty liver, and NAFLD is associated with heart and kidney
complications. Currently, the therapeutic options are
limited to lifestyle changes and no universally approved
drug therapy exists for NAFLD. Nerve fibers in the liver
play a complex role in liver fat and sugar metabolism,
blood circulation, immune responses, and bile secretion.
Previous research revealed structural and functional
impairments of the liver nerves in NAFLD, which con-
tribute to fat accumulation, inflammation, and abnormal
growth of fibrous connective tissue in the diseased liver.
Here, we overview the anatomy and physiology of liver
nerves and discuss the nerve alterations, with their
potential causes and consequences in NAFLD. We em-
phasize that deeper understanding of structural and
functional changes in the liver nervous system in NAFLD
may lead to new targeted therapeutic interventions.
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described dyslipidemia, postprandial hyperglycemia, insulin
resistance, and alterations in intrahepatic microcirculation
after OLT.12,17,18 Furthermore, postprandial hyperglycemia
was exaggerated and lasted longer in liver transplant
patients than in kidney-transplanted individuals who also
underwent immunosuppressive medications.19 This raises
the possibility that the inevitable liver denervation in OLT
may contribute to the development of the post-transplanta-
tion metabolic syndrome. Nonetheless, further studies are
needed to examine this question in more detail.

Recent functional and structural investigations using
selective stimulation of hepatic sympathetic nerves,20 phar-
macological methods targeting liver adrenergic receptors,21

as well as high-resolution and large-scale 3D visualization of
hepatic nerves by state-of-the-art volume imaging22,23 have
highlighted a significant role of liver nerves in NAFLD
pathophysiology. This review first overviews the anatomy
and physiology of liver nerves and the intrahepatic nerve-
mediated cellular communication. Then, liver nerve struc-
tural and functional alterations in NAFLD will be discussed,
and finally potential causes and consequences of all these
nerve-related pathologies will be elucidated.

Hepatic Nerves and the Intrahepatic
Nerve-Mediated Cellular Communication

The Roman physician and philosopher Galen already men-
tioned liver nerves in one of his works.24 The first more
detailed descriptions of mammalian hepatic innervations go
back to the mid-19th century.25

The liver does not contain neural crest-derived intrinsic
neurons26 but receives sympathetic efferent innervations
from the splanchnic nerves, parasympathetic efferent and
afferent innervations from the vagus nerve, and spinal
afferent innervations from the dorsal root ganglia.

During fetal life, the primary role of the liver is hemato-
poietic, and only sparse hepatic innervations are noticed,
especially in rodents.26 NPY-positive (sympathetic) fibers
were first found at embryonic day 19 (E19) in the mouse
liver.27 In another study, no intrahepatic nerves were de-
scribed in the mouse at E17.5 and at postnatal day 1 (P1) by
using tubulin β 3 class III (TUBB3), a pan-neuronal marker.
Nerves were first noticed at P7 in the liver surrounding the
intrahepatic bile ducts, and they gradually populated the
liver by P21. The intrahepatic bile ducts guided the extension
of nerve fibers by secreting nerve growth factor during
development.28 According to a recent report in mice, using
another pan-neuronal marker, protein gene product 9.5
(PGP9.5), nerves first appeared at the hilum at E16.5 and
gradually populated the entire lobes toward their periphery
by P28. The authors concluded that the interaction between
nerves, intrahepatic bile ducts, and hepatic artery plays an
important role in the morphogenesis and stabilization of
portal structures.29 In humans, the first hepatic nerves were
noticed on the 8 to 12th gestation weeks, around the portal
tracts, as identified by PGP9.5, neuron-specific enolase, and
neurofilament pan-neuronal markers. These nerves gradu-
ally increased in density and reached the adult level by the 32

to 33rd gestation weeks. However, intraparenchymal thin
fibers appeared only at term (40th week).30

Centrally, the descending liver sympathetic projections
arise from pre-autonomic neurons of the ventromedial
hypothalamic nucleus and paraventricular nucleus
(PVN),31,32 projecting to the ventrolateral and ventromedial
medullary reticular formation. Neurons of this medullary
autonomic center project to cholinergic preganglionic neu-
rons in the intermediolateral column of the thoracic spinal
cord (Th7–Th12). Preganglionic splanchnic nerve fibers then
innervate the noradrenergic superior mesenteric ganglion
and celiac ganglia, which send postganglionic innervations
toward the liver. The nerves enter the liver in the hilum and
then follow the portal triads. The major nerve fibers localize
around larger intrahepatic bile ducts and the hepatic artery.
Such primary fibers give rise to a thin, spiderweb-like nerve
plexus, which wraps around all the bile ducts as well as
branches of the hepatic artery and portal vein (►Fig. 1A).
Spatially, this noradrenergic nerve plexus terminates ap-
proximately 100 to 200 μm ahead of the most distal parts of
the portal veins, 300 to 400 μm below the organ surface.22

Fine nerve filaments follow extracellular matrix (ECM) col-
lagen fibers within the Glisson’s sheath, in close contact with
vascular smooth muscle cells, endothelial cells, and biliary
epithelial cells.22 No significant innervation has been
detected around the central veins or the hepatic vein.33

However, bolstered by advanced 3D imaging technology,
we have been able to elucidate a limited innervation of
central veins in mouse. Such nerve fibers originate from
the adjacent periportal nerve plexus: bridging fibers branch
again and extend for a few hundred micrometers around the
central veins.22 The periportal innervation is described in all
examined mammalian species; however, there are signifi-
cant interspecies differences reported regarding the paren-
chymal innervation. Namely, while the sympathetic
innervation in healthy conditions is restricted to the peri-
portal region in mouse and rat, fine noradrenergic fibers
enter the liver parenchyma in human, monkey, cat, dog,
guinea pig, and rabbit.34–36 In our recent work, we have
explored the parenchymal innervation in more detail in
humans. 3D imaging showed that the periportal nerves
give rise to “interlobular” nerve fibers running in the inter-
lobular connective tissue septae (►Fig. 1B). Such nerves give
rise to 3- to 6-μm-thin fine varicose fibers that run in the
perisinusoidal (Disse) space, followingECMcollagen IIIþfibers,
with decreasing density toward the centrolobular zone 3.22

Previous electron microscopy (ELMI) studies revealed that
these nerve filaments are nonmyelinated and frequently glial
sheath-free. They form neuroeffector junctions, without syn-
aptic specializations, with both parenchymal cells (hepato-
cytes) and nonparenchymal cells (endothelial-, Kupffer-, and
hepatic stellate- [Ito] cells).27,37,38 The hepatic noradrenergic
fibers co-localizewith theneuropeptidesNPYandgalanin.22,39

Centrally, the liver efferent parasympathetic projections
arise from neurons in the lateral hypothalamic area, which
project to the dorsal motor nucleus of the vagus and the
ambiguous complex.31,32,40 These nuclei supply the pregan-
glionic vagal efferents. Afferent (sensory) vagal nerves are
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supposed to be derived from the nodose ganglion.41 Nodose
ganglion neurons then project to the medullary nucleus of
the solitary tract. The common hepatic branch of the vagus
bifurcates to the larger gastroduodenal branch, targeting the
pancreas and gut, while the minor hepatic branch proper
targets the liver hilum. So far, however, no clear documenta-
tion of intrahepatic parasympathetic ganglia has been pro-
vided. Moreover, we and others were unable to detect
intrinsic parasympathetic (cholinergic) innervation, both
in rodents22,23 and in primates or humans.23 Earlier studies
described intrahepatic cholinergic nerves based on acetyl-
cholinesterase histochemistry.36,42 However, this method
cannot be considered fully specific and reliable for visualiz-
ing cholinergic fibers.38More specific vesicular acetylcholine
transporter immunohistochemistry or green fluorescent
protein (GFP) immunostaining of choline-acetyltransferase
(ChAT)-GFP mice failed to show any intrinsic hepatic cholin-
ergic nerves.22,43 Based on tracing techniques, a few vagal
efferent fibers were found within the fascicles of the vagal
hepatic branch and in a small fraction of vagal paraganglia in
the rat. Regarding vagal afferents,fiberswere noticed around
larger portal triads in the hilum of different liver lobes,
around the extrahepatic part of the portal vein, and around
almost all paraganglia adjacent to the hepatic branch of the
vagus and the hilum.41,44 Overall, (mainly afferent) para-
sympathetic hepatic innervations may be restricted to hilar
structures, while a direct hepatic cholinergic innervation is

doubtful. Some authors propose an indirect vagal control of
the liver, by affecting the sympathetic celiac ganglion or
microganglia around the celiac artery. Such hypothesis is
supported by the demonstration of vagal preganglionic
terminals in these structures.45 However, further detailed
and comparative studies are needed to elicit the anatomy of
the liver parasympathetic innervations.

Spinal afferent innervation of the liver is provided by
lower thoracic (Th7–Th12) dorsal root ganglia (DRG) neu-
rons. The neuropeptides calcitonin gene-related peptide
(CGRP) and substance P are markers to visualize these
fibers.46 CGRP volume immunostaining identified sparse
innervations around portal triads, but no CGRPþ nerves
were found in the parenchyma or around the central veins
in mice.22

Between hepatocytes, nerve signals can be propagated
via gap junctions. Electric coupling of hepatocytes by gap
junctions is relevant also in the human liver, but it is
particularly important in rodents where the nerves are
restricted to the periportal area.47 In mice and rats, the
nerves are in contact only with a few periportal hepato-
cytes, and then the nerve-derived signal is propagated via
gap junctions. The major gap junction protein in the liver
is connexin 32 (CX32).48 Gap junction inhibitors in rats
completely blocked the nerve-mediated metabolic- and
hemodynamic alterations.47 Moreover, in CX32-deficient
mice, dilated bile canaliculi have been observed and a

Fig. 1 Sympathetic innervation of the mouse and human liver. (A) Periportal sympathetic nerves in the mouse liver are visualized by tyrosine
hydroxylase (TH) volume immunostaining. Left panel: TH staining; middle panel: elements of the portal triad are segmented and color-coded
based on autofluorescence; right panel: sympathetic nerves around the segmented elements of the portal triad. (B) TH volume immunostaining
of a 5� 5� 2mm piece of healthy human liver. Note the extensive thick nerve fibers around the portal triad and the interlobular branches
(arrows) that arise from the periportal nerve plexus. From these interlobular nerves, fine intraparenchymal fibers target the parenchyma.
(Micrographs are from Adori et al.22)
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decrease in bile flow was described after electric stimula-
tion of sympathetic nerves.49

G-coupled noradrenergic receptors are expressed by vir-
tually all major cell types in the mammalian liver. Namely, α
and β receptor expressions were described in hepato-
cytes.50–52 In primary cultures, hepatic stellate cells (HSCs)
express α1a, α1b, α1d, α2b, β1, β2, β3, and NPY recep-
tors.53–55 The liver resident macrophage Kupffer cells were
reported to express all the nine adrenergic reports.56 Liver
progenitor cells express α1 receptors.57 Moreover, α and β
receptors in the portal vein wall, as well as α receptors in all
segments of the liver vasculature, were described.58,59 In a
more detailed study, β3 receptors were shown in the portal
vein endothelium andmuscle cells in mice.60 Cholangiocytes
express α1 forms (a, b, and d)61 and β262 receptors. More
detailed information concerning adrenergic receptor expres-
sions in various hepatic cell types is reported in a single cell
RNA sequencing study of the human liver63 and in a recent
detailed review.64 In addition to the noradrenergic receptors,
nicotinic65 and muscarinic (M1–M5)66 cholinergic receptors
were also described in HSCs. Sensory receptive mechanisms
on the molecular level are much less explored in the liver. In
case of osmotic sensing, Lechner et al identified transient
receptor potential channel member 1 ion channels in DRG-
derived spinal sensory nerve fibers in themouse liver, which
detect physiological changes in blood osmolality.67

Vegetative Imbalance and Its Role in NAFLD
Pathogenesis

Besides sedentary lifestyle, unhealthy diet, or genetic pre-
disposing factors, several studies highlight an autonomic
imbalance, namely, an increased sympathetic nerve tone,
as a key factor in the etiopathogenesis of NAFLD.68–70 Such
increased sympathetic tone may be the consequence of
enhanced excitability and overactivity of liver-related pre-
autonomic neurons in the hypothalamic PVN.71 In guanine
nucleotide exchange factor 3 (Vav3) knockout mice with
chronic sympathetic hyperexcitation, the metabolic syn-
drome and fatty liver onset were noted already at 4 months
of age, progressing to NASH without obesity after 1 year in
animals kept on normal chow diet.72 A recent study depicted
a more direct pathogenic link between liver sympathetic
outflow and hepatic steatosis, the initial manifestation of
NAFLD.20 Namely, high fat diet–induced NAFLD in mice was
associated with doubling of firing rate in efferent liver
sympathetic nerves. Furthermore, the steatosis was effec-
tively reversedwith chemical sympathectomy, independent-
ly of overall weight changes, caloric intake, or adiposity.

Chronically high sympathetic tone in NAFLD was con-
firmed also in humans. One study on 2,000 participants
concluded that increased sympathetic and decreased para-
sympathetic activities, rather than changes in hypothalamic–
pituitary–adrenal (HPA) axis, are associated with the meta-
bolic syndrome.69 A recent large-scale study with 34,000
participants showeddecreased parasympathetic activity and
elevated sympathetic tone as an increased risk for NAFLD.73

Another study in a smaller cohort of participants demon-

strated that NAFLD was associated with cardiac
sympathetic/parasympathetic imbalance assessed by heart
rate variability, regardless of the presence or absence of type-
2 diabetes.74

Finally, chronically elevated sympathetic tone in the liver
has systemic consequences as well. It leads to increased
hepatic arteriolar resistance, affecting renal sympathetic
activation, with consequence of renal arteriolar vasocon-
striction and renin–angiotensin–aldosterone system (RAAS)
activation. This hepatorenal reflex that mediates RAAS acti-
vation further decreases the renal blood flowand glomerular
filtration, and increases systemic sodium retention75 with
possible further cardiovascular consequences.

Liver Nerve Pathologies and Receptor
Alterations in NAFLD

The NAFLD spectrum is associated with pathologies of the
hepatic nerves. Early studies showed decreased densities of
liver innervations in cirrhosis, mainly in the parenchy-
ma.76–81 Moreover, liver sympathetic nerve density de-
creased in male macaques exposed to perinatal high fat
diet (combination of high fat diet to mothers and early
postnatal high fat diet to offspring).82

More detailed examination of hepatic nerve pathologies
was possible with the recent application of volume immu-
nostaining and light sheet microscopy. Using such novel 3D
imaging technique, we showed parallel signs of mild axonal
trimming and sprouting of sympathetic nerve fibers in
steatosis, which turns to a severe degeneration of nerves
in steatohepatitis in mice (►Fig. 2A–D).22 Aberrantly spout-
ing fibers in steatosis showed ectopic parenchymal localiza-
tion and they followed collagen fibers. In parallel, hepatic
NFG expression was elevated, suggesting that hepatic sym-
pathetic nerves exhibit an increased plasticity in the early
steatosis onset. This may be the consequence of a starting
reorganization of the ECM, which, in turn, destabilizes the
mechanical support of collagen fibers to the nerve fila-
ments.22 Notably, ECM reorganization is an early, critical
event in fibrosis, and it starts much earlier than the cirrhotic
stage in the NAFLD spectrum.83 Degenerating sympathetic
nervefibers,which appeared in significant amounts typically
in the more advanced steatohepatitis, showed swollen axo-
nal pathology indicating an axo-plasmatic transport prob-
lem. Namely, fine unmyelinated varicose fibers are
particularly sensitive for oxidative stress that may be a
consequence of chronic nerve activity, lipotoxicity, and
proinflammatory immune processes. Oxidative stress leads
to the destruction of microtubules, causing axo-plasmatic
transport impairments in the nerves.84–86Human fatty livers
showed similar nerve damages that was observed in mice,
starting with the finest intraparenchymal fibers, and corre-
lating with the severity of NAFLD pathology (►Fig. 2E).
Chronically high sympathetic tone is a key factor in this
degeneration—as we showed similar fiber degeneration in
the VaV3 knockout mouse line with chronic sympatho-
excitation.22 Liver sympathetic neuropathy in high fat
diet–fed mice was also described by Liu et al, using volume
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imaging technique. The neuropathy was shown as a result
of elevated macrophage-derived tumor necrosis factor α
(TNFα) signaling through sarm1. The authors demonstrat-
ed that fiber dystrophy can be reversed by calorie restric-
tion or by neutralizing TNFα antibody treatment.
However, no comparison with NAFLD spectrum pathology
was presented.23

We also described decrease in several adrenergic re-
ceptor and CX32 gap junction protein transcript levels
already in steatotic mice fed with Western (high fat and
high carbohydrate) diet, which may be a physiological
response to the chronically high sympathetic tone. These
expressions were further decreased in the steatohepatitis
phase.22 However, Wang et al found increased hepatic β3
mRNA and protein expression in rats fed with a high fat
diet.87

Detailed Consequences of Hepatic Nerve
Structural and Functional Impairments in
NAFLD

Role in Altered Lipid Metabolism—Steatosis
A healthy liver normally stores minimal amounts of lipids.
However, hepatocytes accumulate large amounts of fat with
the progression of NAFLD. The fat content of hepatocytes is
balanced by free fatty acid (FFA) uptake, de novo lipogenesis,
hepatic β-oxidation, and triglyceride disposal (released as
very low density lipoprotein [VLDL]).88 The unbalance be-
tween the afore processes, such as increased lipid intake (FFA
uptake or de novo lipogenesis) and/or decreased removal
(impaired β-oxidation or VLDL secretion), leads to steatosis.

As we discussed earlier, NAFLD is characterized by a
chronically high sympathetic tone. Elimination of liver

Fig. 2 Sympathetic nerve pathology in experimental and human nonalcoholic fatty liver disease (NAFLD). (A, B) tyrosine hydroxylase (TH)
volume immunostaining in control mouse liver (A–A′) and in experimental steatohepatitis (B–B′). Boxes in A and B indicated with a′ and b′ are
enlarged in A′ and B′, respectively. Note the extensive fiber degeneration in NASH. TH immunostaining in control mouse (C) and in experimental
steatosis (D). Note the ectopic, parenchymal sprouting of noradrenergic fibers in steatosis (arrowheads in D). (E) Sympathetic nerve pathology in
human NAFLD. Intraparenchymal fine fibers are gradually degenerating and disappearing with the more severe NAFLD pathology. ORO-red:
Oil Red O lipid staining. (Micrographs are from Adori et al,22 with slight modifications.)
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sympathetic nerves reduced FFA uptake and de novo lipo-
genesis, and reversed high fat diet-induced liver steatosis in
mice. In contrast, no significant effect was noticed in VLDL
release or β-oxidation.20 Other studies in other models,
however, found that sympathetic overactivity increased
hepatic VLDL production in fa/fa Zucker rats, and liver
sympathetic denervation decreased the VLDL secretion.70,89

On the molecular level, sympathetic denervation decreases
the mitochondrial carnitine palmitoyltransferase (CPT I-II)
activities. These transporters are responsible for transferring
long-chain fatty acids into mitochondria for β-oxidation.90

Regarding pharmacological studies targeting adrenore-
ceptors, more studies report increased hepatic β-receptor-
mediated signaling during aging, as mediator of increasing
hepatic steatosis.91–93 However, interestingly, chronic treat-
ment with β3 agonist decreased high fat diet-induced liver
steatosis and inflammation in mice.87 In another study, α-
receptor agonist, but not β-receptor agonist, reduced stea-
tosis in mice kept on a high fat diet, by stimulating fatty acid
oxidation and autophagy.21 Using primary rat hepatocytes
and human hepatoma cells, Schott et al found that treatment
with the β-receptor agonist isoproterenol caused substantial
lipid droplet loss via activation of cytosolic adipose triglyc-
eride lipase (ATGL) and hormone-sensitive lipase (HSL),
indicating a β-adrenoreceptor-dependent lipolysis pathway
in hepatocytes. β-Adrenergic stimulation rapidly activated
the protein kinase A, which led to the phosphorylation of
ATGL and HSL, and their recruitment to the lipid droplet
surfaces.94 Genetic depletion of β2 receptor could aggravate
high fat diet-induced liver lipid accumulation and liver injury
in mice. Namely, β2-depletion significantly activated
PPARg/CD36 signaling via inactivation of the cAMP response
element-binding (CREB) protein to facilitate hepatocellular
lipid deposition in mice kept on a hypercaloric diet.95

In the case of chronic consumption of high amount of fat,
vagus-derived lipid sensing in the portal veinwall is likely an
important mediator in the development of steatosis. Since
the absorbed substance concentration is four to five times
higher in the portal vein, compared with other parts of the
circulatory system, the portal vein is an ideal predictor of
systemic blood substance concentration.14,96,97 Portal infu-
sion of lipids significantly increases the hepatic vagal affer-
ent nerve traffic.98 Furthermore, the vagal afferent pathway
influences neuronal activity in the rostral ventrolateral
medulla, contributing to the chronic sympatho-excitation.99

Another study showed that excessive portal venous supply of
long-chain fatty acids in rat contributed to the development
of insulin resistance via activation of the HPA axis and the
sympathetic nervous system (SNS).100

Besides, vagal efferents may influence steatosis. A recent
studydescribes that leptin injection into themousebrain third
ventricle, or stereotaxic leptin injection into the dorsal vagus
complex in themedulla, decreaseshepatic triglyceride content
and protect from steatosis by increasing hepatic VLDL secre-
tion and by suppressing de novo lipogenesis, independently
from calorie intake. Cutting the hepatic branch of the vagus
abrogates this effect, suggesting that the efferent vagus nerve
conveys the leptin signal from the brain to the liver.101 In a

randomized placebo-controlled crossover trial with a limited
number of participants (n¼9–13), singlemetreleptin (recom-
binant human leptin) injection stimulated hepatic VLDL se-
cretion and reduced hepatic lipid content. However, in
contrast to the previous preclinical study, metreleptin was
peripherally (subcutaneously) administered to the partici-
pants. Applying the “modified sham feeding” technique of
vagus stimulus inhumans, the authors observed an increase in
VLDL secretion, mimicking metreleptin effects.102

Role in Inflammation—Steatohepatitis
Approximately one-third of steatosis cases progress to stea-
tohepatitis over the time. NASH inflammation is largely a
consequence of chronically elevated FFA, free cholesterol,
and oxidized cholesterolmetaboliteswithin thehepatocytes,
which generates reactive oxidative species (ROS). This intra-
cellular lipotoxic environment induces mitochondrial dys-
function and endoplasmic reticulum stress, which further
escalate a ROS cascade, leading to irreversible hepatocyte
damage and ultimately cell death.103 This triggers a feed-
forward loop between tissue injury and inflammation.

NASH inflammation is characterized by the activation of
the innate immune system. Prominent players in this
process are the liver-resident macrophage Kupffer cells,
which compose 80 to 90% of all colonized macrophages in
the human body.104 Normally, Kupffer cells exhibit an M2-
like activation phenotype and are involved in tissue repair
and phagocytosis of cellular debris. However, in response to
hepatocyte damage, Kupffer cells polarize toward proin-
flammatory M1 phenotype, secreting proinflammatory
cytokines such as TNFα, IL-1b, IL-6, IL-8, and IL-12, thereby
recruiting T-lymphocytes, natural killer T (NKT) cells, neu-
trophils, and blood-derived monocytes to the liver.7,104–106

NKT cells are components of the innate immune system.
They accumulate in the liver and regulate local proinflam-
matory (T helper 1) and anti-inflammatory (T helper 2)
cytokine production.107 Moreover, recruited NKT cells re-
lease perforin and granules, escalating liver damage.

Within the liver sinusoid, M1 Kupffer cells interact with
other immune cells such as T cells, dendritic cells, and innate
lymphocytes. Activation of Kupffer cells is a central event in
triggering further liver injury. Namely, activated Kupffer cells
are principal sources of further ROS production.108 Their
TNFα secretion contributes to hepatocyte apoptosis.106

Moreover, M1 Kupffer cells release transforming growth
factor β (TGF-β) and other profibrogenic cytokines, which
will activate HCSs.109 Accordingly, experimental depletion of
Kupffer cells attenuates inflammation in mice kept on
methionine/choline-deficient (MCD) or choline-deficient,
L-amino acid-defined (CDAA) diets.110–112

Finally, it is interesting to mention that while NASH
inflammation is generally considered as a sterile inflamma-
tion (i.e., inflammatory response in the absence of external
antigen), accumulating data suggest that pathogen-associat-
ed molecular patterns in case of gastrointestinal dysbiosis
mayalso exacerbate or evenprovoke the liver innate immune
system response in NAFLD.113 Namely, in patients with fatty
liver, an increased gut barrier permeability develops.114

Seminars in Liver Disease Vol. 43 No. 2/2023 © 2023. The Author(s).

Hepatic Innervations in NAFLD Adori et al. 155



Microbial molecular structures like lipopolysaccharides, lip-
oteichoic acid, peptidoglycan, lipoglycans, and lipopeptides
are recognized by toll-like receptors that are expressed by
HSCs and by awide variety of liver innate immune cells. Toll-
like receptor activation then leads to the expression and
release of several proinflammatory cytokines in these
cells.113

As mentioned earlier, fine intraparenchymal noradrener-
gic fibers in the Disse space form neuroeffector junctions
with Kupffer cells in humans and in nonhuman primates, and
Kupffer cells express all the nine noradrenergic receptors,
which overall suggest a robust sympathetic control of these
macrophages. For instance, SNS promotes hepatocarcino-
genesis by activating α1 receptors and facilitating proin-
flammatory environment in Kupffer cells. Inhibition of SNS
reduces IL-6 and TGF-β expression, which suppresses hep-
atocarcinogenesis.56 Moreover, Kupffer cell proinflamma-
tory cytokine secretion (TNFα, IL-1b, IL-6) is potentiated
by gut-derived noradrenaline release in sepsis.115

Regarding the context of NAFLD spectrum, the leptin-
deficient Ob/Ob mice, characterized by obesity and fatty
liver, showed elevated hepatic TNFα expression, and treat-
ment with anti-TNF antibodies improved liver histology and
reduced hepatic total fatty acid content.116 Interestingly,
Ob/Ob mice exhibit reduced noradrenaline level, due to a
lower rate of noradrenaline synthesis and metabolism.117

This increases hepatic NKT cell apoptosis and depletes NKT
cells. As a result of this, hepatic proinflammatory cytokine
production is increasing, which sensitizes lipotoxicity in the
fatty liver. Noradrenaline treatment reduces NKT cell apo-
ptosis and reduces hepatic inflammation in Ob/Ob mice.118

The hepatic sympathetic neuropathy in mice kept in a high
fat diet was mediated by TNFα derived from CD11bþ F4/80þ

immune cells (Kupffer cells, macrophages).23 In another
recent study, 4-week administration of the β3 agonist
BRL37344 attenuated lobular inflammation (the number of
inflammation foci) in high fat diet-fed mice.87

The vagus nerve is also supposed to regulate hepatic
inflammation in NASH, via α7 nicotinic cholinergic receptors
on Kupffer cells. α7 knockout mice on MCD diet developed
NASH faster than control mice, with highly activated Kupffer
cells. Moreover, hepatic vagotomy aggravated the diet-in-
duced NASH.119 Furthermore, stimulation of the cervical
trunk of the vagus nerve in mice increases the phagocytosis
activity of Kupffer cells.120

Finally, we should also emphasize the role of HSCs in
proinflammatory actions in injured liver. Namely, noradren-
aline stimulates the secretion of inflammatory chemokines
(RANTES and interleukin-8) in a dose-dependent manner,
and triggers NF-kappaB activation in HSCs in vitro.55

Role in Hepatic Regeneration and Fibrosis in NAFLD
SNS regulates liver repair by modulating HSCs (main fibro-
genic cells in liver) and hepatic progenitor cells (HPCs).

The resident HPCs help regenerate the epithelial compart-
ment after severe liver injury. The number of HPCs has been
found to be increased in NAFLD.121 In general, noradrenaline
and adrenoreceptor agonists stimulate the proliferation of

cholangiocytes.61,62 Moreover, the β-receptor agonist iso-
proterenol promoted recovery of the HPC pool in dopamine
β-hydroxylase (DBH)-deficient mice after acetaminophen-
induced liver injury.122 Contrary, in an earlier study, the
number of HPCs was increased after chemical sympathecto-
my by 6-hydroxydopamine (6-OHDA).65

HSCs (or perisinusoidal cells or Ito-cells; with older
terminology: lipocytes or fat-storing cells) are composed of
one-third of nonparenchymal cells and 8% of all cells in the
mammalian liver.123 With “dendritic-like” processes, they
form direct contacts with sinusoidal endothelial cells, hep-
atocytes, and Kupffer cells, which promote intercellular
crosstalk and transport of soluble mediators among these
cell types.124 Moreover, HSCs are neuroglia-like cells,125

expressing noradrenaline synthetizing enzymes,53,65 acetyl-
choline synthesizing enzymes, most adrenoreceptors, glial
fibrillary acidic protein, neural cell adhesion molecule, and
synaptophysin.66,125–127 HSCs release noradrenaline and
adrenaline in human primary cell culture54 and murine
HSC lysates contain dopamine, serotonin, and catecholamine
metabolites.53A recent study, however, using single-cell RNA
sequencing has reported that only a subpopulation of HSCs
has the gene expression signature of noradrenaline synthe-
sis, pointing to the heterogeneity of these cells.128 ELMI
studies confirmed that HSCs, just like Kupffer cells, are
innervated by fine noradrenergic fibers.37

In fibrosis, HSCs from quiescent phenotype move to an
activated, myofibroblastic phenotype. They release hepatic
growth factor that promotes hepatocyte proliferation and
maintenance.129 They also express alpha smooth muscle
actin (αSMA) and fibrogenic matrix proteins.130 Activation
of HCSs is originally part of a regenerating process, which, in
the long term, may turn to fibrosis and then ultimately to
cirrhosis, due to inadequate communication between HCSs
and neighboring cells.131

Exogenous noradrenaline dose-dependently increases
the proliferation and collagen expression of activated
HSCs. Activated HCSs in human primary culture upregulate
a/b adrenoceptors as well.54,132 Injury-related fibrogenic
response was inhibited in DBH knockout mice, evidenced
by reduced expression of αSMA, decreased induction of TGF-
β1, and collagen in cultured HCSs from DBH knockout
animals.53 Moreover, Ob/Ob mice with low catecholamine
level and lower SNS tone are resistant to liver fibrosis,133 and
chemical sympathectomyorα1 receptor antagonism inhibits
carbon-tetrachloride (CCl4)-induced liver fibrosis in rats.134

Overall, activation of liver noradrenergic (sympathetic)
nerves exacerbates liver fibrosis, while sympathetic inhibi-
tion attenuates it.

Importantly, acetylcholine also facilitates HSCs prolifera-
tion via intracellular activation of phosphoinositide 3-kinase
and MEK cell survival pathway, and induces TGF-β and
collagen fibrogenesis via M2 and M3 receptors.66

Role in Hepatic Hemodynamics in NAFLD
Portal hypertension (PH; supraphysiological pressure in the
portal venous system) is a severe complication in liver
cirrhosis.135 The pathophysiology of PH involves both
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hepatic factors (increased intrahepatic resistance to portal
venous and sinusoidal blood flow) and/or extrahepatic
effects (splanchnic arterial vasodilation).135,136 Although
PH has mostly been discussed in the context of cirrhosis,
elevated portal venous pressure has also been detected in
earlier phases of NAFLD, when fibrosis is less advanced, and
cirrhosis is absent.136,137

Numerous earlier studies reported decreased hepatic
blood flow and increased hepatic arterial and portal venous
pressure after electrical stimulation of the hepatic nerves in
rat,138 dog,139 or cat.140 Moreover, electrical stimulation of
portal vein-associated nerves elicited α-receptor-mediated
constriction of portal venules, sinusoids, and hepatic arter-
ies, but no response could be recorded from the central
vein.58 Intraportal injection of 6-OHDA prevented the large
reduction of hepatic blood volume normally seenwith nerve
stimulation, while the contractive response to noradrenaline
infusion was not altered.141 In a rat study, repetitive peri-
portal nerve stimulation was accompanied with a gradually
diminished noradrenaline overflow, while the metabolic
(glucose output) and hemodynamic (portal vein contraction)
effects remained unchanged,142 possibly indicating an ad-
renergic receptor sensitization during repeated stimulation.
While β1–2 adrenoreceptors have vasoconstrictor effects, β3
is a vasodilator receptor. β3 agonist treatment in rats signifi-
cantly and dose-dependently caused portal vein (but not
central vein) relaxation and decreased portal pressure in
cirrhosis (induced by CCl4), but not in controls.60

Early investigations showed a direct relation between
the size of portal/sinusoid pressure and circulating level of
noradrenaline in cirrhosis.143 Based on advanced 3D im-
aging, we recently described and quantitatively character-
ized a portal vein stenotic alteration (abnormal narrowing)
in mouse experimental steatohepatitis. Systematic 3D
analysis revealed that such portal stenosis ended exactly
where the already degenerating noradrenergic innerva-
tions terminated, followed by dilated distal portal
branches (►Fig. 3A,B). At the same time, the central vein
system that virtually lacks innervation did not show
decreased volume or shrunken morphology. These find-
ings propose that the liver periportal sympathetic nerves
could contribute to a stenotic portal vein condition in
advanced stages of NAFLD.22 The latter results also suggest
that these morphologically impaired sympathetic fibers in
NASH are still in operation, albeit presumably with im-
paired functionality. Taken together with the well-estab-
lished chronically high sympathetic tone in NAFLD, a
potential role of periportal sympathetic nerves in the
development of PH is suggested.

Furthermore, HSCs are extensively involved in the regu-
lation of hepatic sinusoidal microcirculation by contraction
and relaxation.144 In PH, resistance of the sinusoidal wall is
increasing, leading to a decreased microcirculation. Thus,
HSCs proliferation and increased contractility may also
contribute to PH,145 and noradrenergic signaling may serve
as a significant factor in such process.144

Finally, increased portal/sinusoid pressure leads to fur-
ther activation of sympathetic nerves in heart and kidney,

which is mediated by activation of non–volume-dependent
hepatic baroreceptors.146

Summary and Concluding Remarks

Accumulating evidence suggests that hepatic innervations
have multiple roles in the pathomechanism of NAFLD. Major
players are supposed to be the efferent sympathetic (norad-
renergic) nerves, affecting the development/progression of
steatosis, inflammation, fibrosis, and liver hemodynamical
alterations. Sympathetic nerve effects on the liver are over-
whelmingly complex and lots of details are still poorly
understood.

Namely, while chronically high sympathetic tone seems
to drive liver steatosis, more studies have shown that β-
adrenoreceptor agonists actually protect against steatosis
in experimental NAFLD. The extensive interaction be-
tween sympathetic innervation and Kupffer cells is doubt-
less, but it needs further exploration in the context of
steatohepatitis. Here, the balance between proinflamma-
tory M1 Kupffer cells and anti-inflammatory M2 Kupffer
cells is likely crucial to regulate the occurrence and
development of liver inflammation and subsequent inju-
ry.147 Accordingly, limiting the amount of M1 Kupffer cells
and promoting M2 Kupffer cell polarization may be a
valuable therapeutic strategy in attenuating inflammation
in NAFLD. Activation of various subsets of adrenergic
receptors seems to produce antagonistic effects on mono-
cytes. Namely, α-receptors are both pro- and anti-
inflammatory, while β-adrenergic receptors mostly show

Fig. 3 Portal vein stenosis in experimental steatohepatitis and its
spatial correlation with the remaining sympathetic nerves. (A, B) Liver
vasculature in steatohepatitic mouse is visualized by inverted auto-
fluorescence (AF) in 3D (gray channel in A and B). Portal vein stenotic
alteration is correlating with the extension of the already degener-
ating noradrenergic nerve fibers (tyrosine hydroxylase [TH] volume
immunostaining, red channel in B). Yellow dashed lines indicate the end
of THþ innervations. (Micrographs are from Adori et al.22)
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immunosuppressive and anti-inflammatory proper-
ties.148,149 Finally, based on the available data, sympathet-
ic nerve stimuli in NAFLD are clearly profibrotic with
promoting HSC activation to myofibroblastic phenotype,
and mostly vasoconstrictor, albeit β3 receptors have va-
sodilator effects in mice.

As discussed in this review, several noradrenergic recep-
tors have been described in hepatocytes, cholangiocytes, and
in the wall of portal vessels. Moreover, virtually all norad-
renergic receptors are expressed by Kupffer cells andHCSs. In
a healthy liver, orchestration of noradrenergic receptors by
the sympathetic nerves maintains equilibrium in several
signaling mechanisms with sometimes antagonistic effects,
which overall promotes liver metabolic homeostasis. These
fine-tuned balances may slowly change under metabolic
stress and/or with altered nerve functionality. Specifically,
in NAFLD, chronically high sympathetic tone may lead to
alterations in receptor expression levels, in receptor sensi-
tivity, and perhaps in signal transduction cascades, with a
cell-autonomous spatial-temporal character. Besides, in-
creased plasticity (disorganization, ectopic sprouting, and
mild trimming) of liver sympathetic nerves in earlier phase
of the disease (steatosis), and degeneration of sympathetic
nerves in more advanced stages (steatohepatitis), have been
described in NAFLD. These structural alterations likely come
along with impaired nerve functionality and lackof adequate
signaling, which further affect the receptors, as a vicious
cycle of hepatic noradrenergic pathology. All these may
contribute to a multiphase hepatic “catecholamine resis-
tance” (inability of (nor)adrenaline to induce a defined
response),150 which should be considered when planning
and evaluating pharmacological studies or pharmacothera-
peutic strategies targeting the SNS in NAFLD.

Afferent vagal nerves also seem to be significant in the
pathomechanism of NAFLD. Specifically, lipid sensing by vagal
afferent fibers in the portal vein wall is likely an important
player in thedevelopmentof steatosis by influencingneuronal
activity in the ventrolateral medulla and, consequently, by
contributing to the chronic sympathoexcitation.

Future Perspectives

In an interesting recent study, Wang et al reported that
sustained sleep deprivation promotes hepatic steatosis,
which is mediated by sympathetic overactivation.151 Other
studies also found that short sleep duration is a risk of
incident NAFLD.152,153 Considering that sleep deprivation,
poor sleep quality, and stressful lifestyle are very common in
modern societies, their metabolic consequences that possi-
bly imply hepatic steatosis due to elevated sympathetic tone
may need further investigations.

Also, despite its high importance, only a few studies
explored the development and integrity of hepatic nerves
of offspring in case of maternal obesity or perinatal/early
postnatal high fat nutrition.82 More information may be
needed in this highly relevant field, since a potential early
abnormal hepatic nerve development may have long-lasting

consequences, particularly in the case of metabolic chal-
lenges later in life.

Numerous studies examinedparasympatheticnerveeffects
on the liver by hepatic vagotomy experiments. However, as
emphasized by Berthoud, cutting the common hepatic vagal
branchdenervates not only the liver but also parts of the distal
stomach, pylorus, duodenum, andpancreas.40Moreover, com-
mon hepatic branch vagotomy not only destroys vagal fibers,
since approximately 30% of the nerve fibers running in this
branch are of nonvagal origin.154Asmentioned earlier,we and
others failed to detect parasympathetic (cholinergic) nerves in
rodent, nonhumanprimate, andhuman livers byusing volume
imaging.22,23 However, cholinergic fibers were described
around the liver hilumwith tracing studies, and some authors
speculate that parasympathetic nerves may act on the liver
indirectly, by innervating hilar sympathetic nerve struc-
tures.45 Overall, more detailed and comparative anatomical
studies are needed concerning the parasympathetic liver
innervations.

The pathogenesis of NAFLD is incompletely understood.
Currently, the therapeutic options are limited to lifestyle
changes and no approved drug therapy exists that may
address both the progression of liver fibrosis and associated
metabolic disturbances in NAFLD.155

Hepatic nerves, primarily the efferent sympathetic (nor-
adrenergic) nerves, have multiple subtle regulatory roles in
liver glucose and lipid metabolism, bile secretion, inflam-
matory reaction, hemodynamics, and regeneration. Howev-
er, their role may bemore essential during the fight-or-flight
response or when subjected to metabolic challenges, like in
the case of NAFLD.156 Future studies, simultaneously consid-
ering structural and functional alterations of hepatic nerves
and their receptors, may reveal novel aspects in the patho-
physiology of NAFLD, which could ultimately lead to phar-
macotherapeutic advances.
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