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Abstract Objective Accurate differentiation within the LI-RADS category M (LR-M) between
hepatocellular carcinoma (HCC) and non-HCC malignancies (mainly intrahepatic cholan-
giocarcinoma [CCA] and combined hepatocellular and cholangiocarcinoma [cHCC-CCA]) is
an area of active investigation. We aimed to use radiomics-based machine learning
classification strategy for differentiating HCC from CCA and cHCC-CCA on contrast-
enhanced ultrasound (CEUS) images in high-risk patients with LR-M nodules.
Methods A total of 159 high-risk patients with LR-M nodules (69 HCC and 90
CCA/cHCC-CCA) who underwent CEUS within 1 month before pathologic confirmation
from January 2006 to December 2019 were retrospectively included (111 patients for
training set and 48 for test set). The training set was used to buildmodels, while the test
set was used to compare models. For each observation, six CEUS images captured at
predetermined time points (T1, peak enhancement after contrast injection; T2,
30 seconds; T3, 45 seconds; T4, 60 seconds; T5, 1–2minutes; and T6, 2–3minutes)
were collected for tumor segmentation and selection of radiomics features, which
included seven types of features: first-order statistics, shape (2D), gray-level co-
occurrence matrix, gray-level size zone matrix, gray-level run length matrix,
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Introduction

Hepatocellular carcinoma (HCC) is the most prevalent sub-
type of primary liver cancer, accounting for approximately
85 to 90% of primary liver cancers.1 Unlike most malignant
tumors, the diagnosis of HCCwith typical imaging hallmarks
can be confirmed by noninvasive diagnostic criteria.2,3 Since
the treatment options and prognoses are different for HCC
and non-HCC malignancies (including intrahepatic cholan-
giocarcinoma [CCA] and combined hepatocellular and chol-
angiocarcinoma [cHCC-CCA]), imaging-based differentiation
of HCC from non-HCC malignancies is important.

Contrast-enhanced ultrasound (CEUS) with microbubbles
is able to characterize focal liver lesions (FLLs) in real time by
continuous imaging. CEUS Liver Imaging Reporting and Data
System(LI-RADS)wasdeveloped for standardizationof report-
ing and data collection of imaging techniques.4 This system
assesses the likelihood of a liver observation to be HCC using a
5-point scale, ranging from LR-1 (definitely benign) to LR-5
(definitely HCC). In particular, observations that are probably
or definitely malignant but not necessarily HCC are classified
as an additional category, LR-M. Several studies have already
confirmed that the vast majority of CCA and cHCC-CCA are
characterized as LR-M.5,6 Nevertheless, to ensure high speci-
ficityof LR-5 for the diagnosis ofHCC, considerable numbers of
HCC were also categorized as LR-M rather than LR-5. This,
however, results in limited sensitivity of LR-5 for HCC.7 It is
worth noting that radical resection or locoregional ablative
therapies are preferred over liver transplant for treatment of
HCC inmany Asian countries, somaximal sensitivity is antici-
pated when it comes to an HCC diagnostic algorithm in these
areas.8 In other words, reduced sensitivity of the LI-RADS
system for HCC limits its clinical application in countries and
regions that rely primarily on local treatments. In addition, the
mainstay management for CEUS LR-M nodules is needle biop-
sy,4 the accuracy of which is primarily limited by intratumoral
heterogeneity andpoor technique. AhighproportionofHCC in
the subset of LR-Mnodulesmay lead to an increase in invasive
procedures and medical burden. To address these issues, new
strategies aimed at characterizing HCC in the subset of LR-M
nodules are therefore required.

Radiomics is a novel tool that noninvasively extracts
quantitative information on cancer hallmarks from images,
thus constituting an image-based biomarker (named radio-
mics signature [RS]) for accurate diagnosis.9,10 Most radio-
mic studies rely on traditional machine learning techniques
in the radiomics feature selection and model building
step.11,12 To the best of our knowledge, there is no strong
evidence to indicate that CEUS-based RS or combined RS-
clinical (RS-C)model can be employed to characterize HCC in
the subset of LR-M nodules. Therefore, the purpose of this
study was to investigate whether CEUS-based RS or RS-C
model could be applied to preoperatively differentiate HCC
from CCA and cHCC-CCA within the CEUS LR-M category in
high-risk patients.

Materials and Methods

Study Population
The study was approved by the institutional review board of
Sun Yat-Sen University Cancer Center, and the requirement
for written informed patient consent was waived as this
study involved only retrospective analysis of previously
collected data.

Patients who underwent CEUS examinations for charac-
terizing FLLs from January 2006 to December 2019 were
screened. The inclusion criteria were as follows: (1) at high
risk for HCC; (2) observations diagnosed as HCC, CCA, or
cHCC-CCAvia biopsy and surgery resection; (3) patients who
underwent CEUS within 30 days before histopathological
diagnosis; and (4) if they met any of the LR-M criteria (rim
arterial phase hyperenhancement [APHE], early washout, or
marked washout), as described in CEUS LI-RADS v2017. A
subject was excluded from the study if they fulfilled any of
the following criteria: (1) previous treatment for HCC and (2)
incomplete information of potential covariables, or degraded
images that did not satisfy the requirements for analysis. A
flowchart depicting the enrollment process and reasons for
exclusion in this study is shown in ►Fig. 1. A total of 159
patients were included in the final analysis. The study
population was then randomly divided into two sets,

neighboring gray tone difference matrix, and gray-level dependence matrix. Clinical
data and key radiomics features were employed to develop the clinical model,
radiomics signature (RS), and combined RS-clinical (RS-C) model. The RS and RS-C
model were built using the machine learning framework. The diagnostic performance
of these three models was calculated and compared.
Results Alpha-fetoprotein (AFP), CA19-9, enhancement pattern, and time of washout
were included as independent factors for clinical model (all p< 0.05). Both the RS and
RS-C model performed better than the clinical model in the test set (area under the
curve [AUC] of 0.698 [0.571–0.812] for clinical model, 0.903 [0.830–0.970] for RS, and
0.912 [0.838–0.977] for the RS-C model; both p<0.05).
Conclusions Radiomics-based machine learning classifiers may be competent for
differentiating HCC from CCA and cHCC-CCA in high-risk patients with LR-M nodules.
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Fig. 1 The flowchart of study selection. CCA, intrahepatic cholangiocarcinoma; cHCC-CCA, combined hepatocellular and cholangiocarcinoma;
CEUS, contrast-enhanced ultrasound; FLL, focal liver lesion; HCC, hepatocellular carcinoma.
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including a training set (n¼111; mean age, 52�11 years;
male, 90 [81.1%]; and HCC:CCA/cHCC-CCA¼48/63) and a test
set (n¼48; mean age, 53�11 years; male, 40 [83.3%]; and
HCC:CCA/cHCC-CCA¼21/27). The training set was used for
feature selection, dimension reduction of radiomics features,
and model building, while the test set was used for compar-
ing the diagnostic performance of models.

Clinical Characteristics and Clinical Model
The clinical data of patients were collected from the hospital
information system, which included demographic variables
(age, gender, cirrhosis), imaging characteristics based on
CEUS (number of lesions, nodule size, enhancement pat-
terns, time of washout, and degree of washout), and labora-
tory tests (alpha-fetoprotein [AFP], and glycoprotein antigen
19-9 [CA19-9]). All these latent covariables were candidates
for the clinical model. Factors that were significant at the 0.1
level from the univariate logistics regression analysis were
included in the multivariable logistics regression analysis.
Those with a p-Value less than 0.05 in the multivariable
analysis were included as independent variables in the
clinical model.

CEUS Examinations
All CEUS examinations including initial B-mode evaluation
were performed using (1) Acuson Sequoia 512 (Siemens
Medical Solutions, Mountain View, CA, United States) with
a 4C1 convex array probe, (2) Acuson Sequoia system (Sie-
mens Medical Solutions) with a 5C1 convex array probe, (3)
Acuson S2000 (Siemens Medical Solutions) with a 6C1
convex array probe, and (4) Philips iU22 (Royal Philips
Electronics, Amsterdam, the Netherlands) with a 5C1 convex
array probe. In this study, grayscale ultrasound (US) was
initially performed to localize lesions and assess their con-
ventional US characteristics. SonoVue (Bracco, Milan, Italy)
at a dose of 2.0mLwas administrated intravenously for CEUS
examinations. CEUS was performed using a contrast pulse
sequencing mode with a low mechanical index of 0.06 to
0.08. The focus was set at the posterior acoustic field. A timer
was started immediately after injection of the suspension.
Continuous imaging was recorded as a cine loop for the first
approximately 70 seconds after injection, followed by inter-
mittent imaging recorded every 20 to 30 seconds for the
remaining 5minutes after injection. These recordings were
used to provide arterial phase (from 10–20 to 30–45 sec-
onds), portal venous phase (from 30–45 seconds to
2minutes), and late phase (from 2–5minutes) images. In
this study, images captured at six predetermined time points
(T1, visually identified peak enhancement of contrast-en-
hancing area after contrast injection; T2, 30 seconds; T3,
45 seconds; T4, 60 seconds, T5, 1–2minutes; and T6,
2–3minutes) were collected for radiomics analysis.

Radiological Assessment
Two readers (R.M. and J.H., with 5 and 13 years of posttrain-
ing experience, respectively, in abdominal imaging including
liver CEUS) independently reviewed all the US and CEUS
images without prior knowledge of the medical and surgical

history, laboratory results, computed tomography (CT)
and/or magnetic resonance imaging (MRI) findings, and
pathologic results. Disagreements between the two readers
were resolved through a consensus assessment by a third
reader (J.Z., 21 years of posttraining experience in abdominal
imaging including liver CEUS). First, the readers evaluated
the number, location, nodule size, and echo of lesions on
grayscale US images. In patients with multiple lesions, the
largest lesion with available histopathological assessment
was selected as a target observation for further evaluation.
Then the following features for each observation were
recorded: (1) enhancement patterns (recorded as no APHE,
nonrim APHE, or rim APHE), (2) specific timing of washout
(also classified as early washout [<60 seconds] or late wash-
out [�60 seconds]), and (3) degree of washout (recorded as
mildwashout ormarkedwashout [<2minutes]). The readers
also assigned each observation a CEUS LI-RADS category.
According to CEUS LI-RADS v2017,4 an observation is
assigned to the LR-M category if it meets any of the following
CEUS LR-M criteria: rim APHE, early washout, or marked
washout.

RS and RS-C Model

Tumor Segmentation and Feature Extraction
After the CEUS images mentioned in the “CEUS examina-
tions” sectionwere loaded into Novo Ultrasound Kit v1.0.0.R
software (GE Healthcare, UK), manual segmentation of each
observationwas performed by two radiologists (Y.Y. and C.P.,
with 3 and 8 years of posttraining experience, respectively, in
abdominal imaging including liver CEUS) independently in a
blinded manner using the “Segment” function. The radio-
mics features of region of interest (ROI) that covered the
whole observation are extracted using the “USomics” mod-
ule in the same software, which included seven types of
features as follows: (1)first-order statistics, (2) shape (2D),
(3) gray-level co-occurrence matrix (GLCM), (4) gray-level
size zone matrix (GLSZM), (5) gray-level run length matrix
(GLRLM), (6) neighboring gray tone difference matrix
(NGTDM), and (7) gray-level dependence matrix (GLDM).
Three transformations (i.e., Laplacian of gaussian [LOG],
wavelet transform [WT], and local binary pattern [LBP])
were applied to the original images, yielding the derived
images. All radiomics features, except for shape, were com-
puted from both the original images and derived images. In
total, 7,896 radiomics features, divided in six sets (T1–T6) of
1,316 features each, were calculated for every observation.

Feature Selection, Dimension Reduction, and Modeling
The machine learning-based approach was used in the
process of feature selection, dimension reduction of radio-
mics features, and model building. Prior to analysis, the data
were standardized using z-score normalization. The inter-
reader agreements of radiomics features were assessed with
intraclass correlation coefficients (ICC). A total of 572 fea-
tureswith good reproducibility (ICC>0.75) were considered
for inclusion in the further feature selection session. The top
20 features with the highest maximum relevance minimum
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redundancy (mRMR) scoreswere selected. The least absolute
shrinkage and selection operator (LASSO) algorithm was
applied to select key radiomics features with highest con-
tributions to classification (►Supplementary Fig. S1). The
multistep process of feature selection and dimension reduc-
tion is shown in►Supplementary Fig. S2. Logistic regression
was then utilized to build the RS. The primary outcome
measure (as described in the “Statistical Analysis” section) of
this RS after three train–test splits were calculated to study
the robustness of the RS. It, together with independent
variables of the clinical model, comprises a combined RS-C
model. A nomogramwas constructed for presentation of the
final RS-C model. The risk probability could be calculated
using the nomogram.

Statistical Analysis
Characteristics were compared between the entire study
population and training set, as well as the training set and
test set. Continuous data are presented asmean and standard
deviation, and categorical data are presented as frequencies
and percentages. Groups were compared using t-test for
continuous variables and the chi-squared test or Fisher’s
exact test for categorical test. Receiver operating character-
istics (ROC) analyses for the clinical model, RS, and RS-C
model for both the training set and the test set were
performed; and true positive, false positive, false negative,
true negative, area under the curve (AUC), sensitivity, speci-
ficity, and accuracy were calculated. AUCwas considered the
primary outcome measure, and DeLong’s test was used for
pairwise comparisons of AUC. Decision curve analyses were
used to assess the clinical utility of the models, and calibra-
tion curves and Hosmer–Lemeshow (H-L) test for goodness
of fit. Statistical tests were conducted using “SciPy” and
“Statsmodels” packages, and the machine learning–based
classifiers were implemented using the “Sklearn” toolkit in
Python version 3.8.1. A two-tailed p-value of less than 0.05
indicated statistical significance, unless otherwise stated.

Results

Patient Characteristics
Demographic variables, imaging characteristics, laboratory
tests, and pathological findings for the 159 patients with LR-
M nodules (69 HCC and 90 CCA/cHCC-CCA) are shown
in►Table 1. There was no significant difference in the clinical
characteristics between the entire study population and train-
ing set, as well as the training set and the test set (all p>0.05).

Clinical Model
Results of the univariate and multivariate analysis are shown
in►Table 2. Four independent factors identified as significant
in multivariate analysis were included in the clinical model.
Compared to patients with CCA/cHCC-CCA, patients with HCC
had higher AFP levels (p¼0.002) and lower CA19-9 levels
(p¼0.032). In the subset of LR-M nodules, HCC lesions less
commonly presented with rim APHE (p¼0.016) and washout
within 30 seconds (p¼0.015) than CCA and cHCC-CCA.

RS and RS-C Model
An overviewof themodeling process is shown in►Fig. 2. The
top five radiomics features with highest contribution to
model discrimination are listed in ►Table 3. These were
T3_LOG_GLRLM_ ShortRunLowGrayLevelEmphasis (RF1),
T2_LOG_GLDM_LowGrayLevelEmphasis (RF2), T2_Wave-
let_HL_GLDM_DependenceEntropy (RF3), T6_Wavelet_LH_
GLCM_JointEntropy (RF4), and T2_Original_ Firstorder_Skew
ness (RF5). Significant asymmetries of these selected radio-
mics features between HCC and CCA/cHCC-CCA group were
observed (►Fig. 3). RS was established based on these five
radiomics features using the logistic regression algorithm.
The computed formula was as follows:

RS ¼ -1.016 � RF1 þ 0.853 � RF2 - 0.977 � RF3 - 0.84
� RF4 - 1.109 � RF5 - 0.59.

The robustness of RSwas validated by calculating the AUC in
different training sets and test sets after three train–test
splits (►Supplementary Table S1).

The combined RS-C model included four independent
clinical factors and RS. A nomogram constructed for presen-
tation of the final RS-C model is shown in ►Fig. 4. The final
classification model (i.e., RS-C model) was created from the
nomogram by thresholding the nomogram output probabil-
ities at a value of 0.359 (►Fig. 4). The optimal threshold was
determined based on maximum Youden index. Patients
whose risk score exceeds the predetermined risk threshold
were diagnosed as HCC.

Performance of the Models
A range of diagnostic indexes of clinical model, RS, and RS-C
model are estimated in►Table 4, and results of DeLong’s test
are shown in ►Supplementary Table S2. The results of the
ROC curve analysis for the clinical model, RS, and RS-Cmodel
in the training set and the test set are displayed in ►Fig. 5A

and B, respectively. In the test set, the clinicalmodel achieved
an AUC of 0.698 (0.571–0.812). Both RS and RS-C model
yielded better performance than the clinicalmodel in the test
set (0.903 [0.830–0.970] for RS and 0.912 [0.838–0.977] for
RS-C model, both DeLong’s test p<0.05).

In the decision curve analyses, both RS and the RS-model
resulted in higher net benefit than the clinical model
(►Fig. 5C). As shown in ►Fig. 5D, the majority of the calibra-
tion curves followed the diagonal line for both the training set
(H-L test; p¼0.087) and the test set (H-L test, p¼0.288),
indicating reliable risk estimates of the nomogram.

Discussion

In the present study, machine learning–based strategy was
utilized for classification in the subset of CEUS LR-M nodules.
Compared to the clinical model (AUC: 0.698), both RS (AUC:
0.903; p¼0.018) and the RS-Cmodel (AUC: 0. 912; p¼0.003)
showed a higher discriminatory ability to correctly classify
observations as HCC or CCA/cHCC-CCA within the subset of
CEUS LR-M nodules in the test set.
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Although major success was achieved, challenges and
gaps of LI-RADS remain. Limited sensitivity of LR-5 for HCC
is one of the main issues. Sensitivity of LR-5 for HCC is
sacrificed to maintain a high specificity, resulting in some
HCC being characterized as LR-4, LR-M, or rarely LR-3.7 It was
reported that a substantial number of LR-M observations for
which biopsy is usually performed to definitively diagnose
wereHCC.13,14As Chernyak stated,15 accurate differentiation
within the LR-M category between HCC and non-HCCmalig-
nancies based on noninvasive imaging or other effective
means is an area of active investigation. The solutions to
the above-mentioned investigation might be helpful to re-

duce unnecessary invasive procedures and increase sensitiv-
ity of the LR-5 category for HCC. However, the clinical model
achieved poor performance for characterization of HCC
within the subset of CEUS LR-M nodules, with an AUC of
0.698 (0.571–0.812) in the test set. The present study is
dedicated to characterize HCC in the subset of CEUS LR-M
nodules using a machine learning strategy. The RS and RS-C
model performed well (AUC of 0.903 for RS and 0.912 for the
RS-Cmodel). Hence, this study is expected to achieve optimal
clinical management of HCC.

In this study, five radiomics features that contribute the
most to the classifier outcome were filtered out. None of

Table 1 The main characteristics of patients and observations

Parameters All patients (n¼159) Training set (n¼ 111) Test set (n¼48) p1 p2

Age (y)a 52�12 52�11 53� 11 0.79 0.53

Male 130 (81.8) 90 (81.1) 40 (83.3) >0.99 0.91

Cirrhosis 68 (42.8) 44 (39.6) 24 (50.0) 0.70 0.30

AFP> 20 μg/L 71 (44.7) 49 (44.1) 22 (45.8) >0.99 0.98

CA19-9>35 μg/mL 53 (33.3) 35 (31.5) 18 (37.5) 0.86 0.58

Number of lesions

One 139 (87.4) 97 (87.4) 42 (87.5) 0.50 0.91

Two 8 (5.0) 6 (5.4) 2 (4.2)

More than two 12 (7.6) 8 (7.2) 4 (8.3)

Nodule size

�20mm 3 (1.9) 1 (0.9) 2 (4.2) 0.28 0.27

20–50mm 81 (50.9) 55 (49.6) 26 (54.2)

�50mm 75 (47.2) 55 (49.6) 20 (41.7)

Echo demonstrated by ultrasonography

Hypoechoic 132 (83.0) 94 (84.7) 38 (79.2) 0.94 0.46

Isoechoic 11 (6.9) 7 (6.3) 4 (8.3)

Hyperechoic 16 (10.1) 10 (9.0) 6 (12.5)

Enhancement patterns

No APHE 5 (3.1) 2 (1.8) 3 (6.3) 0.93 0.71

Nonrim APHE 135 (84.9) 94 (84.7) 41 (85.4)

Rim APHE 19 (12.0) 15 (13.5) 4 (8.3)

Time of washout

< 30 sec 29 (18.2) 20 (18.0) 9 (18.8) >0.99 > 0.99

30sec-1min 130 (81.8) 91 (82.0) 39 (81.3)

Degree of washout (<2min)

Marked washout 24 (15.1) 18 (16.2) 6 (12.5) 0.94 0.72

Mild washout 135 (84.9) 93 (83.8) 42 (87.5)

Pathologic findings

HCC 69 (43.4) 48 (43.2) 21 (43.8) >0.99 > 0.99

CCA/cHCC-CCA 90 (56.6) 63 (56.9) 27 (56.3)

Abbreviations: AFP, alpha-fetoprotein; APHE, arterial phase hyperenhancement; CA19-9, glycoprotein antigen 19-9; CCA, cholangiocarcinoma;
cHCC-CCA, combined hepatocellular-cholangiocarcinoma; HCC, hepatocellular carcinoma.
aData are mean� standard deviation.
Note: p1¼ training set versus all patients; p2¼ test set versus training set.
Unless otherwise indicated, data are numbers with percentages in parentheses.
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these were shape features; one was first-order statistics,
which assessed the distribution of grayscale pixel intensities
within ROI; and four of thefive featureswere texture features
that sensitively reflected intratumoral heterogeneity, cellu-
lar density, and level of vascularization.16–18 The above
underlying phenotypic and pathophysiologic characteristics
can help predict the likely lineage of origin and thus benefit
differential diagnosis of HCC and CCA/cHCC-CCA. These

subtle nuances from medical images, difficult to appreciate
by visual inspection even for experienced radiologists, can be
found by radiomics analysis. In this regard, radiomics analy-
sis possesses its unique advantages in supporting clinical
application scenarios by high-throughput extraction of
numerous quantitative features.

The role of radiomics analysis in the differentiation of
HCC from non-HCC lesions has recently received increasing

Table 2 Univariate and multivariate logistic regression analysis of independent variables for differential diagnosis of HCC and
CCA/cHCC-CCA in high-risk patients with LR-M nodules

Parameters Univariate logistic regression
analysis

Multivariate logistic regres-
sion analysis

Clinical model

OR p OR p OR p

Age (y) 0.99 (0.97–1.03) 0.943

Male 6.00 (1.65–49.21) 0.564

Cirrhosis 1.84 (0.85–3.98) 0.121

AFP> 20 μg/L 4.56 (2.04–10.20) <0.001a 4.17 (1.65–10.52) 0.002a 4.40 (1.76–10.99) 0.002a

CA19-9>35 μg/mL 0.33 (0.14–0.79) 0.013a 0.31 (0.10–0.92) 0.035a 0.30 (0.10–0.90) 0.032a

Number of lesions 0.89 (0.41–1.67) 0.600

Nodule size (mm) 0.95 (0.46–1.97) 0.897

Echo demonstrated
by ultrasonography

1.96 (0.71–5.37) 0.192

Enhancement patterns 0.07 (0.01–0.51) 0.009a 0.10 (0.01–0.89) 0.039a 0.07 (0.01–0.62) 0.016a

Time of washout 5.54 (1.52–20.23) 0.010a 4.78 (1.10–20.74) 0.036a 5.71 (1.40–23.24) 0.015a

Degree of
washout (<2min)

17.34 (2.22–135.50) 0.007a 6.18 (0.65–58.91) 0.114

Abbreviations: CCA, cholangiocarcinoma; cHCC-CCA, combined hepatocellular-cholangiocarcinoma; HCC, hepatocellular carcinoma.
ap< 0.05.

Fig. 2 Overview of modeling process. LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristics; ROI,
region of interest.
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attention. Mokrane et al19 established a radiomics machine
learning signature based on CECT images from 178 patients
for HCC diagnosis in cirrhotic patients with indeterminate
nodules. However, this model had poor performance, with
an AUC of only 0.66 in the validation cohort. Another study
with 668 patients (531 HCC, 48 cHCC-CCA, and 89 CCA) built
a US-based radiomics model to preoperatively predict the
histopathological subtypes of primary liver cancers, with an
AUC of only 0.775 in the test cohort.20 The RS and RS-C

model built in this study demonstrated better performance
compared to the above models (AUC: 0.903 for RS and 0.912
for RS-C model in the test set). Nevertheless, specificity of
the predictions was limited (85.2% for RS and 77.8% for the
RS-C model in the test set). Deep learning that employs
multilayer neural networks, a new branch of machine
learning, provides opportunities to analyze images at great-
er depths, and it is expected to further improve model
discrimination.

Table 3 The definitions of the five most contributive radiomics features

Radiomics feature Time point Feature type Transformation Definition

RF1 T3 GLRLM LOG Short-run low gray level emphasis

RF2 T2 GLDM LOG Low gray level emphasis

RF3 T2 GLDM Wavelet_HL Dependence entropy

RF4 T6 GLCM Wavelet_LH Joint entropy

RF5 T2 First order Original Skewness

Abbreviations: GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix; GLRLM, gray level run length matrix; LOG, Laplacian of
gaussian; RF, radiomics feature.

Fig. 3 Violin plot showing significant asymmetries of the five selected radiomics features between HCC and CCA/cHCC-CCA group. CCA,
intrahepatic cholangiocarcinoma; cHCC-CCA, combined hepatocellular and cholangiocarcinoma; HCC, hepatocellular carcinoma; RF, radiomics
feature.
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There are also several limitations. First, this study was a
single-center retrospective study with a small sample size.
Owing to this, potential selection bias might exist. Furthers
studies are required to confirm all these findings. Second,
precise modeling depends upon the implementation of accu-
rate and rapid segmentation of tumor. However, manual
segmentationemployed in this study isexperiencedependent,
laborious, and time- and energy-consuming. Automatic seg-

mentation with minimal need for user input is more efficient
and more desirable. Finally, due to technical difficulty of
feature extraction from cine loops, images captured at pre-
determined time points, instead of cine loops, were selected
for radiomics analysis.

In conclusion, machine learning–based classification
strategy has the potential to differentiate HCC from CCA
and cHCC-CCA in high-risk patients with CEUS LR-M nodules.

Fig. 4 A nomogram constructed for presentation of the final radiomic signature-clinical model. AFP, alpha-fetoprotein; APHE, arterial phase
hyperenhancement; CA19-9, glycoprotein antigen 19-9.

Table 4 The diagnostic accuracy of the clinical model, RS, and RS-C model in the training set and test set

TP FP FN TN AUC Accuracy (%) Sensitivity (%) Specificity (%)

Training set

Clinical model 31 12 17 51 0.811 (0.747–0.873) 73.9 (65.0–81.2) 64.6 (49.4–77.4) 81.0 (72.9–88.4)

RS 45 12 3 51 0.932 (0.891–0.965) 86.5 (78.9–91.6) 93.8 (81.8–98.4) 81.0 (72.6–88.9)

RS-C model 41 4 7 59 0.952 (0.919–0.979) 90.0 (83.1–94.4) 85.4 (71.6–93.5) 93.7 (83.7–97.9)

Test set

Clinical model 15 9 6 18 0.698 (0.571–0.812) 68.8 (54.7–80.0) 71.4 (47.7–87.8) 66.7 (46.0–82.8)

RS 19 4 2 23 0.903 (0.830–0.970) 87.5 (75.3–94.1) 90.5 (68.2–98.3) 85.2 (65.4–95.1)

RS-C model 20 6 1 21 0.912 (0.838–0.977) 85.4 (72.9–92.8) 95.2 (74.1–99.8) 77.8 (57.3–90.6)

Abbreviations: AUC, area under the curve; FN, false negative; FP, false positive; RS, radiomics signature; RS-C model, radiomics signature-clinical
model; TN, true negative; TP, true positive.
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