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Abstract Background Although abundant literature is currently available on the use of deep
learning for breast cancer detection in mammography, the quality of such literature is
widely variable.

Purpose To evaluate published literature on breast cancer detection in mammogra-
phy for reproducibility and to ascertain best practices for model design.

Methods The PubMed and Scopus databases were searched to identify records that
described the use of deep learning to detect lesions or classify images into cancer or
noncancer. A modification of Quality Assessment of Diagnostic Accuracy Studies
(mQUADAS-2) tool was developed for this review and was applied to the included
studies. Results of reported studies (area under curve [AUC] of receiver operator curve
[ROC] curve, sensitivity, specificity) were recorded.

Results A total of 12,123 records were screened, of which 107 fit the inclusion criteria.
Training and test datasets, key idea behind model architecture, and results were recorded
for these studies. Based on mQUADAS-2 assessment, 103 studies had high risk of bias due to
nonrepresentative patient selection. Four studies were of adequate quality, of which three
trained their own model, and one used a commercial network. Ensemble models were used
in two of these. Common strategies used for model training included patch classifiers,
image classification networks (ResNet in 67%), and object detection networks (RetinaNetin
67%). The highest reported AUC was 0.927 + 0.008 on a screening dataset, while it reached
0.945 (0.919-0.968) on an enriched subset. Higher values of AUC (0.955) and specificity

Keywords (98.5%) were reached when combined radiologist and Artificial Intelligence readings were
= artificial intelligence  used than either of them alone. None of the studies provided explainability beyond
= breast cancer localization accuracy. None of the studies have studied interaction between Al and
= deep learning radiologist in a real world setting.
= mammography Conclusion While deep learning holds much promise in mammography interpreta-
= neural networks tion, evaluation in a reproducible clinical setting and explainable networks are the need
= systematic review of the hour.
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Reproducibility and Explainability of DL in Mammography

Introduction

Computer-aided detection (CAD) techniques in mammogra-
phy have a controversial history.

Traditional CAD used hand-crafted features to detect can-
cers on mammograms, and received Food and Drug Adminis-
tration clearance way back in 1998. There was a lot of initial
enthusiasm about the use of CAD in mammography, with
many large studies suggesting it can improve detection of
cancers.'™ These were however retrospective studies, per-
formed in simulated environments. When deployed for clinical
use, it was found that CAD actually reduces the accuracy for
cancer detection, and increases biopsy rates.

Deep learning (DL) has made much headway in medical
imaging. This is particularly true of breast imaging, where
various studies have reported accuracies comparable with
radiologists. Many studies have even suggested that DL may
be used, not just as a second user, but also to triage
mammograms without user intervention, thereby reducing
the workload on the radiologist. This may be particularly
valuable, given the increasing work-load and may even
make way for breast screening in developing countries.
However, even today, most studies are in retrospective
simulated environments. A systematic review by Freeman
et al® indicated that the clinical design of most studies is
poor, and the level of evidence for conclusions drawn
is low.

DL models essentially learn from the data they have
trained on, and would carry forward biases in these data in
an invisible, difficult-to-detect manner. It has been seen
that results reported in the literature are often not repro-
ducible in clinical settings. Wang et al® in their study
demonstrated how performance varied widely when six
different algorithms were tested on four mammography
datasets, with a significant fall in accuracy on external
validation. Thus, reproducibility is an essential metric
when assessing for possible clinical deployment of any
algorithm. In recent times, detailed check-lists such as
the Medical Image Computing and Computer Assisted
Interventions (MICCAI) reproducibility check-list’ and the
Checklist for Artificial Intelligence in Medical Imaging
(CLAIM)® have been made available as a guide to authors
planning and reporting such studies, to protect from lack of
reproducibility. Thus, to assess for potential reproducibility
of studies included in this systematic review, we checked
for their adherence to such check-lists. The importance of
explainability can be further understood by understanding
the inverse relationship between simplicity of an algorithm
and the performance. Unlike simpler algorithms which are
inherently easier to understand, on the other hand, more
advanced algorithms, especially multilayered DL-based
algorithms, are known as a “black box,” since little is known
about what made the algorithm come to a particular
conclusion. In health care, this explanation is essential
for patient-centered counselling and ethical as well legal
concerns. For models to be considered credible in the
clinical setting, it is essential that it be known whether
the predictions made by these models are clinically justifi-
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able. The reader is referred to a review by Li et al for an
understanding of various technical methods used for build-
ing trust-worthy, interpretable Artificial Intelligence (Al)
models®

In this review, we attempt to assess currently available
literature for reproducibility and explainability of these
models, to take a measured view of the position of DL in
mammography today. In addition, for studies which do have
a robust clinical validation, we describe the best practices in
model development and clinical design in detail, as adopted
by these investigators. Some technical terms used in this
review have been explained in online =Supplementary
Table S1 for ease of the reader.

Materials and Methods

This systematic review was conducted as per the Preferred
Reporting Items for Systematic reviews and Meta-Analysis
(PRISMA) guidelines.'® The protocol was registered with the
international prospective registry of systematic reviews
(CRD42020222668).

Information Sources

A search of the Pubmed and Scopus databases was made in
August 2021 by two independent reviewers. The keywords
used were “deep learning” OR “artificial intelligence” AND
“mammography” OR “breast” OR “breast cancer.” The titles as
well as abstracts of the studies were examined by reviewers
for inclusion in the study. The identified articles were
retrieved and manual search of bibliography was done to
identify other potentially relevant studies.

Eligibility Criteria

Studies required to fulfill the following criteria to be consid-
ered for inclusion. (1) Studies reporting the development of a
new DL model or validation of an existing commercially
available model. (2) Application of model to the domain of
either lesion detection or classification. (3) Information on
training and performance of algorithm available in study; or
if version and model of commercially available software have
been mentioned. (4) Full text of article available in English
language. The exclusion criteria were: (1) studies reporting
only breast density assessment by models. (2) Studies report-
ing only accuracy of segmentation of regions of interest
extracted by user on mammograms.

We also excluded review articles, opinions, letters to edi-
tors, and conference abstracts. Both reviewers examined the
full texts of eligible articles to determine inclusion in the final
analysis.

Data Extraction and Quality Assessment

A data extraction form was used to obtain relevant data from
included studies. The dataset used for training and testing
was recorded, along with the number of images in each
subset. The task performed by the model along with its
features, including the key-idea behind model training, and
reported results were also recorded. Since the validation
methodology and study design were different in each study,
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we first performed a quality assessment by assessing the risk
of bias and addressing applicability concerns. We devised a
modification of the Quality Assessment of Diagnostic Accu-
racy Studies 2 (QUADAS-2) tool,"" which was applicable to
our research question, the “modified QUADAS-2" (mQUA-
DAS-2). This was adapted from the CLAIM® as well as the
MICCAI reproducibility checklist.” The modifications made
to particularly fit Al assessment have been highlighted.

To ensure that studies we chose for detailed description
had a robust study methodology, making their reported
results reproducible and verifiable, we identified studies
which reported their results on enriched datasets which
were not representative of the distribution of breast cancer
in the population, studies which did not have consecutive or
random sampling, studies which did not perform external
validation, studies where reference standard is not based on
histopathology, and studies which had inappropriate exclu-
sions (such as testing on only cancer images, and excluding
normal images).

The entire mQUADAS-2 assessment tool is available in
online as = Supplementary Table S2. The quality assessment
was performed by two independent reviewers (D.B.and T.C.).
Differences in opinion were settled by a third reviewer (K.R.).

Data Analysis and Summary Measures

Among the studies that fulfilled the inclusion criteria and
were deemed to be of acceptable diagnostic quality based on
mQUADAS-2, we performed a detailed analysis of model
training strategies and reported results of model training
strategies. The analysis was focused on determining (1)
whether the clinical study design allows for generalizability
of results and (2) whether any attempt at explainability of
results has been attempted in the model building and model
analysis process. Based on these, the following analysis was
performed.

* (Clinical study design: we studied the suggested use of
Al; whether Al was used as a standalone for triage of
screening studies, as an aid to reporting radiologists, or
direct comparison was made between Al systems and
radiology readers of varying experience. We described the
data collection process for training and validation of a
model.

« Common practices in model design: the details of the
model, including key concepts, model architecture, and
hyperparameters, wherever mentioned were described

» Performance of Al: the metrics of reporting data, includ-
ing accuracy, sensitivity, specificity, or area under the
curve for a receiver operating characteristic (ROC) curve
with confidence intervals were compared. Common met-
rics used included sensitivity in relation to number of
false positives per image as per the free ROC curve (FROC)
for detection tasks while area under the ROC curve for
classification tasks. Studies were also analyzed to see if
any explanation for results of Al is provided, such as lesion
localization, explanation of missed cancers/false posi-
tives, or attempt at feature visualizations (or any other
form of explainability).
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Results

Literature Search and Study Selection

Using the search criteria, initially 12,123 articles were iden-
tified. After removal of duplicates and screening of abstracts,
the full text of 179 articles was retrieved. Of these, 72 articles
were excluded after screening the full texts. One hundred
and seven articles were included in the final analysis.'?"118
The study selection process is summarized in =Fig. 1.

Data Extraction (Initial Assessment)

Forty-seven studies tested their results on private datasets,
either in isolation or in combination with public datasets.
Sixty studies exclusively used publicly available datasets to
report their results. Common public datasets used for testing
the model included Breast Cancer Digital Repository (BCDR)
(5 studies), INbreast (15 studies), Mammographic Image
Analysis Society (MIAS) (17 studies), Digital Database for
Screening Mammography (DDSM) (34 studies), and OPTI-
MAM (3 studies). Most private datasets used had only image-
level labels; many authors used lesion-level labels provided
in public datasets in addition to their private datasets. Initial
approaches for network training included a combination of
hand-engineered features and DL; several studies also used
machine learning approaches such as support vector ma-
chine and random forest classifiers at some stage in their
pipeline. More recent approaches use DL end-to-end. Com-
mon approaches include a standard classification network
such as AlexNet, Residual Neural network (ResNet), and
Visual Geometry group (VGG) trained on medical images.
Many of the studies which reported detection accuracy used
astandard object detection network, used for natural images.
The most common networks used include Faster Regions
with convolutional neural networks (RCNN),'>'® You only
look once (YOLO),'>16:1834 and RetinaNet.?' To deal with
availability of only small datasets with strong (lesion level)
labels, authors have attempted patch learning?%-22-2431 (clas-
sifiers trained on patches are used to initialize full image
classifiers), and multi-instance 1eetrning.22'24'69 To overcome
shortage of data, several authors have mentioned performing
data augmentation by flipping, rotation, and geometric
transformation, while few authors have attempted genera-
tive adversarial network-based synthetic image generation
for data augmentation. Most authors mention the use of
transfer learning from natural images. Networks are com-
monly initialized with weights from ImageNet training.
Common strategies used in improving accuracy included
use of opposite view, opposite breast, use of full resolution
images for training, multi-scale training, and use of patient
metadata. Detection accuracy is commonly presented as an
FROC curve which plots true-positive detections against
false-positive marks per image.''® Most common metric of
classification accuracy was the area under the ROC curve.

Quality Assessment

Studies were assessed for risk of bias and applicability as per
our mQUADAS-2 tool. The details of assessment are provided
in =Table 1. Overall, four®%’6113.117 studies qualified
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Records identified through
database searching (n=12123)
Pubmed (n=4186)

Scopus (n=7937)

|

Records after duplicates removed
n=3596
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Removal of review articles, editorials,
articles reporting only segmentation tasks
or other modalities such as tomosynthesis

Full text articles assessed for
eligibility (n=122)

or contrast ultrasonography (n=3474)

Excluded (n=15)
No full text available (n=5)
Articles describing only machine

Included studies assessed
using mMQUADAS-2 tool
n=107

learning methods (n=7)
Articles describing trials/projects
currently underway (n=3)

Articles with inadequate

reproducibility as per mMQUADAS-2
n=103

Articles with adequate
model training details

n=3 available models n=1

Articles with good clinical study
design, but using commercially

Fig. 1 Summary of study inclusion process for our review.

mQUADAS-2, of which one study described the test of a
commercially available model and three described details of
model training, as well as tested the model with a robust
clinical study. Each of these four studies are summarized in
the online =Supplementary Table S3. Below, we have ana-
lyzed these studies for their clinical study design, model
design and training, and their reported results.

Clinical Study Design

Studies with a robust clinical study design as ascertained by
mQUADAS-2 are enlisted in =Table 2. All of the studies
involved retrospective patient recruitment. The study by
Ling and colleagues®? studied the utility of Al in triage of
normal mammograms, while the study by Schaffter and
colleagues’® studied the performance of Al as a second
reader to a radiologist. Two studies, those by Lotter and
colleagues''” and McKinney and colleagues,''® compared
the performance of Al and radiologists on similar enriched
datasets. In three studies, the evaluation of Al as a standalone
reader was also reported.

Training data used included the OPTIMAM dataset from
the United Kingdom along with private datasets from U.S.
hospitals ranging in size from 12,223 exams to 48,714 exams.
The study by Schaffter et al’® trained their model on a large
dataset from the Kaiser Permanente Washington, comprising
85,580 exams which was part of the DREAM mammography
challenge. Testing data size ranged from 68,026 exams from
the Karolinska Institute, Sweden, which was part of the
DREAM challenge, to 3,097 exams from a single institute
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in the United States used by McKinney et al."' The smallest
subset used for testing was 1,533 diagnostic exams from a
single institute in China used by Lotter et al."'” In three
studies, test data came from a different continent in compar-
ison to training data. Histopathology was used for cancer
proof in all studies. Length of follow-up for labeling an exam
as normal or benign, ranged from 12 to 27 months. All the
networks made comprehensive predictions for the entire
examination, including both cranio-caudal and medio-later-
al-oblique views of a patient. Image-level predictions were
not made by any networks. Localization of cancer for accu-
racy prediction was described in two studies'''"” while the
rest of the studies did not provide any location information.
Nearly all of the studies were performed in a screening
setting, only the study by Lotter et al''” tested their network
on an enriched diagnostic dataset from an institute in China.

Common Practices Used for Al Model Design and
Training

There were three studies which qualified mQUADAS-2 and
described their models’®''3117 (instead of using a commer-
cial software). The three studies described eight models,
which are described below.

All three studies described multi-stage pipelines,
and two of the three studies used ensembles.”®13 All studies
used lesion-level labels at some stage in their pipeline. All
studies also attempted to use high resolution of images at
some stage in their pipeline. The input resolution ranged
from 1,100 x 600 to full resolution of 3,328 x 4,096. These

113,117
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Table 1 (Continued)

Enriched private dataset used
Enriched private dataset used

Reason

Patient selection
Patient selection

Reason for
exclusion
domain

Risk of

bias
High
High

Low

Decision
toward
detailed
analysis
Exclude
Exclude

Include

Year
2020
2019

Jan 2020

Pacile et al'!?
Watanabe et al'1®

Author

McKinney et al''3

Improved cancer detection using artificial intelligence:

a retrospective evaluation of missed cancers on

mammography with the concurrent use of an artificial
mammography

Improving breast cancer detection accuracy of
intelligence tool

Title

International evaluation of an Al system for breast cancer

screening

105.
06.

1

07.

1

Indian Journal of Radiology and Imaging

Abbreviations: BCDR, Breast Cancer Digital Repository; MIAS, Mammographic Image Analysis Society; DDSM Digital Database for Screening Mammography.

Bhalla et al.

were provided either through patches generated at full
resolution’®'"” or as direct input of full-resolution
images.'' Only one of these three studies explicitly de-
scribed use of medically relevant information from the
opposite breast and opposite view.!"® Common data aug-
mentation techniques included resizing, rotations, and ver-
tical flipping. Two of the models’®'"3 also used patient
metadata such as age to attempt to improve their perfor-
mance. A summary of description of the key idea in each
model is given in = Table 3. ~Fig. 2 summarizes the workflow
among these four studies that were analyzed in detail.

Performance of Al
Since all studies have reported performance on widely
different datasets, they are not directly comparable. Howev-
er, within the category of studies which were assessed as
being high quality, similar methodology was used to curate
the data. Therefore, these results are tabulated in =Table 4.

Two studies''®""7 compared the performance of Al
against a radiologist. Although both performed this analysis
only on a small enriched subset of their dataset, both
reported a slightly higher performance of Al in comparison
to the radiologist. One study compared the performance of
radiologists with and without Al, and showed that the
performance of radiologists with Al is better than either
the radiologist or Al alone.”®

All studies provided localization-based explainability,
though only one evaluated localization accuracy by means
of mROC curves''? (another study provided lesion detection
accuracy; however, this was restricted to location in terms of
laterality and quadrant”7). This was also only in a small
subset of the test population. No other form of interpretabil-
ity or explainability has been attempted in any study.

Discussion

In this review we found that although a very large number of
studies have been published in scientific literature on DL in
mammography, a very miniscule number of these have
actually tested their results in a robust clinical study. Impor-
tantly, no study offers any explainability beyond identifica-
tion of lesions (either by bounding box prediction or saliency
maps).

We identified four studies which tested their results in a
reproducible manner,®276113.117 o4t of which three de-
scribed their in-house models. For these we also describe
the practices they used for model building.

Common Practices for Model Design

All identified studies had some common features in model
design. First, all of them attempted to use images with as high
resolution as possible, at some stage in the network. This
stresses on the importance of the fact that despite memory
constraints, it is important to preserve the resolution of
images while giving them as input to neural networks.
This is consistent with medical knowledge on the need for
exceptionally high spatial resolution for mammograms. Sec-
ond, all authors stress on the importance of using precise

Vol. 34 No. 3/2024 © 2023. Indian Radiological Association. All rights reserved.
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Table 3 Analysis of models employed by studies with adequate clinical design

Author

Model description

Schaffter et al’®

Ensemble, each model of the ensemble came from the top winners in a grand challenge.

The first model, developed by Therapixel, was a modification of VGG Net. The network was modified to
reduce the number of parameters, so that it could accept a larger input size of image. The team reduced
the resolution of DM images to 1152 x 832 pixels. They also reduced the number of pooling layers to
detect fine features. To deal with the problem of the image having a weak signal due to presence of very
small object in comparison to size of image, they first pretrained with strongly labeled data (with image
patches with position information). To deal with class imbalance, they trained this with minibatches
containing equal number of negative and positive samples.

The second model developed by Ribli et al was an object detection network, and predictions were used to
generate classification scores. They trained a faster RCNN on public data and some hand-annotated
component of the challenge data.

The third model developed by Guan et al”? trained multiple segmentation models (four different models)
and combined the result of these four models. The models used a combination of high-resolution images
with a sliding window approach for calcification detection and low-resolution images for mass detection.
They also trained the model using public datasets which contained location information, like the other
authors.

The final model developed by DeepHealth consisted of two patch level classifiers (ResNet) at two different
scales for microcalcifications and masses. They used these to initialize the whole image classifier with a
scanning window approach.

McKinney et al'

Ensemble of three models, each working at a different level of interpretation of mammograms (lesion
level, breast level, and case level), each model producing a breast cancer risk score between 0 and 1 for the
entire patient.

First stage of MODEL 1 was a RetinaNet object detector trained on full mammogram images rescaled to
2,048 x 2,048. Rectangular bounding boxes were produced along with a confidence score, and the top 10
boxes among all 4 views were chosen. These patches were rescaled to 409 x 409 and a corresponding
patch from the opposite breast was chosen after rough registration of the breasts. Along with this, patient
age, laterality, detection coordinates, and view were concatenated. This was passed through a Mobilenet
architecture. A cancer score was obtained for each patch which was combined into a case level score.
The second stage of MODEL 1 took these fixed size detections and trained them with a classification model
that used case level labels. At train time, 5 such crops were used per case, and at test time, 10 such crops
were used, and average predictions determined.

MODEL 2 was a breast level model. Here each image after augmentation was run through a ResNet 50
feature extractor and the final feature vector obtained from all four breasts were concatenated. This
concatenated feature vector was run though a few residual blocks, convolutional blocks, and then an
average pool was performed to obtain a prediction score per breast.

MODEL 3 was a case level model, this also involved a ResNet as a feature extractor from each of the four
images. Data augmentation was used and input size of 2,048 x 2,048 was used. The four feature vectors
were concatenated and a single hidden layer of size 512 was applied to the combined feature vector
followed by a binary classification. This ResNet was initialized with trained weights of the backbone of the
object detector used by MODEL 1.

Lotter et al'!”

3-stage model. In the first stage a ResNet classifier was trained on patches of 275 x 275 obtained from full
mammogram images. In the first stage they performed a 5-class classification into mass, calcification,
focal asymmetry, architectural distortion, or no lesion. The same classifier was further trained to give a
3-class classification as normal, benign, or malignant. In the next stage (stage 2), this trained ResNet
weights were used to initialize the backbone for a RetinaNet object detector. The images for RetinaNet
were resized to 1,750 pixels (other dimension modified to maintain aspect ratio). Stage 3 consisted of a
multi-instance learning-based object detector trained with only image-level labels.

Abbreviation: DM, digital mammography.

location information on cancers. This is because the malig-
nant lesion tends to occupy a very small portion of the image.
Therefore, purely classification networks which work only on
image-level labels tend to perform far inferior to studies
which use location of cancer. Third, all networks use transfer
learning from natural images and use some form of data
augmentation. Fourth, medically relevant information such
as metadata and information from opposite view and oppo-
site breast adds greatly to network performance. All the

Indian Journal of Radiology and Imaging

above point toward the importance of core radiology knowl-
edge in network design. While all networks provide lesion
location as a means of explainability and to check saliency of
network predictions, none of the networks have explicitly
discussed any other means of studying explainability.

Common Practices for Clinical Design
All the identified studies were retrospective and performed
in a screening environment. All networks used large datasets

Vol. 34 No. 3/2024 © 2023. Indian Radiological Association. All rights reserved.
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Use of
: Use of lesion additional : Data
RIS e level labels medical ransfer learnin augmentation
information
Use of
Input Data metadata-1
— Use of
1100X600 to opposite
3328X4096 3/3 at some breast- 1 3/3 3/3
stage Use of
opposite
view -1
Object Object Detection
Ensemble Patch Training classification g Network :
S network
* Al Modei ° 3/3 networks use 3/3 networks
S/ AGERGE s 2/3 3/3 at some classification used object
s e e e stage networks on detection (1
AR A e patches at some used Faster
stage (1 VGG Net, RCNN, 2 used
2 used ResNet) Retinanet)
Title
e 1ol Radiologist vs Alvs
¢ Al +Radiologist radiologist
i 1/4 1/4 2/4 studies

Fig. 2 Summary of detailed analysis of studies which qualified mQUADAS-2.

for training, and tested on datasets ranging from 3,000 to
68,000 mammograms’®'13. While all the studies concluded
that Al can be used for triage, or as an assistant to a
radiologist as a second reader to improve accuracy, no
analysis has been performed to understand the effect of false
positives suggested by Al on the recall tendency of the
radiologist. All studies mention the number of false-negative
(missed) cancers, and some even compare the numbers with
the corresponding numbers missed by radiologists in their
studies. The characteristics of cancers missed by Al have also
been analyzed by authors,®>'131"7 to determine patterns
based on breast density, tumor size, and histological type,
among others, but no consistent patterns emerged that could
provide a medically sound reason for the miss. This would be
of great importance in the event of potential deployment,
where it would be of vital importance to explain to a patient
why her cancer may have been missed by Al In addition,
among the four studies that we analyzed, only two studies
mentioned confidence intervals of area under the curve for
ROC curves in the results,'>'"” calling into question the

Indian Journal of Radiology and Imaging

possible variability in results described by the other studies.
An objective measure of localization accuracy, determined
by the mROC curve, was also mentioned in only a single study
of these four. This is however understandable, as evaluating
localization accuracy would need lesion-level labels for
the entire test dataset, which would be very expensive to
obtain.

Studies that report detection of interval cancers on pre-
index mammograms do not mention the specificity level at
which the cancer was caught on the pre-index study. Thus,
how this would translate in a real-world setting remains to
be seen.

Evaluation on a diagnostic mammography dataset was
performed only in a single study,''” which tested on an
enriched dataset that consisted of a consecutive sample of
cancers (34.8%) along with a random sample of noncancers
(63.2%). Similarly, this was the only dataset from a previously
unscreened population. Thus, little is known on how these
networks would behave when deployed in such an environ-
ment. There were no studies that tested the Al on computed

Vol. 34 No. 3/2024 © 2023. Indian Radiological Association. All rights reserved.
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Table 4 Reported results for various tasks performed by the Al networks

Author Al standalone

Al+ Radiologist

Radiologist standalone | Others

US dataset
Enriched dataset (285)

0.927 +0.008
0.945 (0.919-0.968)

AUC AUC AUC
Mckinney et al''3 NA ROC curve encompasses | Model sensitivity: 56.24%
US dataset 0.757 (0.732-0.780) average radiologist Model specificity: 84.29%
’ : ’ performance point Non-inferiority compared
Enriched dataset (465) | 0.740 (0.696-0.794) 0.625 (SD 0.032) to radiologist
Lotter et al'"’ Nil 0.891 (+0.019) Model sensitivity:

(best reader AUC) 96.2% (91.7-99.2)

14.2% higher than radiologist
Model specificity: 90.9%
(84.9-96.1)

249% higher than radiologist

Schaffter et al’®
Sweden dataset:
Ensemble model

0.923
radiologist)

0.955 (consensus

Specificity model: 92.5%
Radiologist

96.7% (96.6-96.8)
Combined model plus
radiologist

98.5% (98.4-98.6)

Lang et al®?

- Missed cancers= 10.3%
(3.1-17.5)

Abbreviations: Al artificial intelligence; AUC, area under the curve; ROC, receiver operating curve; SD, standard deviation.

radiography systems, which are still present in many devel-
oping countries.

A recently published systematic review by Uzun Ozsahin
et al'?% similarly highlights the differences and inhomoge-
neity in the developmental methodologies of Al algorithms
but with a general sense of improvement in the quality of
studies with passing time.

Overall Assessment of Position of Al in Breast
Imaging

As radiology, like every other specialty in medicine and
indeed every other industry, gears up for a transformation
in the form of introduction of Al within the work-flow,
reproducibility and explainability of neural networks form
the essential building blocks of such implementation.

We found in our review that both reproducibility and
explainability continue to stand in question, and would need
significantly more research prior to potential clinical deploy-
ment. We thus suggest these to be important check-points
for radiologists, when attempting to assess commercially
available algorithms for deployment in their department.
We also refer the readers to the MICCAI reproducibility
checklist” and the CLAIM checklist® while designing a study
to ensure their studies are of adequate quality. In our study,
two algorithms performed better than radiologists at classi-
fying mammograms; however, these had relatively small
testing datasets. On the other hand, in the study with the
largest testing dataset, radiologist reading showed consider-
ably higher specificity. While it is clear that when used in
the correct clinical scenario, Al holds great potential, a
nuanced view should be taken to how and in what capacity
it may be deployed, and where it can provide real clinical
benefit.
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