T. DELCAILLAU, B. YANG, Q. WANG, J. ZHU* (ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, SWITZERLAND)

Editing Tetrasubstituted Carbon: Dual C-O Bond Functionalization of Tertiary Alcohols Enabled by Palladium-Based Dyotropic Rearrangement

J. Am. Chem. Soc. 2024, 146, 11061-11066, DOI: 10.1021/jacs.4c02924.

Dyotropic Rearrangement of Tertiary Alcohols for the **Synthesis of Fluorinated Tetrasubstituted Carbons**

Significance: The authors report an unprecedented 1,2-aryl/Pd^{IV} dyotropic rearrangement along a C–O bond to generate α -fluorinated tertiary ethers. The reaction proceeds with stereoinversion of absolute configuration of the tertiary alcohol center. It is hypothesized that the driving force for the 1,2-dytropic rearrangement is the generation of a π -oxyallyl Pd^{IV} species.

Comment: Inclusion of a cyclopropyl group on the tertiary alcohol center indicated to the authors that radical intermediates are likely not involved. The authors were also able to carry out several posttransformations to generate a variety of fluorinated analogues of biologically active compounds.

Synfacts 2024, 20(07), 0703 Published online: 14.06.2024 DOI: 10.1055/s-0043-1775184; Reg-No.: L09124SF

Category

Metals in Synthesis

Key words

fluorination palladium catalysis dyotropic

rearrangement

SYNFACTS Contributors: Mark Lautens, Andrew G. Durant