RSS-Feed abonnieren
DOI: 10.1055/s-0043-1773540
Synthesis of Indolo[1,2-a]quinoxalines and 2-Arylquinazolinones by Oxidative Aromatization from Aromatic Aldehydes or Benzyl Alcohols
Autor*innen
Financial support from the Natural Science Foundation of Jiangsu Province (BK20191197) and Suzhou University of Science and Technology is gratefully acknowledged.

Abstract
We report a simple protocol for the synthesis of heterocyclic indoloquinoxalines and 2-naphthylquinazolinones by an oxidative aromatization from aromatic aldehydes or benzyl alcohols. For aromatic aldehydes, a diphenyl hydrogen phosphate/Cu(OTf)2/t-BuOOH system delivered the products in high yields (73–93%). From benzyl alcohols, a Fe(NO3)3·9H2O/(2,2,6,6-tetramethylpiperidin-1-yl)oxyl/air system was effective, and the products were obtained in moderate to high yields (51–75%). The indolo[1,2-a]quinoxaline compounds displayed fluorescence emission bands at 501–533 nm. Moreover, intramolecular hydrogen bonding was vital for the free rotation of the aryl–aryl bond in ortho-hydroxyindolo[1,2-a]quinoxalines.
Key words
Brønsted acid catalysis - Pictet–Spengler reaction - aromatization - axial chirality - quinoxalinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773540.
- Supporting Information (PDF) (opens in new window)
Publikationsverlauf
Eingereicht: 26. Februar 2025
Angenommen nach Revision: 21. März 2025
Artikel online veröffentlicht:
22. April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Deiters A, Martin SF. Chem. Rev. 2004; 104: 2199
- 1b Jung HH, Floreancig PE. J. Org. Chem. 2007; 72: 7359
- 1c Fan L.-L, Huang N, Yang R.-G, He S.-Z, Yang L.-M, Xu H, Zheng Y.-T. Lett. Drug Des. Discovery 2012; 9: 44
- 1d Desplat V, Moreau S, Belisle-Fabre S, Thiolat D, Uranga J, Lucas R, de Moor L, Massip S, Jarry C, Mossalayi DM, Sonnet P, Déléris G, Guillon JJ. Enzym. Inhib. Med. Chem. 2011; 26: 657
- 2 Ma Z.-Z, Hano Y, Nomura T, Chen Y.-J. Heterocycles 1997; 46: 541
- 3 Rustagi V, Aggarwal T, Verma AK. Green Chem. 2011; 13: 1640
- 4 Xu H, Fan L.-l. Eur. J. Med. Chem. 2011; 46: 1919
- 5a Li Y, Su Y.-H, Dong D.-J, Wu Z, Tian S.-K. RSC Adv. 2013; 3: 18275
- 5b Lv W, Budke B, Pawlowski M, Connell PP, Kozikowski A. J. Med. Chem. 2016; 59: 4511
- 5c Dai C.-S, Deng S.-Q, Zhu Q.-H, Tang X.-D. RSC Adv. 2017; 7: 44132
- 6a Raines S, Chai SY, Palopoli FP. J. Heterocycl. Chem. 1976; 13: 711
- 6b Abonía R, Insusaty B, Quiroga J, Kolshorn H, Meier H. J. Heterocycl. Chem. 2001; 38: 671
- 6c Kamal A, Babu KS, Ali Hussaini SM, Srikanth PS, Balakrishna M, Alarifi A. Tetrahedron Lett. 2015; 56: 4619
- 6d Preetam A, Nath M. RSC Adv. 2015; 5: 21843
- 6e Wang Y.-H, Cui L.-Y, Wang Y.-M, Zhou Z.-H. Tetrahedron: Asymmetry 2016; 27: 85
- 6f Devi RV, Garande AM, Bhate PM. Synlett 2016; 27: 2807
- 6g Aiello F, Carullo G, Giordano F, Spina E, Nigro A, Garofalo A, Tassini S, Costantino G, Vincetti P, Bruno A, Radi M. ChemMedChem 2017; 12: 1279
- 7a Pictet A, Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030
- 7b Nalikezhathu A, Cherepakhin V, Williams TJ. Org. Lett. 2020; 22: 4979
- 7c Das S, Liu L, Zheng Y, Alachraf W, Thiel W, De CK, List B. J. Am. Chem. Soc. 2016; 138: 9429
- 7d Zheng C, You S.-L. Acc. Chem. Res. 2020; 53: 974
- 7e Klausen RS, Kennedy CK, Hyde AM, Jacobsen EN. J. Am. Chem. Soc. 2017; 139: 12299
- 8a Wang C, Li Y, Guo R, Tian J.-J, Tao C, Chen B, Wang H.-Y, Zhang J, Zhai H.-B. Asian J. Org. Chem. 2015; 4: 866
- 8b Ramamohan M, Sridhar R, Raghavendrarao K, Paradesi N, Chandrasekhar KB, Jayaprakash S. Synlett 2015; 26: 1096
- 9a Cheeseman GW. H, Rafig M. J. Chem. Soc. C 1971; 2732
- 9b Zhang C, Wang Z.-X. Appl. Organomet. Chem. 2009; 23: 9
- 9c Tradtrantip L, Sonawane ND, Namkung W, Verkman AS. J. Med. Chem. 2009; 52: 6447
- 9d Wang C, Li Y, Zhao J.-F, Cheng B, Wang H.-F, Zhai H.-B. Tetrahedron Lett. 2016; 57: 3908
- 9e Li J.-X, Zhang J.-L, Yang H.-M, Gao Z, Jiang G.-X. J. Org. Chem. 2017; 82: 765
- 10a Xu L, Jiang Y, Ma D. Org. Lett. 2012; 14: 1150
- 10b Majumdar B, Sarma D, Jain S, Sarma TK. ACS Omega 2018; 3: 13711
- 10c Hakim Siddiki SM. A, Kon K, Touchy AS, Shimizu K.-i. Catal. Sci. Technol. 2014; 4: 1716
- 10d Zhang Z, Wang M, Zhang C, Zhang Z, Lu J, Wang F. Chem. Commun. 2015; 51: 9205
- 10e Nguyen VT, Ngo HQ, Le DT, Truong T, Phan NT. S. Chem. Eng. J. 2016; 284: 778
- 10f Dandia A, Sharma R, Indora A, Parewa V. ChemistrySelect 2018; 3: 8285
- 10g Zhao D, Zhou Y.-R, Shen Q, Li J.-X. RSC Adv. 2014; 4: 6486
- 11 Watson AJ. A, Maxwell AC, Williams JM. J. Org. Biomol. Chem. 2012; 10: 240
- 12a Parua S, Das S, Sikari R, Sinha S, Paul ND. J. Org. Chem. 2017; 82: 7165
- 12b Wang Y, Meng X, Chen G, Zhao P. Catal. Commun. 2018; 104: 106
- 12c Hu Y, Li S, Li H, Li Y, Li J, Duanmu C, Li B. Org. Chem. Front. 2019; 6: 2744
- 12d Upadhyaya K, Thakur RK, Shukla SK, Tripathi JR. P. J. Org. Chem. 2016; 81: 5046
- 12e Li F, Lu L, Liu P. Org. Lett. 2016; 18: 2580
- 13a Jiang G. Adv. Synth. Catal. 2019; 361: 3694
- 13b Wei Z, Zhang J, Yang H, Jiang G. Org. Lett. 2019; 21: 2790
- 13c Gao Z, Wang F, Qian J, Yang H, Xia C, Zhang J, Jiang G. Org. Lett. 2021; 23: 1181
- 13d Gao Z, Qian J, Yang H, Zhang J, Jiang G. Org. Lett. 2021; 23: 1731
- 14 Indolo[1,2-a]quinoxalines 3a–e from Aldehydes: General Procedure (Conditions A) A solution of the appropriate aldehyde 1 (0.3 mmol, 1.5 equiv.), aniline 2a (0.2 mmol), and (PhO)2P(O)OH (5.0 mol%) in toluene (2.0 mL, 0.1 M) was stirred at 80 °C for 4 h. When the reaction was complete, the mixture was cooled to r.t., and Cu(OTf)2 (5.0 mol%) and t-BuOOH (0.6 mmol, 3.0 equiv) were added, and the resulting mixture was stirred at r.t. for 1 h. The solvent was then removed and the crude product was purified by flash column chromatography [silica gel, PE–EtOAc]. Indolo[1,2-a]quinoxalines 3a–e from Benzylic Alcohols: General Procedure (Conditions B) A solution of alcohol 1′ (0.4 mmol, 2.0 equiv), aniline 2a (0.2 mmol), Fe(NO3)3 (10 mol%), TEMPO (10 mol%), and KOH (0.1 mmol, 0.5 equiv) in toluene (2.0 mL, 0.1 M) was stirred at 100 °C for 16 h. The solvent was then removed and the crude product was purified by flash column chromatography [silica gel, PE–EtOAc]. 6-(2-Methoxy-1-naphthyl)-7-methylindolo[1,2-a]quinoxaline (3a) Brown solid, purified by flash chromatography [silica gel, PE–EtOAc (8:1)]; yield: Conditions A; 56.7 mg (73%); Conditions B; 39.6 mg (51%). 1H NMR (400 MHz, CDCl3): δ = 8.57–8.46 (m, 2 H), 8.08–7.98 (m, 2 H), 7.88–7.78 (m, 2 H), 7.61 (ddd, J = 8.6, 7.4, 1.6 Hz, 1 H), 7.58–7.51 (m, 1 H), 7.48–7.35 (m, 4 H), 7.35–7.26 (m, 2 H), 3.83 (s, 3 H), 1.68 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 154.7 (2C), 136.0, 133.3, 132.0, 130.9, 130.4 (2C), 130.1, 129.1, 128.4, 128.0, 127.3, 126.8, 124.5, 124.3, 124.0, 123.7, 121.9 (2C), 120.8, 114.6, 114.5, 113.4, 110.5, 56.6, 8.9. HRMS (ESI): m/z [M + H] + calcd for C27H21N2O: 389.1654; found: 389.1658.