Key words

alkenes

cobalt catalysis
hydrofluorination
photoredox catalysis

Synfact Month

J. LIU, J. RONG, D. P. WOOD, Y. WANG, S. H. LIANG*, S. LIN* (EMORY UNIVERSITY, ATLANTA AND CORNELL UNIVERSITY, ITHACA, USA)
Co-Catalyzed Hydrofluorination of Alkenes: Photocatalytic Method Development and Electroanalytical Mechanistic Investigation
J. Am. Chem. Soc. 2024, 146, 4380-4392, DOI: 10.1021/jacs.3c10989.

Hydrofluorination of Alkenes Using $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HF}$ under Dual Cobalt and Photoredox Catalysis

Significance: A dual cobalt- and photoredox-catalyzed method for the regioselective hydrofluorination of alkenes using $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HF}$ as HF surrogate is reported. This protocol features a broad substrate scope, tolerating both unactivated aliphatic alkenes and styrenes. Exploiting the structure-activity relationships between the structurally modular cobalt(II) salen complexes and different alkene classes through high-throughput experimentation provided access to a range of hydrofluorinated compounds with varying substitution patterns.

Comment: This methodology was also applicable to the ${ }^{18}$ F-labeling of diverse biologically active compounds. Mechanistic experimental investigations including Stern-Volmer and voltammetry studies along with DFT calculations support the shown catalytic cycles. However, distinctive pathways could be identified in the nucleophilic step of this polar-radical-polar crossover mechanism depending on the alkene structure. Ongoing studies aim to deepen the understanding of this process.

[^0]
[^0]: synfacts Contributors: Martin Oestreich, Hendrik F. T. Klare, Nektarios Kranidiotis-Hisatomi
 Synfacts 2024, 20(05), 0480 Published online: 15.04.2024
 DOI: 10.1055/s-0043-1763911; Reg-No.: M05524SF

