Endoscopic ultrasonography-guided photodynamic therapy for recurrent intraductal papillary mucinous neoplasm of the pancreas

Recurrence rates after partial pancreatectomy in patients with a noninvasive intraductal papillary mucinous neoplasm (IPMN) of the pancreas are reported as being 5.4% to 10.7% [1–3]. A recent case demonstrated the possibility of using photodynamic therapy (PDT) as an alternative therapeutic option for IPMN [4]. Herein, we present a patient who was treated with endoscopic ultrasonography (EUS)-guided PDT, which was used as an alternative, minimally invasive option for recurrent IPMN of the pancreas.

A 50-year-old man was admitted with recurrent pancreatitis. He had a history of distal pancreatectomy for combined-type IPMN 2 years previously, and the resection margins had been positive. A computed tomography (CT) scan revealed swelling of the remnant pancreas with a 13-mm hypodense lesion and prominent main pancreatic duct (MPD) dilatation. EUS-guided needle biopsy of a 5-mm nodular lesion in the MPD and a 15-mm hypoechoic mass in the stump demonstrated recurrent IPMN with low grade dysplasia (Video 1). The patient refused to undergo total pancreatectomy, so we decided to perform EUS-guided PDT (Video 1) [5]. Photolon (a chlorin e6 derivative; Belmedpreparaty, Belarus) was administered at a dose of 2.5 mg/kg, 3 hours before the procedure. The flexible laser-light probe (a quartz core and polymer cladding; PhotoGlow Inc., Yarmouth, Massachusetts, USA) was preloaded inside a 19G EUS fine needle aspiration (FNA) needle (Cook Endoscopy, Winston-

Video 1 Endoscopic ultrasonography-guided photodynamic therapy for recurrent non-invasive intraductal papillary mucinous neoplasm (IPMN) of the pancreas following a previous distal pancreatectomy.

Fig. 1 Endoscopic ultrasonography (EUS) image showing: a a 5-mm nodular lesion in the main pancreatic duct; b a 15-mm hypoechoic mass in the stump.
Salem, North Carolina, USA) and was inserted into the recurrent tumor. The tumor was then illuminated with a wavelength of 660 nm (Fig. 2a). The energy dose was 100 J/cm of the diffuser length; the power of irradiation was 400 mW/cm of the diffuser length in each procedure. The total irradiation time in each needle pass was 250 seconds.

At follow-up EUS 2 years after the PDT, there was no evidence of recurrence (Fig. 2b). EUS-guided biopsy at the pancreas stump showed only acinar cells and interstitial fibrosis. The patient experienced no further episodes of pancreatitis during the follow-up period.

This study was approved by the Institutional Review Board of Asan Medical Center (IRB number: 2015-0111).

Competing interests
None

The Authors
Sun-Ho Lee, Hoonsub So, Seungwan Shin, Nah Kyum Lee, Do Hyun Park
Division of Gastroenterology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea

* Contributed equally to this article

Corresponding author
Do Hyun Park, MD, PhD
Division of Gastroenterology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul 05505, Korea
Fax: +82-2-4760824
dhpark@amc.seoul.kr

References

ENDOSCOPY E-VIDEOS
https://eref.thieme.de/e-videos

Endoscopy E-Videos is a free access online section, reporting on interesting cases and new techniques in gastroenterological endoscopy. All papers include a high quality video and all contributions are freely accessible online.

This section has its own submission website at https://mc.manuscriptcentral.com/e-videos

DOI https://doi.org/10.1055/s-0043-117938
Published online: 13.9.2017
Endoscopy 2017; 49: 1107–1108
© Georg Thieme Verlag KG Stuttgart - New York
ISSN 0013-726X

Endoscopic ultrasonography (EUS) images showing: a hyperechoic cloud in the area surrounding the laser diffuser tip during EUS-guided photodynamic therapy (PDT); b no evidence of tumor recurrence 2 years after the PDT.