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Abstract The evolution of methods for carbonyl allylation and crotyl-
ation of alcohol proelectrophiles culminating in the design of iodide-
bound ruthenium-JOSIPHOS catalysts is prefaced by a brief historical
perspective on asymmetric carbonyl allylation and its relevance to
polyketide construction. Using gaseous allene or butadiene as precur-
sors to allyl- or crotylruthenium nucleophiles, respectively, new capabil-
ities for carbonyl allylation and crotylation have been unlocked, includ-
ing stereo- and site-selective methods for the allylation and crotylation
of 1,3-diols and related polyols.
1 Introduction and Historical Perspective
2 Ruthenium-Catalyzed Conversion of Lower Alcohols into Higher

Alcohols
3 Conclusion and Future Outlook

Key words polyketide, ruthenium, feedstock, allene, butadiene, al-
lylation

1 Introduction and Historical Perspective

Carbonyl allylation is longstanding and has traditionally

relied on the use of allylmetal reagents based on zinc

(1876),1a–c magnesium (1904),1d boron (1964),1e tin

(1967),1f silicon (1976),1g and chromium (1977).1h The first

enantioselective carbonyl allylations were developed by

Hoffmann (1978)2a,b using a chiral allylboronate derived

from camphor. This finding led to the design of increasingly

effective chiral allylmetal reagents,2 as well as the develop-

ment of catalytic enantioselective carbonyl allylation proto-

cols,3 as first reported by Yamamoto (1991).3a ‘Umpoled’

catalytic enantioselective allyl halide-carbonyl reductive

couplings (asymmetric Nozaki–Hiyama allylations) report-

ed by Cozzi and Umani-Ronchi (1999) soon followed (Figure

1).3f These methods were uniformly reliant on preformed

allylmetal reagents or stoichiometric metallic reductants,

as were corresponding enantioselective crotylation proto-

cols.4

The development of asymmetric carbonyl allylation and

crotylation protocols were, in part, incentivized by the

prospect of preparing polyketide natural products via de

novo chemical synthesis (Figure 2).5 Polyketides are a broad

class of microbial metabolites that are used frequently in

human and veterinary medicine, as well as crop protec-

tion.6 As shown in the structure of roxaticin,7 an oxopoly-

ene macrolide, 2-carbon ‘acetate’ subunits are common

polyketide substructures. Similarly, the macrolide antibiot-

ic erythromycin A,8 the first polyketide approved for use in

human medicine, comprises recurring 3-carbon ‘propio-

nate’ subunits. The challenge of preparing these structural

motifs impelled advances in acyclic stereocontrol, especial-

ly stereospecific methods for diastereo- and enantioselec-

tive carbonyl addition such as the aldol reaction9 and, as de-

scribed in the present monograph, carbonyl allylation and

crotylation.4

Despite decades of work on polyketide total synthesis,

commercial polyketides (with the exception of eribulin)10

continue to be prepared via fermentation or semi-synthe-

sis,11 suggesting the classical lexicon of synthetic methods

do not avail efficient entry to these stereochemically com-

plex compounds. Indeed, the commercial manufacturing

route to eribulin (halavenTM),10 a truncated congener of the

marine polyketide halichondrin B and FDA-approved treat-

ment for metastatic breast cancer, requires 65 steps, of

which >50% are redox and protecting group manipulations.

Thus, stereo- and site-selective methods for polyketide con-

struction that bypass protecting groups and oxidation level

adjustments should streamline routes to medicinally rele-

vant polyketides. As Earth’s biosphere encompasses >1 tril-

lion microbial species,12 next-generation methods for bac-

terial culture will augment the rate of polyketide discov-
© 2023. Thieme. All rights reserved. Synthesis 2023, 55, 1487–1496
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ery,13 and improved methods for de novo polyketide

construction5 would facilitate preparation of polyketide-in-

spired clinical candidates that are inaccessible via fermen-

tation or semi-synthesis.14

In a departure from classical methods for asymmetric

carbonyl addition15 and related metal-catalyzed carbonyl

reductive couplings,16 our laboratory has pioneered a new

class of hydrogen auto-transfer reactions for the direct con-

version of lower alcohols into higher alcohols.17 These pro-

cesses occur via hydrogen transfer from alcohol proelectro-

philes to -unsaturated pronucleophiles to form transient

carbonyl-organometal pairs that combine via carbonyl ad-

dition. In this manner, carbonyl addition occurs from the al-

cohol oxidation level in the absence of stoichiometric or-

ganometallic reagents. These reactions are distinct from re-

lated ‘borrowing hydrogen’ processes, which affect formal

hydroxyl substitution via successive alcohol dehydrogena-

tion–carbonyl condensation–-bond reduction (Figure 3).18
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The first carbonyl additions via hydrogen auto-transfer

were discovered in 2007 using iridium catalysts.19 Enanti-

oselective iridium-catalyzed carbonyl allylations and croty-

lations were reported shortly thereafter.20 In 2008, related

ruthenium-catalyzed reactions were developed, which be-

gins the topic of this review.21

2 Ruthenium-Catalyzed Conversion of Low-
er Alcohols into Higher Alcohols

Initially developed ruthenium-catalyzed carbonyl addi-

tions were achieved through exposure of primary alcohol

proelectrophiles to diene pronucleophiles in the presence

of the chloride-bound catalyst derived from HCl-

Ru(CO)(PPh3)3 and added rac-BINAP or P(p-MeOPh)3

(Scheme 1, left).21a In these reactions, ruthenium hydrides

promote diene hydrometalation to form nucleophilic -al-

lylruthenium species22 that engage in carbonyl addition to

aldehydes obtained via primary alcohol dehydrogenation.

As carbonyl addition occurs by way of the primary -allyl-

ruthenium haptomer with allylic inversion, secondary ho-

moallylic alcohols are generated with complete levels of

branched regioselectivity. Notably, while the primary alco-

hol reactant is subject to dehydrogenation, the resulting

secondary alcohol product resists a less endothermic oxida-

tion to form the ketone. This phenomenon is attributed to

chelation of the homoallylic olefin, which suppresses -hy-

dride elimination by occupying the last available coordina-

tion site on ruthenium. In agreement with this interpreta-

tion, ,-enones are formed if the catalyst experiences co-

ordinative unsaturation,21b which can be achieved through

the omission of exogenous ligand and use of trifluoroace-

tate as counterion,23 which can equilibrate between η1 and

η3-binding modes (Scheme 1, right).

Managing relative and absolute stereocontrol in diene-

mediated crotylations of primary alcohols raised the ques-

tion of whether carbonyl addition occurs through closed

chairlike transition structures in a stereospecific manner

(Figure 4). To probe this issue, the indicated 2-silyl-substi-

tuted butadiene, which upon hydrometalation should exist

predominantly as a single geometrical isomer due to allylic

1,2-strain,24 was exposed to primary alcohols in the pres-

ence of the ruthenium catalyst derived from HCl-

Ru(CO)(PPh3)3 and (R)-DM-SEGPHOS.25a The products of

crotylation were formed with complete control of regio-

and syn-diastereoselectivity and high levels of enantiose-

lectivity, corroborating intervention of closed chairlike

transition structures. This method was used to construct

the C12–C13 and C6–C7 stereodiads of the polyketide natu-

ral products trienomycins A and F and soraphen A, respec-

tively.26 Finally, in a beautiful application of this method,

Brimble and Furkert deployed enantiomeric ruthenium cat-

alysts in couplings of the 2-silyl-substituted butadiene with

the chiral alcohol derived from the Roche ester to generate

the syn,anti- or syn,syn-stereotriads with complete levels of

catalyst-directed diastereoselectivity (Scheme 2).25b

Figure 1  Selected milestones in carbonyl allylation from racemic reactions to catalytic enantioselective processes
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Having established stereospecificity, it was posited that

a large chiral counterion at ruthenium might bias partition-

ing of (Z)- and (E)--crotylruthenium intermediates to fa-

vor the latter, potentially enabling anti-diastereo- and en-

antioselective butadiene-mediated crotylations. After much

effort, it was found that the indicated C1-symmetric BINOL-

derived phosphate counterion, which is installed via acid-

base reaction of the phosphoric acid with the precatalyst

H2Ru(CO)(PPh3)3,23 enabled anti-diastereo- and enantiose-

lective crotylations of benzylic alcohols in the absence of a

Figure 2  Selected FDA-approved polyketides medicines often comprise recurring acetate and propionate motifs
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chiral phosphine ligand (Scheme 3).27a Remarkably, upon

use of the indicated tartaric acid derived phosphate counte-

rion in combination with (S)-SEGPHOS, syn-diastereo- and

enantioselective crotylation was observed.27b DFT calcula-

tions suggest that the more Lewis basic TADDOL-phosphate

counterion stabilizes the transition structure en route to the

syn-diastereomer by contributing a formyl hydrogen

bond.28,29 The syn-diastereoselective reaction was used to

construct the C12–C13 and C20–C21 stereodiads of 6-de-

oxyerythronolide B8 and pladienolide B,30 respectively.

These studies and prior work from our laboratory31 im-

pelled a systematic investigation of counterion effects in ru-

thenium-catalyzed C–C couplings of alcohols via hydrogen

auto-transfer.32,33 In our previously developed ruthenium-

catalyzed reactions, enhanced yields, isomer selectivities

and stereoselectivities were observed upon use of iodide

counterions in combination with JOSIPHOS ligands.31a–c It

was recognized that the C1-symmetry of JOSIPHOS34 made

the catalyst stereogenic at ruthenium. Single crystal X-ray

diffraction analysis of the complexes RuX(CO)(JOSI-

PHOS)(η3-C3H5), where X = Cl, Br, I, revealed a halide-de-

pendent diastereomeric preference in the solid state:

whereas the iodide complex formed as a single diastereo-

mer, the chloride and bromide complexes formed as diaste-

reomeric mixtures.32 While these preferences may reflect

crystal-packing forces, computational studies corroborate

iodide’s capacity to direct formation of a single diastereo-

meric chiral-at-metal complex and its capacity for formyl

hydrogen bonding.32 Quantum theory of atoms in mole-

cules (QTAIM) analysis identified the bond critical point be-

Scheme 1  Dienes as allylmetal pronucleophiles in ruthenium-catalyzed carbonyl addition via hydrogen auto-transfer
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tween the I···H atoms, which aligns with natural bond orbit-

al (NBO) analysis. The fuzzy bond order (FBO) of 0.069 was

computed, indicating an overall stabilization energy of 4.44

kcal/mol (E(2)-NBO) in the transition state for carbonyl ad-

dition via interaction of iodide’s lone pairs with the * or-

bital of the formyl CH bond (Figure 5).32

Figure 5  Iodide directs stereogenicity at ruthenium

These insights informed the design of an effective cata-

lytic system for anti-diastereo- and enantioselective buta-

diene-mediated crotylation of alcohol proelectrophiles of

exceptionally broad scope (Scheme 4).35a Using the catalyst

assembled from the iodide-bound ruthenium precatalyst

RuI(CO)3(η3-C3H5) and the JOSIPHOS ligand SL-J502-01 (or

its enantiomer SL-J502-02), primary alcohols and butadi-

ene combine to form products of crotylation as single regio-

isomers with good to excellent control of anti-diastereo-

and enantioselectivity. These reactions can be conducted

on gram scale with relatively low loadings of catalyst (2

mol%).

Using the enantiomeric ruthenium catalysts, crotyla-

tions of chiral primary alcohol proelectrophiles occur with

good levels of catalyst-directed diastereoselectivity. One

powerful feature of this catalyst system resides in the abili-

ty to promote site-selective couplings of primary alcohols

in the presence of unprotected secondary alcohols, which

circumvents installation/removal of hydroxyl protecting

groups. This capability stems from the relatively rapid ki-

netics of primary vs secondary alcohol dehydrogenation,

even though dehydrogenation of the primary alcohol is

more endothermic. This method was used to assemble pre-

viously reported substructures of spirastrellolide B (C9–

C15, 3 vs 10 steps) and leucascandrolide A (C9–C15, 4 vs 6

or 8 steps),35a and was used to construct the C1–C19 and

C23–C35 substructures of neaumycin B (not shown).36 Fi-

nally, using methylallene (buta-1,2-diene) as the crotyl do-

nor, an identical set of products can be formed with roughly

equivalent yields and selectivities (not shown).35a However,

the use of butadiene is preferred due to its greater abun-

dance (>1 × 107 tons/year).37

Allene (propadiene) is an abundant byproduct of C3 pe-

troleum cracking fractions (>1 × 105 tons/year)37 of un-

tapped potential, as the majority is hydrogenated and recy-

cled to prepare propylene. Our laboratory described the

first allene-mediated carbonyl allylations in 2007.19a Enan-

tioselective allene-mediated allylations of aldehydes38a and

ketones38b appeared in 2019 using iridium and copper cata-

lysts, respectively.38 Using the iodide-bound ruthenium-

JOSIPHOS catalyst, we very recently developed the first en-

antioselective allene-mediated carbonyl allylations via hy-

drogen auto-transfer from alcohol proelectrophiles

(Scheme 5).35b As shown, these reactions are efficient at

catalyst loadings as low as 1.5 mol% and, like the closely re-

lated butadiene-mediated crotylations, primary alcohols

are subject to allylation in the presence of unprotected sec-

Scheme 3  Chiral phosphate counterion-dependent inversion of diastereoselectivity in the enantioselective crotylation of primary alcohols mediated by 
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Scheme 4  Stereo- and site-selective ruthenium-JOSIPHOS catalyzed crotylation of primary alcohols mediated by butadiene
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Scheme 5  Stereo- and site-selective ruthenium-JOSIPHOS catalyzed allylation of primary alcohols mediated by allene
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ondary alcohols. This method was used to construct previ-

ously reported substructures of spirastrellolide B and F (C7–

C15, 7 vs 17 steps), cryptocarya diacetate (C3–C10, 3 vs 7 or

9 steps), mycolactone F (C8′–C14′, 1 vs 4 steps), and ma-

rinomycin A (C22–C28, 1 vs 9 steps) in fewer steps than

previously possible (not shown).

3 Conclusion and Future Outlook

The methodological challenges posed by the stereo-

chemical complexity of polyketide natural products contin-

ue to drive development of increasingly effective protocols

for their preparation.5 Whereas traditional approaches to

polyketide construction are largely reliant on carbonyl ad-

ditions mediated by premetalated reagents, our laboratory

is advancing a broad, new family of hydrogen auto-transfer

reactions that affect byproduct-free carbonyl addition from

alcohol proelectrophiles using abundant -unsaturated hy-

drocarbons as precursors to transient organometallic nuc-

leophiles. Ruthenium(II) catalysts are especially effective in

reactions of this type, as they are octahedral d6 metal ions

with unoccupied dx2–y2 orbitals that facilitate alkoxide -hy-

dride elimination. The evolution of methods for butadiene-

mediated crotylation described in this review culminates in

the design of iodide-bound ruthenium JOSIPHOS complex-

es, which represent a new and highly effective class of en-

antioselective catalysts that are ‘chiral-at-metal-and-li-

gand’.39 Such iodide-bound ruthenium JOSIPHOS complexes

allow the reactivity of ruthenium to be leveraged vis-à-vis

an expanded lexicon of asymmetric methods for the cata-

lytic conversion of lower alcohols to higher alcohols, includ-

ing methods for polyketide construction (Figure 6).17c,40 It is

the authors’ hope this monograph will inform future ad-

vances in the development of related atom-efficient meth-

ods for chemical synthesis.
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