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Abstract The identification of inherited antithrombin deficiency (ATD) is critical to prevent
potentially life-threatening thrombotic events. Causal variants in SERPINC1 are identi-
fied for up to 70% of cases, themajority being single-nucleotide variants and indels. The
detection and characterization of structural variants (SVs) in ATD remain challenging
due to the high number of repetitive elements in SERPINC1. Here, we performed long-
read whole-genome sequencing on 10 familial and 9 singleton cases with type I ATD
proven by functional and antigen assays, who were selected from a cohort of 340
patients with this rare disorder because genetic analyses were either negative,
ambiguous, or not fully characterized. We developed an analysis workflow to identify
disease-associated SVs. This approach resolved, independently of its size or type, all
eight SVs detected by multiple ligation-dependent probe amplification, and identified
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Introduction

Antithrombin deficiency is the most severe congenital
thrombophilia first identified in 1965 by O. Egeberg.1 The
key hemostatic role of this anticoagulant serpin explains the
high risk of thrombosis associated to congenital antithrom-
bin deficiency (odds ratio: 20–30), which ismainly caused by
haploinsufficiency of SERPINC1, the coding gene.2 Accurate
genetic diagnosis of antithrombin deficiency facilitates the
management of both symptomatic and asymptomatic
carriers,3,4 and increases the antithrombotic arsenal of
carriers with antithrombin concentrates.5 Routine investi-
gation of antithrombin deficiency combines functional
assays, antigen quantification, and genetic analyses to deter-
mine themolecular base. However,most studies do not reach
a molecular characterization, despite it could contribute to a
better definition of the thrombotic risk.2

In genetic diagnostic centers, causal single nucleotide var-
iants (SNVs) and small insertions or deletions (indels) are
routinely identified in SERPINC1 by Sanger sequencing, and
copy number changes are investigated by multiple ligation-
dependent probe amplification (MLPA).2 Only few cases with
gross gene defects have been analyzed by microarray to
determine the extent of the variants. These methods identify
causal mutations in SERPINC1 for 70% of cases, while 5% of
patients harbordefects in other genes and25% remainwithout
a genetic diagnosis.2 To date, 441 causal variants in SERPINC1
have been reported,6 and these adhere to the typical spectrum
observed in disorders with a dominant inheritance, being 63%
SNVs, 28% indels, and 9% structural variants (SVs).7,8

However, there are important limitations to these techni-
ques, including that neither MLPA nor microarray considers
the full spectrum of SVs and does not provide nucleotide-level
resolution, which is important for confirming causality and
reveal insights into SV formation.7,9,10 These limitations may
now be addressed by long-reads, which can span repetitive or
other problematic regions, allowing identification and charac-
terization of SVs.10–14 This is particularly advantageous for
antithrombin deficiency due to the high number of repetitive
elements (REs) in and around SERPINC1 (where 35% of
sequence are interspersed repeats),15 which hinders SV iden-
tification by other methods.

Here,we report on the results of long-readwhole-genome
sequencing (LR-WGS) on 19 unrelated cases with antithrom-
bin deficiency, selected from one of the largest cohort of
patients with this disorder based on negative or ambiguous
results, as well as not fully characterized SVs provided by
routine molecular tests. Our aim was to identify new causal
variants, resolve ambiguous ones, and investigate the most
likely mechanism of formation of SVs involved in this severe
thrombophilia.

Methods

Cohort
Nineteen unrelated individuals with antithrombin deficiency
were selected fromour cohort of 340 cases, recruited between
1994 and 2019 and largely characterized by functional,
biochemical, and molecular analyses. Selection was done
based on negative results frommultiple genetic studies evalu-
ating SERPINC1 gene, including Sanger sequencing followedby
next-generation sequencing (NGS) andMLPA, as well as nega-
tive glycosylation analysis (N¼11). Additionally, individuals
with SVs that could not be characterized or that were identi-
fied by MLPA but had ambiguous results from other
approaches (suchasmicroarrayand/or long-rangepolymerase
chain reaction [PCR]) were also selected (N¼8) (►Table 1).
Detailed information of these procedures is shown in Supple-
mentary Methods (►Supplementary Material [available in
theonlineversion]).Measurementsof antithrombin levels and
function were performed for all participants as previously
described.16,17

Long-Read Whole-Genome Sequencing
LR-WGS of DNAs purified from peripheral blood leukocytes
using Gentra Puregene Qiagen kit, used to reduce the frag-
mentation of DNA, was done using the PromethION platform
(Oxford Nanopore Technologies). Samples were prepared
using the 1D ligation library prep kit (SQK-LSK109) and
genomic libraries were sequenced on R9 flow cell. Read
sequences were extracted from base-called FAST5 files by
Guppy (versions 3.0.4 to 3.2.8; 3.0.4þ e7dbc23 to
3.2.8þbd67289) to generate FASTQ files, which were then
merged per sample.

for the first time a complex rearrangement previously misclassified as a deletion.
Remarkably, we identified the mechanism explaining ATD in 2 out of 11 cases with
previous unknown defect: the insertion of a novel 2.4 kb SINE-VNTR-Alu retroelement,
which was characterized by de novo assembly and verified by specific polymerase chain
reaction amplification and sequencing in the probands and affected relatives. The
nucleotide-level resolution achieved for all SVs allowed breakpoint analysis, which
revealed repetitive elements and microhomologies supporting a common replication-
based mechanism for all the SVs. Our study underscores the utility of long-read
sequencing technology as a complementary method to identify, characterize, and
unveil the molecular mechanism of disease-causing SVs involved in ATD, and enlarges
the catalogue of genetic disorders caused by retrotransposon insertions.
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Data Processing and SV Identification
We used the Snakemake library to develop an in-house multi-
modal analysis workflow for the sensitive detection of SVs,18

which is publicly available at https://github.com/who-black-
bird/magpie.Anoverviewof theworkflowisshownin►Fig. 1A.
Detailed information is provided in Supplementary Methods
(►Supplementary Material [available in the online version]).

De Novo Assembly of the SINE-VNTR-Alu Retroelement
Local de novo assembly was performed to characterize the
SINE-VNTR-Alu retroelement insertion in P9. Reads within
the region [GRCh38/hg38] Chr1:173,840,000–174,820,000
were extracted from the alignment of this individual and
converted to a FASTQ file using Samtools.19 De novo assem-
bly was performed with wtdbg2 v2.5, using the parameters
“-x ont -g 980k -X 10 -e 3.”20 The de novo contig was then
aligned to the reference genome using minimap221 with
default parameters for nanopore reads. The genomic
sequence containing the SINE-VNTR-Alu retroelement was
then extracted from the alignment and analyzed with

RepeatMasker (http://www.repeatmasker.org) to character-
ize the type of SINE-VNTR-Alu and its sub-elements.

Validations and Breakpoint Flanking Sequence Analysis
All candidate SV junctions were confirmed by PCR amplifi-
cation and Sanger sequencing to verify all variant configu-
rations at nucleotide-level resolution. We then manually
identified the presence of microhomology, insertions, and
deletions at the breakpoints as previously described.22 The
percentage of repetitive sequence was also calculated for
each junction (�150 bps) by intersecting these regions with
the human genomic repeat library (hg38) from Repeat-
Masker version open-4.0.5 using bedtools.23

Results

Long-Read Sequencing Identifies SVs Involving SERPINC1
Nanopore sequencing in 21 runs produced reads with an
average length of 4,499bp and median genome coverage of
16� (►Fig. 1B). After a detailed quality-control analysis

Fig. 1 Long-read sequencing workflow and results. (A) Overview of the general stages of the SVs discovery workflow. Algorithms used are
depicted in yellow boxes. (B) Nanopore sequencing results. (i) Sequence length template distribution. Average read length was 4,499 bp
(SD� 4,268); the maximum read length observed was 2.5 Mb. (ii) Genome median coverage per participant. The average across all samples was
16� (SD� 7.7). (C) Filtering approach and number of SVs obtained per step. SERPINC1þpromoter region corresponds to [GRCh38/hg38]
Chr1:173,903,500–173,931,500. (D) Anti-FXa percentage levels for the participants with a variant identified (P1–P10), cases without a
candidate variant (P11–P19), and 300 controls from our internal database. The statistical significance is denoted by asterisks (�), where
���p< 0.001, ����p � 0.0001. p-Values calculated by one-way ANOVA with Tukey’s posthoc test for repeated measures. ATD, antithrombin
deficiency; ONT, Oxford Nanopore Technologies; SV, structural variant.
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(►Fig. S1, available in the online version), 83,486 SVs were
identified, consistent with previous reports using LR-WGS
(►Fig. S2, available in the online version).11 Focusing on rare
variants (allele count� 10 in gnomAD v3, NIHR BioResource,
andNGC project)11,24,25 in SERPINC1 and flanking regions, 10
candidate heterozygous SVs were observed in 9 individuals
(►Fig. 1C). Visual inspection of read alignments identified an
additional heterozygous SV in a region of low coverage
involving SERPINC1 in an additional patient (►Table 1).

Resolution of Causal SVs: Identification of the First
Complex SV
Nanopore sequencing resolved the precise configuration of
all SVs previously identified by MLPA in eight individuals
(P1–P8). SVs were identified independently of their size
(from 7 to 968 kb, restricted to SERPINC1 or involving neigh-
boring genes) and their type (six deletions, one tandem
duplication, and one complex SV) (►Fig. 2 and ►Table 1).
In all the cases the extension of the variants was determined,
and nucleotide-level resolution of breakpoints was achieved
by the long reads (►Table 1). Importantly, nanopore sequenc-

ing facilitated the resolution of the SVs identified in two
patients (P2 and P6) that presented inconsistent or ambigu-
ous results from MLPA and long-range PCR and NGS results
(►Table 1).

For the first case (P2), MLPA detected a deletion of exon
1, but long-range PCR followed by NGS suggested a deletion
of exons 1 and 2. The discordant results were explained by
nanopore sequencing, as this method revealed a complex
SV in SERPINC1 resulting in a dispersed duplication of
exons 2 and 3 and a deletion spanning exons 1 and 2,
both in the same allele (►Fig. 3). Specific PCR amplification
and Sanger sequencing validated this complex SV in the
proband and his affected daughter, also with antithrombin
deficiency.

For the second case (P6), MLPA detected a duplication of
exons 2, 3, and 5 and a deletion of exon 6. Here, our
sequencing approach identified a tandem duplication of
exons 1 to 5, which was confirmed by long-range PCR
(►Fig. 4). The tandem duplication of exons 1 to 5 was
observed to be present in the affected son of P6, also with
antithrombin deficiency.

Fig. 2 Candidate SVs identified by long-read sequencing. (A) Schematic of chromosome 1 followed by protein coding genes falling in the
zoomed region (1q25.1). SVs for each participant (P) are colored in red (deletions) and blue (duplications). The insertion identified in P9 and P10
is shown with a black line. (B) Schematic of SERPINC1 gene (NM_000488) followed by repetitive elements (REs) in the region. SINEs and LINEs are
colored in light and dark gray, respectively. Asterisks are present where the corresponding breakpoint falls within a RE. (C) Characteristics of the
antisense-oriented SINE-VNTR-Alu (SVA) retroelement (with respect to the canonical sequence) observed in P9. Lengths of the fragments are
subject to errors from nanopore sequencing. SV, structural variant; TSD, target site duplication.
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A SINE-VNTR-Alu Retroelement Insertion Is Identified
in Two Previously Unresolved Cases and Characterized
by De novo Assembly
We aimed to identify new disease-causing variants in the
remaining 11 participants with negative results using
current molecular methods. Remarkably, two cases (P9
and P10) presented an insertion of 2,440 bp in intron 6. Blast
analysis of the inserted sequence revealed a new SINE-VNTR-
Alu retroelement (►Fig. 2 and ►Table 1). Local de novo

assembly using the data from P9 revealed an antisense-
oriented SINE-VNTR-Alu element flanked by a target site
duplication (TSD) of 14 bp (►Fig. 2C), consistent with a
target-primed reverse transcription mechanism of insertion
into the genome.26,27 Interestingly, the TSD in both individ-
uals was also the same. The inserted sequencewas aligned to
the canonical SINE-VNTR-Alu A–F sequences (►Fig. S3A,
available in the online version) and it was observed to be
closest to the SINE-VNTR-Alu E in the phylogenetic tree

Fig. 3 Resolution of a complex SV. Schematic representation of genetic diagnostic methods used to characterize the SVs in participant P2.
Results from MLPA, LR-PCR, and nanopore are shown in white boxes. Primers used for both LR-PCR and Sanger validation experiments are shown
representing the genetic location of each one with orange and green arrows, respectively. SERPINC1 gene in the IGV screenshot is represented in
blue and exons are indicated. J1 and J2 correspond to the newly formed junctions described in►Fig. S5. J¼ new junction; M1k¼ 1 kb molecular
weight marker; M¼ 100 bp molecular weight marker; P¼patient; C¼ control; B¼blank. LR-PCR, long-range polymerase chain reaction; MPLA,
multiple ligation-dependent probe amplification; SV, structural variant.
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(►Fig. S3B, available in the online version). Moreover, the
VNTR sub-element harbored 1,449 bp, which was longer
than the typical approximately 520 bp-long VNTR in the
canonical sequences. Multiple PCRs covering the retroele-
ment were attempted to validate this insertion, but all PCRs
using flanking primers failed due to the highly repetitive
sequence of this element, specially the VNTR sub-element,
which is longer in this new SINE-VNTR-Alu. Only one specific

PCR using an internal SINE-VNTR-Alu primer, whose design
was facilitated by the nanopore data, was able to amplify the
breakpoint (►Fig. S4, available in the online version). This
method was used to confirm the insertion in P9 and P10 and
to confirm theMendelian inheritance of this SINE-VNTR-Alu,
as it was also present in two affected relatives, both with
antithrombin deficiency (►Fig. S4, available in the online
version).

Fig. 4 Schematic representation of genetic diagnostic methods used to characterize the SVs in participant P6. Results from MLPA, LR-PCR, and
nanopore are shown inwhite boxes. Primers used for both LR-PCR and Sanger validation experiments are shown representing the genetic location
of each one with orange and green arrows, respectively. SERPINC1 gene in the IGV screenshot is represented in blue and exons are indicated. J1
corresponds to the newly formed junctions described in ►Fig. S5. J¼ new junction; M¼molecular weight marker 1 kb or 100 b; P¼patient;
C¼ control; B¼ Blank. For the LR-PCR results, C1 and P1 correspond to PCR 1 (done with Primer Fþ Primer R), and C2 and P2 correspond to PCR2
(done with Primer Fþ Primer R2). LR-PCR, long-range polymerase chain reaction; MPLA, multiple ligation-dependent probe amplification; SV,
structural variant.
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Breakpoint Analysis Supports a Replication-Based
Mechanism for the Majority of SVs
Breakpoint analysis was performed to investigate the mech-
anism underlying the formation of these SVs involving
SERPINC1. Nanopore sequencing facilitated primer design
to perform Sanger sequencing confirmations for all the
newly formed junctions, demonstrating a 100% accuracy in
7/10 (70%) SVs called. RE were detected in all the SVs, with
Alu elements being the most frequent (16/24, 67%)
(►Table S1, available in the online version). Additionally,
breakpoint analysis identified microhomologies (7/11, 64%)
and insertions, deletions, or duplications (7/11, 64%)
(►Fig. S5 and ►Table S2, available in the online version).
Importantly, we observed a nonrandom formation driven by
the presence of REs in some of the SVs. We point out an Alu
element in intron 5, involved in SVs of P6, P7, and P8
(►Fig. 2B and ►Table S1 [available in the online version]).

Discussion

In this study we aimed to resolve the precise configuration of
SVs involved in antithrombin deficiency using nanopore, to
identify new candidate variants in previously unresolved
cases and to investigate the possible mechanisms of forma-
tion of these SVs by breakpoint analysis. We have character-
ized disease-causing SVs in eight individuals with previous
positive findings from MLPA and other methods but with
unresolved variants in two caseswith previous contradictory
results. Additionally, we reported a new causal SINE-VNTR-
Alu retroelement insertion in two unrelated individuals that
we characterized by local de novo assembly. Finally, we
presented evidence for a replication-based mechanism of
formation for most of the SVs causing this severe
thrombophilia.

We show new evidence of how LR-WGS can be used to
identify SVs causal of a genetic disease, in this case anti-
thrombin deficiency, independently of its length or type. LR-
WGS also gives information for the exact extension of the
event involved and resolves conflictive data obtained by
other methods. Additionally, we show how this approach
is particularly powerful to investigate complex SVs, which
are genomic rearrangements typically composed of three or
more breakpoint junctions. Since these are particularly
challenging to detect and interpret by other methods, com-
plex SVs are typicallymissed or misclassified in research and
clinical diagnostic pipelines, although they have been
reported as associated with multiple Mendelian diseases.10

Here we show for the first time a complex SV in a patient
with antithrombin deficiency, expanding the landscape of SV
types involved in this disorder. Further investigations will be
required to elucidate the exact mechanism of formation,
since it remains unclear if this event occurred by one or
multiple mutational events.

Additionally, we identified an intronic SINE-VNTR-Alu
retroelement insertion in 2/11 (18%) previously unresolved
individuals (P9 and P10). SINE-VNTR-Alu retroelements,
along with other retrotransposons, are a source of regulatory
variation in the human genome, but can also cause disease.28

Although the number of pathogenic retroelements has
increased during the last years with the use of WGS technol-
ogies,25,29–31 these are usually missed by routine diagnostic
methods. With LR-WGS we have not only identified the
causal mutation in two previously unresolved families, but
also performed local de novo assembly to characterize the
exact sequence and length of its sub-elements, which might
be relevant for future studies to investigate their possible
role in severity and age of disease onset as other studies have
shown.32

Furthermore, the genomic heterogeneity observed
between the causal SINE-VNTR-Alu retroelement and the
canonical sequences highlights the diverse genomic landscape
of these retroelements and underscores the importance of
their characterization to obtain a reliable catalogue of novel
mobile elements to identify and interpret this type of causal
variants in other patients and other disorders where retro-
transposon insertions might also be involved.27,33,34 This
characterization has been historically challenging by the
application of classic technologies, but here we show that it
can be achieved by de novo assembly of long-reads.

The decreased levels of antithrombin in plasma of P9 and
P10 might be consistent with transcriptional interference of
SERPINC1 induced by the SINE-VNTR-Alu retroelement, as
reported for other cases with pathogenic SINE-VNTR-Alu
insertions.28 Besides, the 2.4 kb insertion of a retroelement
in intron 6 could introduce splicing signals affecting the
normal splicing of SERPINC1 RNA. However, the specific
hepatic expression of SERPINC1 hinders investigation of
the exact mechanism, but the co-segregation of this variant
with antithrombin deficiency observed in family studies of
both probands supports the pathogenic consequences of this
insertion. The identification of the same retrotransposon in
two unrelated families from different regions of Spain
(570 km far from each other) with the same TSD does not
only support the germline transmission of this SV, but also
suggests a shared mechanism of formation or a founder
effect, which must be confirmed by further studies.

In antithrombin deficiency, the detection and characteriza-
tion of SVs remain particularly challenging due to the high
number of REs in and around SERPINC1 (35% of sequence in
these gene are interspersed repeats). Specific mutational
signatures can yield insights into the mechanisms by which
theSVsare formed.Ourbreakpointanalysissuggested formost
of the cases (P1–P8) a replication-based mechanism (such as
BIR/MMBIR/FoSTeS),35 consistent with previous studies done
in antithrombin deficiency,36,37 but importantly, we observed
a nonrandom formation in some instances given the recurrent
involvement of specific REs such as Alu elements in intron 5 of
SERPINC1. It has been suggested that RE may provide larger
tracks of microhomologies, also termed “microhomology
islands,” that could assist strand transfer or stimulate template
switching during repair by a replication-based mechanism.35

Thesemicrohomology islandswere present in the SVs of three
cases ( P6, P7, P8), highlighting the important role that REplays
in the formation of nonrecurrent, but nonrandom, SVs. These
results highlight that SERPINC1 might be a hotspot for
SVs given the high number of REs in this gene and show

Thrombosis and Haemostasis Vol. 122 No. 8/2022 © 2022. The Author(s).

Long-Read Sequencing to Resolve Structural Variants in SERPINC1 Morena-Barrio et al.1376



how LR-WGS can be used to investigate and resolve events
occurring in repetitive genes and regions.

In total, nine cases in this cohort remain yet unresolved,
three of whom reported to have familial disease. An expla-
nation may be that the causal variant was missed due to low
coverage, or alternatively the variant is located in an uniden-
tified transacting gene or in a regulatory element for SER-
PINC1, as we have recently reported for other genes.13 The
observation that the antithrombin deficiency in patients
without causal SVs has significantly higher anti-FXa activity
than those with SVs (►Fig. 1D) is supportive of the notion
that causal variants may regulate gene expression, which
must be analyzed in future studies.

Altogether this study provides insight into the molecular
mechanism of SVs causing antithrombin deficiency and
highlights the importance of identifying a newclass of causal
variants to improve diagnostic rates, lead to new therapeutic
opportunities, and provide accurate family counseling, as
decisions about long-term anticoagulant prophylaxis are
complex and carry significant morbidity and mortality risks.
Moreover, our study suggests that SVs, which are often
overlooked or misclassified by conventional methods, may
bemore common than anticipated as a geneticmechanismof
antithrombin deficiency.

What is known about this topic?

• Antithrombin deficiency is mainly caused by SNV,
small indels, and structural variants in SERPINC1,
usually identified by sequencing and MLPA.

• Up to 25% of cases had an unknown molecular base.
• Nanopore sequencing is an emerging fourth-genera-

tion sequencingmethod that obtains long reads, which
are ideal for identification and characterization of
gross gene defects.

What does this paper add?

• Long-read whole-genome nanopore sequencing re-
solved all types and sizes of structural variants causing
antithrombin deficiency, and identified the first causal
complex structural variant.

• This method also found a new disease-causing mech-
anism: the insertion of a new SVA retrotransposon in 2
out of 11 unknown cases.

• This result enlarges the catalogue of genetic disorders
caused by retrotransposon insertions.
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