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Summary
Objectives: Owing to the rapid progress of natural language 
processing (NLP), the role of NLP in the medical field has radi-
cally gained considerable attention from both NLP and medical 
informatics. Although numerous medical NLP papers are pub-
lished annually, there is still a gap between basic NLP research 
and practical product development. This gap raises questions, 
such as what has medical NLP achieved in each medical field, 
and what is the burden for the practical use of NLP? This paper 
aims to clarify the above questions. 
Methods: We explore the literature on potential NLP products/
services applied to various medical/clinical/healthcare areas. 
Results: This paper introduces clinical applications (bedside 
applications), in which we introduce the use of NLP for each 
clinical department, internal medicine, pre-surgery, post-surgery, 
oncology, radiology, pathology, psychiatry, rehabilitation, ob-
stetrics, and gynecology. Also, we clarify technical problems to be 
addressed for encouraging bedside applications based on NLP.
Conclusions: These results contribute to discussions regarding 
potentially feasible NLP applications and highlight research gaps 
for future studies.
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1   Introduction
Electronic health/medical records (referred 
to as EHR in this study) are rapidly re-
placing paper-based records in hospitals 
worldwide. Natural language processing 
(NLP) techniques have gained importance 
in the medical field. Because NLP is a hot 
topic in computer science, the number of 
medical NLP studies is increasing each year 
dramatically. 

Despite the large number of studies, only 
a few practical studies have validated medi-
cal NLP applications in real-world settings. 
Studies using randomized controlled trials 
(RCTs), which have the highest medical 
evidence, are rare. In the PubMed search for 
“NLP” + “RCT” or “Clinical trial,” we could 
find few studies only [1–4]. Instead of RCT 
studies, several studies employed a retro-
spective study using EHR big data: screening 
of diseases, case classification, incident de-
tection, etc. [5–8]. However, unlike medical 
image software, these systems have not been 
commercialized as a product. A similar trend 
can be observed in the approved applications 
of the Food and Drug Administration (FDA) 
as artificial intelligence (AI) systems1. Most 
were audiology devices, and no medical 
systems related to NLP were found. 

In summary, NLP has been actively 
studied, but there is still a gap between basic 
research and practical product development. 
This raises several questions, including what 
has medical NLP achieved in each medical 
field, and what is the burden for practical use 

1 https://www.fda.gov/medical-devices/
software-medical-device-samd/artificial-
intelligence-and-machine-learning-aiml-
enabled-medical-devices

of NLP? To clarify these questions, this study 
investigates what clinical/medical NLP has 
achieved in different clinical/medical fields.

This review aims to provide a guide 
for the NLP specialist who does not know 
medical informatics well enough. The scope 
of this paper is related to studies that have 
the potential to directly contribute to daily 
clinical practice, which we call bedside ap-
plications, consisting of internal medicine, 
pre-surgery, post-surgery, oncology, radiol-
ogy, pathology, psychiatry, rehabilitation, 
obstetrics, and gynecology, etc. This paper 
introduces existing ready-to-use systems 
used in the above fields and summarizes 
its current methodology and performance. 
Finally, we mention future potential NLP 
applications not only for hospital use but 
also for patient use.

2   Bedside Applications
We provide an overview of how far NLP 
can be applied to outpatient and inpatient 
diagnosis, treatment, or management in 
each department. Historically, shared tasks 
have been one of the effective ways for re-
searchers to drive fundamental innovations 
in the clinical NLP [9]. This is a competitive 
platform where organizers present a techni-
cally challenging and clinically meaningful 
task along with the dataset, gold standards, 
and evaluation criteria. In the early days, 
simple tasks were chosen, such as classi-
fying patient records based on smoking 
status [10]. These days, shared tasks deal 
with far more complex problems, such as 
temporal relationship recognition among 
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clinical events in discharge summaries [11], 
risk factor identification in longitudinal series 
of progress notes [12], and clinical decision 
support [13–15]. Over time, reproducibility of 
solutions and techniques found in shared tasks 
have been demonstrated by researchers, which 
has promoted advancements in clinical NLP.

We surveyed how far NLP applications 
have been proven to be replicable in real-world 
clinical practice. We made no limitations on 
hospital departments in searching publications. 
We referred to (i) reviews and systematic 
reviews published in 2017 or later and (ii) orig-
inal research articles published in 2020 or later 
on NLP applications for each hospital depart-
ment. We searched PubMed for publications 
using the keyword “natural language process-
ing” for reviews and systematic reviews, and 
“natural language processing”, and a hospital 
department name together for original research 
articles. Because this article is not a systematic 
review, we focused on studies that can directly 
contribute to daily clinical practice. Although 
NLP is also helpful in research-oriented appli-
cations, such as cohort building with patient 
identification or phenotyping [16], evidence 
generation using clinical free-text [17–19], 
or semi-automation of meta-analysis [20] and 
systematic review [21–23], these are beyond 
the scope of this article.

2.1   Applications in Different 
Departments
NLP-based technology has enabled infor-
mation extraction (IE) from various un-
structured free-text documents such as clinic 
letters, progress notes, discharge summaries, 
and test reports. This technology can im-
prove care quality in multiple departments, 
which has been demonstrated mainly in 
retrospective studies and sometimes in pro-
spective studies [24–27]. NLP performance 
has also been validated in multicenter studies 
[28, 29]. See also Table 1 for details of the 
NLP systems introduced below.

Internal Medicine
NLP aids in the prevention, early diagnosis, 
treatment, and prognostic prediction of a 
wide range of diseases, such as cardiovas-
cular, endocrine, metabolic, hepatobiliary, 
and neurological diseases [30]. 

(i) Disease prevention. NLP can identify 
risk factors, estimate risk, or predict 
events of disease development or read-
missions [12, 31, 32]. Wang et al. au-
tomatically calculated CHA

2
DS

2
-VASc 

and HAS-BLED, the risk scores for the 
cerebral stroke of atrial fibrillation pa-
tients, by a rule-based approach. They 
also identified patients with a high risk 
of cerebral stroke with positive predic-
tive values of 0.92–1.00 [33]. Buchan 
et al. analyzed clinical notes of patients 
without a history of coronary artery 
disease (CAD) with named entity 
recognition (NER) and support vector 
machine (SVM), and identified patients 
with later development of CAD with 
F1-score of 0.774 [34];

(ii) Early diagnosis. NLP can help clini-
cians recognize diseases out of their 
specialty that might otherwise be 
misdiagnosed or overlooked without 
proper transfer. Chase et al. achieved 
area under a receiver operating char-
acteristic curve (ROC-AUC) of 0.94 
in classifying patients with and with-
out multiple sclerosis using NER and 
Naïve Bayes classifiers. They also 
identified patients suspected of undi-
agnosed multiple sclerosis [35];

(iii) Treatment support. Clinical decision 
support tools to summarize patient clin-
ical information and suggest treatment 
are beginning to be realized. Seol et al. 
integrated a clinical decision support 
tool into the EHR system for pediat-
ric asthma outpatients, which warns 
of the risk of acute exacerbation and 
recommends an optimal treatment plan 
based on free-text and structure data in 
the EHR [25]. An RCT demonstrated 
improvement of patient outcomes and 
significantly reduced physicians’ work-
load for manual chart review.

Pre-surgery
NLP has the potential to aid in identifying 
clinical conditions of preoperative, perioper-
ative, and postoperative patients [36, 37]. In 
preoperative settings, NLP can (i) evaluate 
surgical indications and (ii) reduce the work-
load of preoperative assessment. Wissel et 
al. implemented an automatic NLP scoring 

system in the EHR system that identifies epi-
leptic outpatients with indications of surgery 
with SVM. The system achieved ROC-AUC 
of 0.79 in recommending operation [24]. 
Fonferko-Shadrach et al. developed an NLP 
system to review clinic letters and auto-
matically extract symptoms, diagnosis, and 
medication history of preoperative patients. 
The system was based on an existing entity 
linking tool and demonstrated F1-score of 
0.911 [38].

Post-surgery
Perioperatively and postoperatively, NLP 
contributes to continuous quality improve-
ment efforts. NLP can identify complications 
and their details in unstructured free-text 
clinical records, even if they are not codified 
with ICD-10 (International Classification of 
Diseases -10th revision) [29, 39]. Bucher et 
al. identified surgical site infections (SSIs) 
with an NLP pipeline that parses and extracts 
information from clinical notes reaching 
ROC-AUC of 0.912. The system also deter-
mined SSI subgroups based on the depth, 
the wound condition, and the outcome [29]. 
Furthermore, surgical outcomes can also be 
automatically extracted from unstructured 
free-text using NLP, which aids labor-inten-
sive manual chart review. In orthopedics, 
hip dislocation after total hip arthroplasty 
can be detected [40]. Tibbo et al. developed 
an NLP system to automatically determine 
Vancouver classification of periprosthetic 
femur fractures with the sensitivity of 0.786 
and specificity of 0.948 [41].

Oncology
Oncology is another department where NLP 
plays an important role [30, 42]. 
(i) IE and cancer registration. NLP helps 

information retrieval on genetic, his-
tological, and clinical characteristics 
of cancer, which is essential in clinical 
decision making and surveillance for 
effective public health interventions 
[43, 44]. The information includes 
histological type, differentiation, Ki-67 
index, TNM (classification of malignant 
tumors) staging, test findings, treatment, 
family history, and performance status. 
Benjamin et al. automatically extracted 
quantitative information of biomarkers 



IMIA Yearbook of Medical Informatics 2022

245

Natural Language Processing: from Bedside to Everywhere

from breast cancer pathology reports. 
They achieved an accuracy of 0.98 
with a rule-based approach on top of an 
existing NER tool MetaMap [45, 46];

(ii) Clinical decision support. Precision 
medicine is a tailor-made clinical 
practice considering individual patient 
demographics and cancer genetic 
characteristics. NLP can recommend 
optimal treatment plans by searching 
biomedical articles and clinical trial 
repositories using patient information 
as a query [13–15, 47]. Li et al. released 
a chatbot-style open access clinical 
decision support tool [48].

Radiology
NLP can contribute to multiple stages of 
the radiological clinical workflow [49–51]. 
(i) Patient safety. NLP can help screen 

patients for contraindications to diag-
nostic imaging. Valtchinov et al. iden-
tified implants with contraindication 
to magnetic resonance imaging (MRI) 
in clinical notes with accuracies of 
0.83–0.91 with NER [52];

(ii) Imaging protocol recommendation. 
NLP can determine the use of contrast 
agents or optimal imaging protocols 
based on free-text in ordering com-
ments or clinical records [53–56]. 
Chillakuru et al. developed a machine 
learning-based NLP system to recom-
mend the use of contrast agents for 
brain and spinal MRI with accuracies of 
0.83–0.85, of which an online demo is 
available. The system is based on term 
frequency-inverse document frequency 
vectorization, Gradient Boosting Deci-
sion Tree (GBDT), word embeddings, 
and shallow neural networks [54]. 
Some other scan optimization tools are 
commercially available [55];

(iii) Automated radiology reporting. As the 
workload of diagnostic radiologists 
rapidly grows [57], automated radiol-
ogy report generation in cooperation 
with computer vision AI is attracting 
attention [58]. Most studies have dealt 
with chest X-rays thus far, and further 
application to computed tomography 
(CT), MRI, and nuclear medicine is 
expected;

(iv) Surveillance. Radiology reports some-
times point out incidental findings. 
NLP can help prevent such findings 
from being missed by the attending 
physician by automatically sending 
alerts [49–51].

Pathology
NLP is helpful for both pathologists, whose 
responsibility is increasing in the era of 
personalized medicine, and clinicians, who 
refer to the diagnosis for treatment planning. 
(i) Support diagnosis. NLP can support 

pathologists by providing a better 
computer-based image retrieval system 
incorporating pathology reports [59] or 
by automated pathology reporting [60]; 

(ii) Support clinical practice. Information 
on pathological diagnosis is used 
afterward by clinicians for better 
treatment strategy. NLP helps convert 
unstructured pathology reports into a 
structured form [45, 57, 61]. Kim et al. 
automatically extracted descriptions of 
a specimen, procedure, and pathologic 
diagnosis from pathology reports re-
gardless of clinical departments. Their 
deep learning-based system, which 
uses Bidirectional Encoder Represen-
tations from Transformers (BERT), 
achieved accuracies of 0.9795–0.9839 
[57, 62]. At a more fine-grained level, 
Odisho et al. extracted seventeen types 
of information from prostate cancer pa-
thology reports and achieved a weight-
ed F1-score of 0.972 for categorical 
data and a mean accuracy of 0.930 for 
numerical data. They applied document 
classification with convolutional neural 
network (CNN) to categorical data and 
token classification with random forest 
to numerical data [61].

Psychiatry
In psychiatry, NLP can be used for IE from 
unstructured EHR and speech analysis 
on patient speech data [63, 64]. NLP can 
help in the screening, early diagnosis, or 
severity estimation of various diseases such 
as depression [63], bipolar disorder [65], 
dementia [66–68], psychosis [69, 70], and 
schizophrenia [71]. Dai et al. showed that 
NLP automatically diagnosed psychiatric 

diseases with free-text discharge summaries. 
Their system achieved a micro F1-score 
of 0.584 using multiple classifiers based 
on pre-trained Robustly Optimized BERT 
pretraining Approach (RoBERTa) models 
[72, 73]. More fundamentally, NLP can con-
tribute to psychiatric diagnostics. The Re-
search Domain Criteria (RDoC), a potential 
counterpart of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM), aims 
to integrate brain research knowledge into 
psychiatric disease classification [74], for 
which NLP shared tasks were held in 2016 
and 2019 [75, 76].

Rehabilitation
NLP is used in speech therapy by incorpo-
rating it into electronic devices for augmen-
tative and alternative communication (AAC) 
[77, 78]. Moreover, NLP has the potential 
to better unite the entire rehabilitation into 
the healthcare process by enabling the inte-
gration of the International Classification of 
Functioning, Disability, and Health (ICF) 
into EHRs, although there are still problems 
to overcome [79].

Obstetrics and Gynecology
Publications on bedside NLP applications 
were found in obstetrics and gynecology, 
although limited in number. Moon et al. 
showed the effectiveness of a rule-based 
NLP approach to highlight information 
discrepancies on surgical history due to 
misinterpretation during hospital transfer or 
improper copy and paste [80]. Sterckx et al. 
developed a birth risk prediction system to 
support preterm birth treatment, which was 
based on GBDT. NER-based features im-
proved prediction performance when com-
bined with structured data, with F1-score of 
birth prediction within 24 hours over 0.80 
[81]. Barber et al. used NLP for prognostic 
prediction of ovarian cancer surgery, where 
postoperative readmission within 30 days 
was predicted with ROC-AUC of 0.70 using 
preoperative CT radiology reports [82].

Other Departments
NLP application is limited in ophthalmology 
and anesthesiology, where most AI systems 
are devoted to automated image diagnosis 
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[83] or intraoperative monitoring with nu-
merical data [84]. However, some studies 
combine NLP for unstructured free-text 
documents and AI for structured EHR data 
to predict patient prognosis [85]. NLP also 
has the potential to automatically pick up 
patient risk factors preoperatively.

As indicated above, NLP can improve 
the quality and efficiency of bedside clinical 
practice mainly by IE from unstructured 
free-text for various departments and dis-
eases, a part of which has already been put 
to practical use.

2.2   Cross-cutting Applications
Some NLP applications are not limited to 
specific hospital departments but can be 
helpful widely. We introduce such applica-
tions in this subsection.

Text Simplification
Clinical texts can sometimes be difficult for 
patients or clinicians in other departments 
due to jargon or abbreviations. Automated 
text simplification with NLP can improve 
both patient-staff and staff-staff communi-
cation [86, 87]. Moen et al. developed an 
NLP system to suggest replacements for 
abbreviations in Finnish clinical texts that are 
difficult for patients. The system achieved 
top-1 accuracy of 0.3464 with an unsuper-
vised approach using cosine similarity of 
word embeddings [87].

Writing Support
Writing support with NLP can solve more 
fundamental problems that illegible clinical 
texts often result from a shortage of time of 
healthcare professionals for documentation. 
(i) Auto-completion. Auto-completion is 

a real-time suggestion of the next word 
or clinical concept while a healthcare 
professional writes a clinical docu-
ment. Gopinath et al. developed an 
auto-completion system for the emer-
gency department that suggests clinical 
conditions, symptoms, medications, 
and laboratory test items during the 
documentation of progress notes. The 
system reduced the keystroke burden 
by 67% [88];

(ii) Auto-structuring. Some clinical doc-
uments such as progress notes or 
nursing notes are required to be in a 
structured form. NLP allows healthcare 
professionals to write such documents 
in an unstructured narrative by auto-
matic editing and structuring. Moen 
et al. structured Finnish nursing notes 
into paragraphs whose headings were 
selected from standardized taxonomy 
with an accuracy of 0.71 using a Long 
Short-Term Memory (LSTM)-based 
sentence classification [89]. Further-
more, patient-staff conversations can 
be automatically structured once tran-
scribed [90, 91]; 

(iii) Digital scribe. Digital scribe is different 
from dictation but similar to auto-struc-
turing except for using voice input. 
That is, clinicians have only to record 
an outpatient conversation with some 
additional voice command, and the 
NLP system analyzes and summarizes 
the conversation and converts it into 
a clinical document in a predefined 
format [92–95]. Wang et al. developed 
a digital scribe system, which was 
2.17–3.12 times faster than typing 
and dictation during patient encounter 
documentation [95].

3   Problems to be Addressed 
3.1   Standard Annotation Schemes
Most NLP-based IE techniques adopted in 
the studies we referred to thus far use su-
pervised machine learning, which requires 
high-quality, large datasets for training. 
Creating such datasets relies on manual 
annotation and thus increases the cost. 

The formats and conventions of writing 
clinical documents differ not only in docu-
ment types (e.g., EHRs, radiology reports, 
and nursing notes), but also in hospitals, 
departments, and even individual doctors. 
This textual diversity requires medical NLP 
researchers to create dedicated corpora for 
different applications by designing distinct 
annotation schemes. For instance, doctors 
often write disease name abbreviations 
in EHRs owing to the nature of personal 
note-taking, while radiology reports contain 

slightly more standardized terms because 
they are exchanged between diagnosing 
doctors and radiologists. Distributions of the 
appearing clinical terms in different types 
of clinical notes of different departments 
also deviate substantially, leading to uneven 
performance even when using an identical 
model architecture [96].

To adapt for a wide range of clinical note 
types with a single annotation scheme, some 
studies propose general-purpose annotation 
guidelines that define popular medical en-
tities (e.g., diseases, drugs, tests, remedies, 
and body parts), as well as semantic rela-
tionships among them (e.g., “a medicine ‘is-
subscribed-for’ a disease” and “a symptom 
‘was-found-in’ an anatomical part”) [96–99]. 
However, this approach increases the com-
plexity of the resulting annotation schemes, 
making training annotators expensive. One 
guideline of such schemes has more than 30 
pages [100]; a temporal IE corpus provides 
a 63 pages-long guideline document [101].

The complexity of annotation schemes 
can also generate ambiguous boundaries 
between multiple entity types. For example, 
a general-purpose corpus [99] defines ‘Dis-
ease’ entity and ‘Signs or Symptoms’ entity 
separately, the inter-annotator agreement of 
which was relatively low probably because 
of the annotators’ confusion.

3.2   Task Formulation
There are always several ways to formulate 
a medical/clinical problem into an NLP task. 
The difference in task formulation affects 
overall performance and how to create an 
annotated corpus. Careful design of an NLP 
task setting translated from clinical needs 
matters. Taking adverse drug event (ADE) 
detection as an example, we have at least 
three options in its task formulation: NER, 
relation extraction (RE), and text classifica-
tion. We represent these different approaches 
in Figure 1. The example sentence implies 
that a medication “nivolumab” prescribed 
for a “laryngeal cancer” adversely caused 
“liver damage.” As we mentioned below, 
each approach has its own benefits and draw-
backs. This trade-off suggests that we must 
carefully design NLP approaches against 
given medical/clinical IE issues.
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Named Entity Recognition
One way of identifying an ADE is to la-
bel which disease entities were adversely 
caused by medication. We can adopt NER 
approaches, e.g., by directly labeling “ADE” 
entities [102–104]. In our example (the top 
row of Figure 1), this approach distinguishes 
“liver damage” as an ADE from a non-ADE 
disease entity “laryngeal cancer.” 

Another approach is to put a value 
“ADE” as an attribute to corresponding 
disease entities that are already labeled by 
the standard medical NER. In medical NER, 
some attributes can be assigned to an entity 

type, such as factuality (whether or not a dis-
ease was found in the patient) and schedule 
(when a medication was subscribed) [96, 
105, 106]. In a shared-task workshop called 
Real-MedNLP2, Subtask 3 ADE proposes 
such a task formulation, where the medica-
tion and disease/symptom entities found in a 
document are to be labeled ADE TRIGGER 
or ADE, respectively. 

Although these simple approaches do not 
encode the information about which drug 
caused the adverse symptom (i.e., causal 

2 https://sociocom.naist.jp/real-mednlp/ 

ADE relationships), it still works for initial 
screening. Probably because the models 
need to recognize longer context to detect 
ADE entities, they perform relatively lower 
(around 0.6 F1-score [104, 107]) than typical 
disease name recognition models (around 
0.9 F1-score in the BC5CDR dataset [108]). 

Relation Extraction
ADE detection tends to be defined as RE 
[103, 104, 107, 109] so that the causality 
information of possible ADEs is directly 
encoded. In our example (the middle row 

Fig. 1   Different task formulations for the same task (a case of the adverse drug event task).
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of Figure 1), the drug entity “nivlumab” 
should be connected to “liver damage” by 
an ADE-causing relation (“CAUSED”). 
Additionally, the detail of medication 
treatments is often annotated, i.e., labeling 
drug-attribute relations from a drug entity 
to the expressions such as its amount or 
frequency of prescription. 

However, it is not trivial even for profes-
sional clinicians to decide if a disorder written 
in a document was certainly caused by some 
drugs or not, which may result in difficulty in 
annotations [107]. In fact, the performance 
in detecting ADE relations, which distrib-
utes around 0.5 F1-score, were substantially 
low in comparison to drug-attribute relation 
extraction, most models of which achieved 
around 0.9 F1-score [103, 107, 109].

Text Classification
Another simple approach to ADE detection 
is classification-based IE, which detects 
ADE information mentioned in a document 
by sentence- [110, 111] or document-level 
[111] classification. For instance, Ujiie et al. 
[111] proposed a machine learning-based 
method to first classify each sentence of 
case reports into ADE-suggesting or not, 
and then to identify the documents that re-
port any ADEs based on the sentence-level 
classification results. In our case (the bottom 
row of Figure 1), the second sentence is to 
be marked as ADE-suggesting since it men-
tions an ADE (“liver damage”), and hence 
the whole document containing the two 
sentences is to be labeled ADE-reporting. 

This coarse-grained approach allows 
end-users who report ADEs from clinical 
documents to investigate the position in a 
document that suggests potential ADEs. 
The document-level classification seems to 
work better than sentence-level classification 
(around 0.5 vs 0.8 F1-score in [111]), prob-
ably due to the difficulty in inter-sentence 
relation understanding.

3.3   Real-time Nature, UI, UX of NLP
Despite its potential, the effectiveness of 
NLP applications has rarely been prospec-
tively examined except for a few studies 
such as decision support for surgery candi-

dacy [24]. There is a huge gap between ret-
rospective studies and prospective studies. 
To break this out, a real-time NLP platform 
including a clinician-friendly graphical 
interface [25,112] is required.

4   Future NLP and Conclusions
Sections 2 and 3 described the clinical 
NLP systems in the hospital. Beyond its 
use in hospitals, NLP applications can be 
combined with a variety of smart devices, 
such as smartphones, smart speakers, and 
smartwatches. In the final part of this re-
view, we pick up emerging out-of-hospital 
NLP applications that will grow potentially 
in the near future. Their core concepts of 
services are twofold: (1) for the patient and 
(2) for medical staff.

Peer support and conversation agents are 
core NLP targets for patients. Peer support 
is based on human-to-human communi-
cation. Nowadays, direct human commu-
nication has been gradually replaced by 
virtual communication. Rouzfarakh et al., 
for example, formed a WhatsApp peer sup-
port group for burn patients to share their 
experiences [113]. Zhang et al. developed 
a WeChat platform for parents of children 
with congenital heart diseases [114]. Yonek 
et al. performed a Facebook-based RCT 
for tobacco and heavy alcohol use [115]. 
Yang et al. explored the effect of WeChat 
follow-up management on improving 
parents’ mental status and quality of life 
(QoL) in premature newborns with patent 
ductus arteriosus [116]. Thus, these previ-
ous studies focus more on forming virtual 
communication spaces where one can 
connect with peers and exploring their ef-
fectiveness without NLP techniques. As the 
next step, NLP would be applied for peer 
recommendation, communication facilita-
tion support, effectiveness measurement of 
peer support, etc.

Instead of human conversational agents, 
NLP systems (conversation agents or chat-
bots) can provide mental encouragement 
to patients. Conversation agents have been 
developed for depression patients [117] and 
smokers [118], while some other agents are 
dedicated to promoting physical activity, a 

healthy diet [119], communication support 
for children with autism spectrum disorder 
[120], QoL control for inflammatory bowel 
disease (IBD) [121]. A clinical issue in 
such chatbot development is how to en-
sure patient safety [122]. To deal with this 
problem, new solutions are explored. For 
example, a system named Addiction-Com-
prehensive Health Enhancement Support 
System [123] implemented a panic button: 
if the patient pressed it, the system sends 
an emergency message to pre-registered 
contact people.

For the hospital, education and naviga-
tion are the main NLP targets. Communi-
cation skill training is a typical example 
for both doctors [124] and nurses [125]. 
Medical navigation, not only geographic 
but also information-oriented, is useful 
in medical applications. A successful ex-
ample is to provide relevant information 
inside clinical departments [126]. Chu 
et al. developed a Question-and-Answer 
(QA) system for hospital staff to inform 
the location of mobile medical equipment 
(electrocardiography machines), moving 
around a hospital [127].

To conclude this paper, we refer to the 
first two questions in Section 1: what has 
medical NLP achieved in each medical 
field, and what is the burden for practical 
use of NLP? On the one hand, NLP-pow-
ered approaches have already been applied 
to most bedside needs. The performance 
of such approaches reached around 0.9 
ROC-AUC, demonstrating the “in-vitro” 
feasibility of NLP for bedside applications. 
On the other hand, we observed several 
limitations in real-world use of NLP: 
too much variety of corpus-annotation 
schemes and task formulation lead to low 
portability of existing solutions; and lack 
of user-interface/experience evaluations 
concerns clinicians about “in-vivo” us-
ability. The potential coverage of medical 
NLP is yet broader than direct bedside 
applications, as introduced in this section. 
Realization of successful medical NLP 
applications may need a much larger-scale, 
interdisciplinary collaboration involving 
bedside staff, patients, UI/UX scholars, 
wearable Internet of Things devices, and 
NLP researchers. 
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Table 1   Summary of bedside NLP application studies. BART = Bidirectional Auto-Regressive Transformer, BERT = Bidirectional Encoder Representations of Transformers, CNN = Convolutional Neural Network, EL = 
Entity Linking, GBDT = Gradient Boosting Decision Tree, LSTM = Long Short-Term Memory, NER = Named Entity Recognition, NN = Neural Network, RCT = Randomized Controlled Trial, RoBERTa = Robustly Optimized 
BERT Pretraining Approach, SVM = Support Vector Machine, T5 = Text-to-Text Transfer Transformer

* Papers published in 2020 or later.

Reference

Wissel et al., 
2020 [24]*

Seol et al., 
2021 [25]*

Zheng et al., 
2016 [26]

Wang et al., 
2015 [27]

Tian et al., 
2017 [28]

Bucher et al., 
2020 [29]*

Shi et al., 
2016 [31]

Waston et al., 
2011 [32]

Wang et al., 
2017 [33]

Buchan et al., 
2017 [34]

Chase et al., 
2017 [35]

Fonferko-
Shadrach et 
al., 2019 [38]

Selby et al., 
2018 [39]

Borjali et al., 
2021 [40]*

Tibbo et al., 
2019 [41]

Holmes et al., 
2021 [45]*

Objectives

Detection of surgical candi-
dates in epilepsy patients

Prevention of acute exacerba-
tion of pediatric asthma with 
decision support tool

Detection of patients with 
diabetes prior to structured 
coding

Detection of chronic heart 
failure patients prior to 
structured coding

Detection of deep vein 
thrombosis and pulmonary 
embolism

Surveillance of surgical site 
infections

Detection of cerebral infarc-
tion patients, pneumonia 
patients, and coronary artery 
disease patients

Identification of psychosocial 
re-admission risk factor of 
heart failure patients

Detection of atrial fibrillation 
patients with high risk of 
cerebral infarction

Prediction of developing 
coronary artery disease

Detection of multiple sclerosis 
patients

Information extraction from 
clinical letters for epilepsy 
patients

Surveillance of postoperative 
deep vein thrombosis and 
pulmonary embolism

Surveillance of hip dislocation 
after total hip replacement

Surveillance of periprosthetic 
femur fractures

Information extraction of 
breast cancer biomarkers

Study design

Prospective    
study

RCT

Prospective
study

Prospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Target 
language

English

English

English

English

English

English

Chinese

English

English

English

English

English

English

English

English

English

Corpus

Progress notes

Progress notes

Progress notes, discharge 
summaries, and other 
clinical notes

Progress notes, discharge 
summaries, and other 
clinical notes

Radiology reports

Operative reports, prog-
ress notes, nursing notes, 
radiology reports, and 
discharge summaries

Progress notes and 
discharge summaries

EHR notes

Clinical notes

Clinical notes

EHR notes

Clinic letters

Radiology reports

Radiology reports and 
follow-up telephone notes

Operative reports and 
progress notes

Pathology reports

NLP task

Document 
classification

NER

Document 
classification

Document 
classification

Document 
classification

Binary 
classification

Document 
classification

Multivariate 
analysis

Information 
extraction

Document 
classification

Document 
classification

Information 
extraction

Document 
classification

Document 
classification

Document 
classification

Information 
extraction

Method

SVM

Not applicable

NER + Normalization 
+ Random forest

NER + Normalization 
+ Random forest

Rule-based

Existing tool

CNN

Rule-based feature 
extraction + Logistic 
regression

Rule-based

NER-based feature 
extraction + SVM

NER + EL + Naïve 
Bayes classification

Existing tool 

(Not applicable)

LSTM, CNN

NER + EL

NER + EL + Rule-
based approach

Performance [95% 
confidence interval]

ROC-AUC 0.79 
[0.62–0.96]

Odds ratio 0.82 
[0.374-1.96]

ROC-AUC 0.929

ROC-AUC 0.919

Sensitivity 0.94 
[0.88–0.97], Specificity 
0.96 [0.95–0.97] 

ROC-AUC 0.912

F1-score 0.934–0.966 

(Not applicable)

Positive Predictive Value 
0.92–1.00

F1-score 0.774

ROC-AUC 0.94 
[0.93–0.95]

F1-score 0.911

Sensitivity 0.851–
0.900, Specificity 
0.946–0.987

Kappa coefficient 
0.97–1.00 

Sensitivity 1.000, 
Specificity 0.998

Accuracy 0.98
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Reference

Valtchinov et 
al., 2020 [52]*

Trivedi et al., 
2018 [53]

Chillakuru et al., 
2021 [54]*

Kim et al., 2020 
[57]*

Odisho et al., 
2020 [61]*

Dai et al., 2020 
[72]*

Moon et al., 
2022 [80]*

Sterckx et al., 
2020 [81]*

Barber et al., 
2021 [82]*

Gaskin et al., 
2016 [85]

Moen et al., 
2018 [87]

Gopinath et al., 
2020 [88]*

Moen et al., 
2020 [89]*

Krishna et al., 
2021 [90]*

Zhang et al., 
2021 [91]*

Objectives

Identification of implantable 
device posing MRI safety risks

Determination to use or not 
to use contrast enhancement 
for MRI imaging

Determination to use or not 
to use contrast enhancement 
for MRI imaging

Information extraction from 
pathology reports

Information extraction of 
histological characteristics of 
prostate cancer

Automated diagnosis of 
multiple psychiatric diseases

Recognition of gynecological 
surgical history

Birth risk estimation

Prediction of 30-day 
readmission after ovarian 
cancer surgery

Surveillance of postoperative 
complications of cataract 
surgery

Synonym replacement for 
better readability

Auto-completion of progress 
notes

Auto-structurization of 
nursing notes

Automatic summarization of 
doctor-patient conversation

Automatic summarization of 
doctor-patient conversation

Study design

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Retrospective 
study

Target 
language

English

English

English

English

English

English and 
Chinese

English

English and 
Dutch

English

English

Finnish

English

Finnish

English

English

Corpus

Radiology reports and 
other clinical notes

Free-text MRI protocols 
and indications

Free-text MRI protocols 
and indications

Pathology reports

Pathology reports

Discharge summaries

Clinical notes

Clinical notes and 
structured data

Radiology reports

EHR notes and  
structured data

Progress notes and 
nursing notes

Progress notes and 
structured data

Nursing notes

Outpatient transcription

Outpatient transcription

NLP task

NER

Document 
classification

Document 
classification

NER

Document 
classification 
and token 
classification

Multilabel 
document 
classification

Multiclass 
classification

Binary 
classification

Binary 
classification

Binary 
classification

Abbreviation 
Resolution

Recommen-
dation

Sentence 
classification

Summarization

Summarization

Method

Existing tool

Existing tool

TF-IDF vectorization 
+ GBDT, Word 
embedding + 
shallow NN

BERT

CNN, Random forest

RoBERTa

NER + Rule-based 
approach

GBDT

(Not applicable)

Random forest

Word embedding + 
cosine similarity

Rule-based entity type 
detection + Shallow 
NN or Bayes statistics

LSTM

BERT-LSTM classifier 
+ T5

BART

Performance [95% 
confidence interval]

Accuracy 0.83–0.91

Accuracy 0.832

Accuracy 0.8338–
0.8543

Accuracy 0.9795–
0.9839

Weighted F1-score 
0.972 (document), 
Accuracy 0.930

Micro F1-score 0.584

Weighted F1-score 0.76

F1-score > 0.80

ROC-AUC 0.70 
[0.68–0.73]

ROC-AUC 0.62–0.84

Top-1 accuracy 0.3464

Keystroke reduction 
67%

Accuracy 0.71

ROUGE-L 0.3838

ROUGE-L 0.3412

Table 1 (continued)   Summary of bedside NLP application studies. BART = Bidirectional Auto-Regressive Transformer, BERT = Bidirectional Encoder Representations of Transformers, CNN = Convolutional Neural Network, 
EL = Entity Linking, GBDT = Gradient Boosting Decision Tree, LSTM = Long Short-Term Memory, NER = Named Entity Recognition, NN = Neural Network, RCT = Randomized Controlled Trial, RoBERTa = Robustly 
Optimized BERT Pretraining Approach, SVM = Support Vector Machine, T5 = Text-to-Text Transfer Transformer

* Papers published in 2020 or later.


