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Introduction

Dual-energy computed tomography (DECT) is a significant
advancement in the field of computed tomography (CT),
where images are acquired at two different energies (kilo-
volts) and “material decomposition” algorithms are used to
differentiate and quantify various materials with different
effective atomic numbers such as water, fat, iron, and iodine
in a given pixel. The concept of dual-energy acquisition and
its potential benefits were first described in 1973 by Houns-
field in his original article on CT systems.1 However, a lot of
technical difficulties had to be overcome before his vision
was realized when the first clinical DECT scanner was intro-
duced in 2006.2 Since then, all major CT manufacturers have
introduced DECT scanners with different machine designs
and image processing softwares.

Diffuse liver disease, particularly cirrhosis, is a growing
public health problem worldwide and is associated with
significant morbidity and mortality.3 Liver biopsy is current-
ly the gold standard for diagnosis (presence of inflammation,
fibrosis, fat, iron) and staging of chronic liver parenchymal
diseases.4 However, it is invasive, associated with hemor-
rhagic complications, and subject to sampling errors and
inter-observer variations.5,6 A repeat biopsy to monitor the
course of the disease and assess response to treatment is
unjustified and has low acceptance among patients. Hence,
there is a need for a reliable, reproducible, and non-invasive
alternative. Magnetic resonance imaging (MRI) with its
versatile techniques and sequences is increasingly becoming
awell-established and accurate imaging tool for the purpose
of assessing fat, fibrosis, and iron deposition.7–9 However,
MRI is expensive, takes a long time to scan compared to CTor
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Abstract Dual-energy computed tomography (DECT) is an advancement in the field of CT, where
images are acquired at two energies. Materials are identified and quantified based on
their attenuation pattern at two different energy beams using various material
decomposition algorithms. With its ability to identify and quantify materials such as
fat, calcium, iron, and iodine, DECT adds great value to conventional CT and has
innumerable applications in body imaging. Continuous technological advances in CT
scanner hardware, material decomposition algorithms, and image reconstruction
software have led to considerable growth of these applications. Among all organs,
the liver is the most widely investigated by DECT, and DECT has shown promising
results in most liver applications. In this article, we aim to provide an overview of the
role of DECT in the assessment of diffuse liver diseases, mainly the deposition of fat,
fibrosis, and iron and review the most relevant literature.
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ultrasonography, and requires special sequences and hard-
ware. Although the role of DECT in diffuse liver diseases is
evolving, this article aims to review the most relevant
literature on the use of DECT in the assessment of diffuse
liver diseases, mainly the deposition of fat, fibrosis, and iron.
We would also briefly discuss the basic principles of DECT
image acquisition and image reconstruction with a focus on
the areas that are relevant in the assessment of diffuse liver
diseases.

Basic Principles of DECT

In CT, the photoelectric effect and Compton scattering are the
dominant X-ray interactions influencing image formation.10

The attenuation of X-rays in each voxel is a function of the
linear attenuation coefficient of the medium and energy of
incident X-rays. The linear attenuation coefficient in turn
depends on the effective atomic number of the medium and
its material density.11,12 On a single-energy CT (SECT),
materials with different atomic numbers may have the
same CT attenuation value (Hounsfield unit [HU]) if the
material densities are different. Hence, SECT cannot differ-
entiate them. In DECT, using a second X-ray spectrum, two

image datasets are produced, one from low energy and the
other from high energy. The degree of attenuation change
(attenuation coefficient) with a change in X-ray energy is
independent of material density and is material specific.
Materials such as fat, iodine, and bone have different degrees
of attenuation change and can be identified based on this
difference (►Fig. 1).With an appropriate software algorithm,
these material-specific energy-dependent attenuation coef-
ficients can also be used to quantify the mass density of two
or three materials in a mixture of known material composi-
tion.13,14 Typically, the low-energy beam is 80 to 100 kVp
(kilovoltage peak) and the high energy beam is 120 to 150
kVp. To generate the DECT image data, different approaches
are followed, with modifications done either at the X-ray
tube level or the detector level. These vendor-specific tech-
niques of DECT scanners are described elsewhere in this
issue.

Although the post-processing software of DECT is vendor-
specific, in general, theworkflows are not very different from
each other. After the acquisition, the DECT images (either
non-contrast or contrast-enhanced depending on the indi-
cation for which DECT is being performed) are transferred to
the DECT workstation and loaded onto the dual-energy

Fig. 1 Principle of dual-energy CT material decomposition algorithm to identify and quantify different materials. The graph shows a change in
mass attenuation coefficients of iodine, bone (calcium), and fat at a wide range of X-ray energies. At specific X-ray energy, mass attenuation
coefficient (linear attenuation coefficient/density) is only dependent on the effective atomic number of the medium. A difference in this
coefficient at two different energy X-rays (for example 80 kVp and 140 kVp as shown in the graph) depends on the effective atomic number of the
medium and not the medium density.
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software provided by the vendors. Various material-specific
algorithms are inbuilt in the DECTsoftware. The technique of
quantification of a material is usually simple (►Fig. 2). The
images are opened in the material-specific application and a
region of interest (ROI) is drawn over the liver parenchyma
avoidingmajor vessels. The ROI displays the concentration of
thematerial, e.g., iodine or fat, being evaluated.Multiple ROIs
may be drawn in different lobes and segments (at least three
ROIs in each lobe) of the liver to get a mean of the values for
reliable and reproducible results. Color-coded maps can also
be generated for providing an overview of the distribution of
the material in the liver parenchyma.

Hepatic Steatosis

Hepatic steatosis (HS) or fatty liver, currently is most com-
monly associated with non-alcoholic fatty liver disease
(NAFLD).15 The other common causes of HS are alcohol
consumption,16 hepatitis C,17,18 and use of certain medica-
tions including many chemotherapeutic agents19–21 and
corticosteroids.22 The estimated prevalence of HS is �25%
worldwide.23 NAFLD is frequently associated with metabolic
syndrome, which comprises a set of risk factors for cardio-

vascular disease and type II diabetes that include obesity,
hypertension, elevated triglycerides, and insulin
resistance.24,25

Quantification of hepatic fat is important in patients with
HS, as increasing steatosis leads to the development of
steatohepatitis and then to cirrhosis with increased risk
for the occurrence of hepato-cellular carcinoma and associ-
ated with poor liver surgical outcomes.26–28 However, with
appropriate therapeutic strategies such as lifestyle modifi-
cations (dietary regulation and physical exercise) and drugs
(pioglitazone and vitamin E), hepatic steatosis can be re-
versed along with the incidence of its metabolic complica-
tions.29 Hence, we need a reliable non-invasive modality for
diagnosis, prognostication, and treatment monitoring in
patients with HS. Chemical shift relaxometry and spectros-
copy on MRI and backscatter coefficients or controlled
attenuation parameters on ultrasonography (USG) are vari-
ous imaging methods that can be used for liver fat quantifi-
cation.30 MR spectroscopy (MRS) has proven to be the most
accurate imaging tool and has the potential to replace
biopsies.31 However, MRS can only quantify fat in a small
area at a time andmultiplemeasurements to cover the entire
liver is a time-consuming process. Because of these reasons,

Fig. 2 Overview of dual-source dual-energy computed tomography (DECT) post-processing software (Syngo.via, version VB10B, 2016;
Siemens Healthineers). Based on the material being evaluated, an appropriate application profile (in the left upper corner box) is chosen.
Liver virtual non-contrast (VNC) is selected in this image to measure liver iodine concentration on the delayed phase DECT, for fibrosis
quantification. The region of interest placed on the axial image shows various parameters including Iodine density and fat fraction in that region.
The same application can be used for liver fat quantification. Color-coded iodine maps are seen in three different planes.
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MRS has been replaced by chemical shift imaging-derived
proton density fat fraction (PDFF) as an imaging gold stan-
dard for liver fat quantification.9,32 However, the higher cost
of MRI scan is the major limiting factor for its routine use.
Ultrasound elastography is dependent on reference phan-
toms, prone to measurement errors especially in overweight
female patients, and does not measure fat accurately as the
values are influenced by co-existing fibrosis.33 However, the
controlled attenuation parameter obtained on transient
elastography (Fibroscan) has shown promising results in

quantifying liver fat.34,35 In SECT, semiquantitative fat meas-
urements can be performed using the attenuation value of
the liver (HU), preferably on an unenhanced scan.36,37 How-
ever, absolute liver attenuation values can be affected by
various factors such as CT acquisition parameters and the
patient’s cardiac and renal function. To overcome these,
several authors have compared the attenuation of the liver
to that of other abdominal organs and described various
indices such as liver attenuation index (difference between
liver and spleen attenuation)38–40 and L/S ratio (ratio of liver

Fig. 3 Measurement of hepatic fat content on dual-source dual-energy computed tomography. (A, B) Axial virtual non-contrast (VNC) image of a patient
(A) with normal liver parenchyma with two circular regions of interest (ROIs) drawn on the liver show close to zero fat fraction and corresponding
color-coded fat map (B) shows almost no fat in the liver parenchyma. (C, D) Axial VNC image (C) of another patient with non-alcoholic fatty liver disease
with two ROIs show 20% of fat fraction and corresponding color-coded fat map (D) shows the distribution of fat in the liver parenchyma.

Fig. 4 Measurement of hepatic fat content on rapid switching dual-energy computed tomography. (A) Axial, contrast-enhanced image of the patient
with fatty liver. (B) Virtual unenhanced image at the same level with two circular regions of interest. Mean attenuation was 32 HU and fat fraction
was 15.5%. (C) The corresponding color-coded fat map shows the distribution of fat in the liver parenchyma.
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Table 1 Brief details and summaries of results of studies evaluating dual-energy computed tomography in hepatic iron deposition

Study (y) Sample
size
Cases/
controls

Modality of
comparison

DECT
scanner type

DECT
energies

Key results

Mendler et al
(1998)

16/11 DECT (non-
contrast) versus
USG and SECT

GE Pace-Plus 80, 140 kV • Good correlation between liver –
spleen attenuation difference on
SECT and histology (r¼ 0.74)

• No significant correlation between
ΔHU on DECT and histology

• USG superior to SECT and DECT in
diagnosing fatty liver

Zheng et al.
(2013)

32/20 DECT versus USG
and SECT

GE Discovery
CT 750 HD

80, 140 kV • Good correlation between DECT
fat percentage and liver spleen
attenuation difference on SECT
(r¼0.98)

• DECT superior to SECT, with its
distinct mono-energetic spectral
curves with different steatosis
grades and ability to delineate
areas of fat infiltration on
subtraction images

Patel et al
(2013)

107/229 DECT (late
arterial phase)
and SECT

GE Discovery
CT 750 HD

80, 140 kV • Good correlation between liver
spleen attenuation difference on
SECT and DECT fat fraction
(r¼0.74, p< 0.001)

• Fat quantification on contrast
enhanced DECT accurate
(AUROC¼ 0.85)

Kramer et al
(2017)

50/0 DECT (non-
contrast), MR-
PDFF, USG and
elastography
versus MRS

GE Discovery
CT 750 HD

80, 140 kV • Moderate correlation between
DECT fat fraction and MRS
(r2¼ 0.42 for anterior liver
segments, r2¼0.26 for posterior
liver segments)

• Excellent correlation between
SECT attenuation and MR-PDFF
with MRS (r2¼0.86 and 0.99,
respectively)

• Ultrasound elastography showed
poor correlation with MRS
(r2¼ 0.004)

Hyodo et al
(2017)

29/4 DECT (late
arterial, portal
venous, and
delayed phases)
versus histology
and MRS

GE Discovery
CT 750 HD

80, 140 kV • DECT (unenhanced and contrast-
enhanced) correlated well with
histology

• No significant difference in DECT
fat fraction of unenhanced,
arterial, portal venous, and
delayed phases (not more than 2%)

• In differentiating steatosis grade 0
from 1–3, AUROC for DECT and
MRS were 0.88 and 0.89,
respectively.

Corrias et al
(2021)

39/0 DECT (late
arterial phase)
versus MR-PDFF

GE Discovery
CT 750 HD

80, 140 kV • No significant difference in DECT
fat fraction and MRI-PDFF (two
readers with correlation
coefficients, 0.84 and 0.85,
p<0.05)

• Good inter-reader agreement for
both techniques. (kappa
coefficient - 0.88 for MRI-PDFF,
0.97 for DECT-FF, p<0.05)

Abbreviations: ΔHU, difference in attenuation between low- and high-energy images; AUROC, area under receiver operating characteristic; DECT,
dual-energy computed tomography; MR-PDFF, magnetic resonance proton density fat fraction; MRS, magnetic resonance spectroscopy; r,
correlation coefficient; r2, correlation of determination; SECT, single energy CT; USG, ultrasonography.
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to spleen attenuation),39,41 which produced better results.
However, attenuation values on SECT are still influenced by
the presence of iodinated contrast material or liver iron.
Further, SECT is less sensitive in the detection of early HS
(sensitivity ranges from 52 to 62% in cases with 10 to 20%
fat).42

In DECT, with the help of the “material decomposition”
algorithm, it is possible to not only identify but also quantify
the liver fat in a defined region (►Figs. 3 and 4).12 A few
studies have evaluated the role of DECT in the detection and
quantification of liver fat (►Table 1).

The oldest study was by Mendler et al that showed that
DECT-ΔHU (ΔHU–difference in attenuation between low-
energy and high-energy images) generated using the se-
quential technique, is inferior to both SECT liver–spleen
attenuation difference and ultrasound.43 Hyodo et al
reported that the area under the receiver operating charac-
teristic (ROC) curve of DECT was 0.88 (95% confidence
interval: 0.74–0.98) in the detection of fatty liver with
more than 5% fat in needle biopsy tissue.44 This was compa-
rable to MRS (area under the ROC curve¼0.89). A study by
Kramer et al showed that non-contrast DECT had amoderate
correlation with MRS (r2¼0.423), whereas SECT had an
excellent correlation with MRS (r2¼0.856) in the quantifi-
cation of hepatic fat.31 The authors concluded that non-
contrast DECT does not improve the accuracy of fat quantifi-
cation over conventional SECT. The reason for this was that
material decomposition is less accurate in the differentiation
of fat andwater on non-contrast DECT comparedwith iodine
and water on contrast-enhanced DECT. Corrias et al com-
pared DECT and PDFF on MRI in quantifying fat in patients
with post-chemotherapy HS.45 They found no statistically
significant difference between these two modalities in fat
quantification and showed an excellent inter-reader agree-
ment of DECT (kappa¼0.97, p<0.05). Patel et al evaluated
liver fat density on contrast-enhanced DECT using spleen–
liver attenuation difference<1 HU on non-contrast SECT as
the reference standard for steatosis. The DECT fat measure-
ment correlated well with the reference standard, with an r-
value of 0.74 (p<0.001) and area under receiver operator
curve of 0.847.46 The role of DECT in fat quantification was
also evaluated in several phantom studies and animal studies
with mixed results.47–53

Recent studies have shown that, unlike SECT, material
decomposition onDECT can accurately quantify liver fat even
on contrast-enhanced images.44–46 This is also supported by
other studies which have shown high fidelity of HU values
measured on virtual non-contrast (VNC) images compared
with unenhanced CT within the liver and other abdominal
organs.54–57 This is invaluable because most fatty livers are
incidental on post-contrast images and plain scans are not
acquired routinely. Hyodo et al suggested that among con-
trast phases, an equilibrium phase is the best alternative to
non-contrast CT in liver fat quantification on DECT.44

DECT is a valid technique in quantifying liver fat and can
be used reliably in all suspected cases of hepatic steatosis. It
can be seamlessly integrated into abdomen CTscan protocols
for liver fat quantification. Although a non-contrast scan is

preferred, with the use of the latest multi-material algo-
rithms, fat can be reliably quantified even on contrast-
enhanced CT scans.

Liver Fibrosis

Liver fibrosis is the common underlying pathological process
in chronic liver diseases, regardless of the cause. This results
from the excessive accumulation of the extracellular ma-
trix.58 Progression of liver fibrosis parallels with the increase
in portal pressure, which worsens the prognosis due to the
associated complications.58 Hence, assessment of the sever-
ity of liver fibrosis has direct implications on the treatment,
follow-up planning, and risk stratification in patients with
chronic liver disease.3,59 For instance, in chronic viral hepa-
titis, the presence of bridging fibrosis on histology is a strong
factor for the recommendation of antiviral therapy, whereas
the presence of cirrhosis calls for an endoscopy for esoph-
ageal varices and also screening for hepatocellular carcino-
ma.4 This clinical significance of detection and grading of
liver fibrosis has led to an active search for a non-invasive
modality to quantify fibrosis in these patients.

Ultrasound elastography (transient and shear-wave elas-
tography) techniques are simple, inexpensive, and accurate.
However, theirmeasurements are affected by the presence of
ascites, obesity, biliary obstruction, acute inflammation,
fatty liver, and narrow intercostal spaces.60–62 MR elastog-
raphy is the most accurate non-invasive modality in quanti-
fying liver fibrosis and correlates closest to the histological
staging.60,63 Nonetheless, in spite of these advantages, the
high cost, lack of accessibility, the requirement of dedicated
hardware, and confounding effects by coexisting iron accu-
mulation preclude its routine use.

DECT cannot directly detect or quantifyfibrosis in the liver
on non-contrast CT as it shows a similar attenuation pattern
as the rest of the parenchyma. Several studies have
attempted to quantify fibrosis by measuring extracellular
volume fraction using liver attenuation values on contrast-
enhanced delayed phase SECT with good correlation with
histology.64–67 The timing of the delayed phase CT in these
studies was heterogeneous, ranging from 3 to 30minutes.
This is based on the hypothesis that fibrotic areas in the liver
retainmore contrast material in the delayed phase due to the
increased extracellular space due to matrix deposition and
reduced perfusion.66,68 This contrast retention is reflected by
the concentration of iodine in the liver that can be readily
measured on DECT. Therefore, the concentration of the
iodine in the liver on delayed phase DECT directly correlates
to the concentration of fibrous tissue in the liver. Lv et al69

evaluated the role of portal venous phase (obtained 30 sec-
onds after the arterial phase was acquired by bolus trigger-
ing) DECT in 38 patients with cirrhotic livers (Child-Pugh
class A/B/C: n¼10/14/14) and 43 patients with healthy
livers. In differentiating healthy liver from a cirrhotic liver,
a cut-off value of 0.52 of the normalized iodine concentration
(normalized iodine concentration [NIC], which is the ratio of
iodine concentration of liver to that of the aorta) in the portal
venous phase showed high sensitivity (95%), but relatively
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lower specificity (61%). The iodine concentration (IC) ratio
(iodine concentration of liver in the arterial phase to that in
the portal vein phase) with a cut-off at 0.3 showed high
sensitivity (79%) but low specificity (49%). However, a com-
bination of these two parameters showed high sensitivity
(77%) and specificity (87%).

Lamb et al12 found that NIC of liver on a 3-minute delayed
phase DECT strongly correlated with Ishak fibrosis stage
(p<0.05). Fuentes et al,70 in their retrospective study on
12 participants, showed a strong correlation between NIC in
the delayed phase and Ishak fibrosis stage (r¼0.77, p<0.01).
Sofue et al71 in a 47-patient cohort showed that NIC had a

Fig. 5 Assessment of hepatic fibrosis on dual-source dual-energy computed tomography (DECT) in a 40-year-old man with chronic hepatitis B
cirrhosis. (A) Axial 5-minute delayed phase DECT image with circular regions of interest (ROIs) in both lobes of the liver. Normalized iodine
concentration (NIC) in the right and left lobes were 0.571 and 0.539, respectively. (B) The iodine map of the delayed phase shows heterogeneous
iodine uptake in the liver. (C) Histology of the biopsy sample showed a METAVIR stage of F4. The NIC values were consistent with cut-offs
suggested by a recent study by Marri et al.

Table 2 Brief details and summaries of results of studies evaluating dual-energy CT in hepatic fibrosis

Study
(year)

Sample
size
Cases/
control

Modality of comparison DECT Scanner
type

DECT
energies

Key results

Lv et al
(2012)

38/43 DECT - Portal venous
phase NIC and IC ratio
with Child-Pugh score

GE Discovery
CT 750 HD

80, 140 kV • NIC cut-off of 0.52: high sensitivity (95%) but
relatively low specificity (61%).

• IC ratio with cut-off of 0.3: high sensitivity (79%) but
low specificity (49%).

• High sensitivity (77%) and specificity (87%) for
combination of NIC and IC ratio in differentiating
healthy liver from the cirrhotic liver.

Lamb et al
(2015)

7/5 DECT - 3-minute delayed
phase liver NIC with
histology

GE Discovery
CT 750 HD

80, 140 kV • NIC on DECT correlated with histology and allowed
statistically significant stratification of patients by
severity of fibrosis (p< 0.05 for all stages)

• On two different time point scans, NIC showed a
high degree of repeatability (r2¼ 0.93)

Sofue et al
(2018)

47/0 DECT - 3-minute delayed
phase liver NIC with
histology

GSI, GE
Discovery CT
750 HD

80, 140 kV • NIC showed moderate correlation with METAVIR
stage (r¼ 0.63, p< 0.001)

• In discriminating each fibrosis stage, AUROC for NIC
ranged from 0.80 to 0.86

Marri et al
(2021)

107/50 DECT - 5-minute delayed
phase liver NIC and
sonoelastography with
histology

SOMATOM DF,
Siemens

100, 140 kV • NIC showed strong correlation with METAVIR stage
(r¼ 0.81, p< 0.001)

• In discriminating each fibrosis stage, AUROC for NIC
ranged from 0.86 to 0.96

• NIC showed good agreement with liver stiffness as
measured with transient elastography and shear
wave elastography (r¼ 0.60 and 0.64, respectively,
p< 0.001)

• 5-minute delayed phase showed better sensitivity
and specificity compared with 3-minute delay, which
was used in previous studies

Abbreviations: ΔHU, difference in attenuation between low- and high-energy images; AUROC, area under receiver operating characteristic; DECT,
dual-energy CT; GSI, gemstone imaging; IC, iodine concentration; NIC, normalized iodine concentration; r, correlation coefficient; r2, correlation of
determination.

Journal of Gastrointestinal and Abdominal Radiology ISGAR Vol. 5 No. 2/2022 © 2022. Indian Society of Gastrointestinal and Abdominal Radiology. All rights reserved.

DECT in Diffuse Liver Diseases Marri, Madhusudhan100



good correlation with the METAVIR fibrosis stage (r ¼ 0.65,
p<0.001). The area under the receiver operating curve
(AUROC) ranged from 0.79 to 0.86 in discriminating each
liver fibrosis stage (�F1–F4). The NIC cut-off values for the
diagnosis of METAVIR stages �F1, �F2, � F3 and ¼F4 were
found to be 0.270, 0.274, 0.286, and 0.299 with accuracies of
74.5%, 78.7%, 78.7%, and 76.6%, respectively. In a recent
prospective study evaluating 107 patients of chronic liver
disease by Marri et al68 in our institute, the NIC on the 5-
minute delayed phase DECT was compared with the META-
VIR stage on histology (►Fig. 5). The NIC showed a high
positive correlation with METAVIR fibrosis stage (r¼0.81;
p<0.0001). The AUROC for the NIC in the right lobe of the
liver with respect to eachMETAVIR stage ranged from 0.86 to
0.96. The cut-off values (with sensitivity and specificity) of
NIC for different fibrosis stages were �F1¼0.243 (85.1%,
83.3%), �F2¼0.289 (83.7%, 81.4%), �F3¼0.343 (86.9%,
86.8%), ¼F4¼0.401 (93.3%, 84.7%), respectively. A 5-minute
delayed DECT was used in this study in contrast to the
previous studies, where a 3-minute delay was used. This
longer delay had resulted in a better performance of DECT in
fibrosis quantification and fewer overlapping NIC cut-offs for
the METAVIR stages. DECT performance was also compared
with elastography in this study. NIC showed good agreement
with liver stiffness as measured with transient elastography
and shear-wave elastography (Spearman r¼0.60 and 0.64,
respectively; p<0.001). An overviewof some of the studies is
shown in ►Table 2.

A significant number of patients with chronic liver
disease routinely undergo multiphase CT scans of the
abdomen as part of hepatocellular carcinoma surveillance.
The possibility of grading the severity of fibrosis on the
same scan would be invaluable. The addition of dual-energy
acquisition in the contrast-enhanced delayed phase, prefer-
ably 5-minute, is suggested for this purpose (►Fig. 6). This
could reduce the number of biopsies and related complica-
tions in these patients. Simultaneously, larger studies are
needed to formulate a uniform CT acquisition protocol,

delayed phase timing, and NIC cut-off values in each fibrosis
stage in these patients.

Hepatic Iron

Liver iron deposition and chronic liver disease are interrelat-
ed. Deposition of iron in the liver parenchyma can be due to
increased total body iron as seen in hereditary hemochro-
matosis or transfusion-related hemosiderosis.72 Conversely,
liver diseases such as chronic viral hepatitis, alcoholic liver
disease, and non-alcoholic steatohepatitis (NASH) also pro-
mote iron deposition in the liver.73,74 Increasing iron depo-
sition in the hepatocytes causes liver damage by oxidative
stress, eventually leading to cirrhosis and the possibility of
the development of hepatocellular carcinoma (HCC).75 He-
patic iron deposition in chronic liver disease is also indepen-
dently associated with increased mortality.76 Hence, liver
iron detection and quantification are crucial for the manage-
ment of these patients.

MRI is widely considered the primary modality for non-
invasive liver iron quantification. Chemical shift imaging,
the signal intensity of liver relative to spleen on fast-spin
echo T2-weighted sequence, liver to muscle signal inten-
sity ratio on multi-echo gradient recalled echo (GRE)
sequence, and R2 and R2� relaxometry are the various
MRI techniques used in accurate estimation of liver iron
content.77,78 Among these, R2 relaxometry is the most
validated and often considered as the gold standard.77

However, R2� relaxometry is more practical because the
GRE sequence is faster, results are reliable, and simulta-
neous acquisition of fat and iron is possible in a single
breath-hold.78 Apart from the high cost and inaccessibility
to MRI machine and post-processing software, the vari-
ability of the results in the presence of high concentrations
of liver iron is a limitation.

On DECT, unenhanced CT is preferred for iron quantifica-
tion. Liver iron is quantified either by using the attenuation
difference of the liver between the low- and high-energy CT

Fig. 6 Assessment of hepatic fibrosis on rapid switching dual-energy computed tomography (DECT) in a 46-year-old man with alcoholic
cirrhosis. (A) Axial 5-minute delayed-phase DECT image with circular regions of interest (ROIs) in both lobes of the liver. Normalized iodine
concentration in the right and left lobes were 0.490 and 0.513, respectively, suggesting a stage of F4, according to Marri et al. (B) Iodine map
from the delayed phase shows heterogeneous iodine uptake in the liver.
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images (ΔHU) or using an iron-specific material decomposi-
tion algorithm, which gives virtual iron content based on the
attenuation difference (►Table 3; ►Fig. 7). Joe et al in their
retrospective study showed that DECT-ΔHU (difference of

liver attenuation between 80 and 140 kVp) correlates well
with the degree of iron accumulation (r¼0.43, p<0.001).79

ThemeanDHwas 13.53 in patients with clinically important
(� 10%) iron accumulation compared with 7.39 in normal

Fig. 7 Assessment of liver iron content on dual-source dual-energy computed tomography in a 19-year-old male patient with β thalassemia.
(A, B) Axial high energy (A, 140kVp) and low energy (B, 80 kVp) non-contrast images show a mean difference in attenuation of liver between the two
energies (DHU) of 14.1 HU, suggesting iron deposition. (C) Axial multi-echo gradient MR images from a 3Tmachine show a gradual decrease in liver signal
with an increase in TE. The T2� value was 10.3 milliseconds and R2� was 163/s suggestive of moderate iron deposition.

Table 3 Brief details and summaries of results of studies evaluating dual-energy computed tomography in hepatic iron deposition

Study (year) Sample
size
Cases/
controls

Modality of
comparison

DECT
Scanner
type

DECT energies Key results

Joe et al.
(2011)

87/0 DECT-ΔHU and
MRI (T1 IP and OP,
and HASTE) with
histology

SOMOTOM
D, Siemens

80, 140 kV • Significant correlation of DECT-ΔHU
with degree of liver iron
accumulation (r¼ 0.43, p< 0.01)

• AUROC for clinically significant iron
accumulation with DECT and MRI
were 0.88 and 0.89, respectively.

Luo et al.
(2015)

56/0 DECT- material
decomposition
(VIC) with R2 and
R2� technique

SOMATOM
DF, Siemens

80, 140 kV • Significant correlation between iron
content on DECT and R2� & R2 MRI
(r¼ 0.89 and 0.87, respectively;
p< 0.001)

• At liver iron content>3.2mg/g of
dry tissue, DECT and MRI R2� similar
(AUROC, 0.96 vs. 0.99, respectively;
p¼ 0.30)

Werner et al.
(2019)

99/48 DECT - VIC with
serum ferritin and
estimated
transfused iron

SOMATOM
DF, Siemens

100, 140 kV • Good correlation between DECT iron
content and serum ferritin (r¼ 0.62,
p< 0.001)

Ma et al.
(2020)

31/0 DECT-ΔHU
and MRI
(R2� technique)

IQon, Philips Tube voltage
120 kVp
with dual-layer
spectral detector

• Good correlation of DECT-ΔHU with
MRI liver R2� (r¼ - 0.83, p< 0.001)

Abbreviations: ΔHU, difference in attenuation between low- and high-energy images; AUROC, area under receiver operating characteristic; DECT, dual-
energy computed tomography; HASTE, half Fourier single-shot turbo spin echo; IP, in-phase; OP, opposed phase; r¼ correlation coefficient; VIC, virtual iron
content.
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patients. The DECT-ΔHU showed similar excellent perfor-
mance in diagnosing iron overload compared with MRI. The
concurrent presence of liver fat did not affect the DECT
performance in this study. Luo et al found that virtual iron
concentration on DECT showed a significant correlationwith
R2� and MRI measured liver iron content (r¼0.89 and 0.87,
respectively; p<0.001).80 This study also suggested that
DECT has similar diagnostic performance as MRI. A study
byWerner et al showed a strong correlation between virtual
iron content on DECT and serum ferritin in patients of
transfusional hemosiderosis (r¼0.62, p<0.001).81 In a ret-
rospective study by Ma et al, the authors showed a strong
correlation between liver DECT-ΔHU and R2� values in MRI
(r¼0.83, p<0.001).52

Unlike SECT, which underestimates fat in the presence
of iron and vice versa, several phantom and animal
studies have shown that DECT can accurately quantify
iron, even in the presence of fat52,82,83 and vice

versa.52,83,84 In contrast, several other studies have sug-
gested that iron and fat affect the measurement of each
other on DECT.85–87 A recent study also suggested that
the phase of contrast-enhanced scan (arterial, portal
venous, and delayed) significantly affects the hepatic
iron measurements on DECT.88 These confounding fac-
tors need to be studied further, and iron-specific algo-
rithms, which are immune to these confounding effects,
have to be developed before DECT can be recommended
for routine use in this setting.

A summary of suggestions for practical applications of
DECT in the quantification of hepatic fat, fibrosis, and iron
content is given in ►Table 4.

Limitations

There are a few limitations to the routine use of DECT in
diffuse liver diseases. The major limitation is the high cost of

Table 4 Summary of suggestions for practical application of DECT in diffuse liver diseases

Dual-energy computed tomography: practical considerations

•Most of the current published literature on the role of DECT in diffuse liver diseases has used a single-source DECT scanner
with tube energies 80 kV and 140 kV. There are not enough data comparing single-source DECT and dual-source DECT or
different tube energies to prefer one over the other.

•When the iodinated contrast agent is used, the contrast volume, injection rate, and CT acquisition timings for DECT are the
same as for conventional SECT. For liver fibrosis quantification, only a delayed phase CT (variably at 3 to 5minutes) may be
acquired in the dual-energy mode to avoid unnecessary data overload.

• For measuring any material density on DECT, we recommend drawing at least three circular regions of interest (ROIs) with a
diameter measuring 2 cm in each liver lobe, avoiding major vessels or focal lesions, to account for the heterogeneous
distribution and for reproducible results.

Fat quantification Iron quantification Fibrosis quantification

• Non-contrast scan preferred although
fat quantification can also be done on
contrast-enhanced DECT.

• DHU (difference in the attenuation
between low and high energy images)
or fat-specific material decomposition
algorithms are useful.

• Non-contrast scan is preferred
although iron quantification can also
be done on contrast-enhanced DECT.

• DHU (difference in the attenuation
between low and high energy images)
or iron-specific material
decomposition algorithms are useful.

• Contrast-enhanced delayed phase
scan is preferred.

• Although data are lacking on the
optimum time of delay for fibrosis
quantification, in our experience
5-minute delayed scan provides
accurate results.

• Normalized iodine concentration
(ratio of iodine concentration of liver
to iodine concentration of aorta)
provides better results.
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the scanners, additional software required for post-process-
ing, and the need for larger data storage capacity. However,
with the increasing number of installations, demands, and
awareness of its considerable clinical utilities, the cost is
expected to gradually reduce. Another limitation is the
difference in the technique of DECT between different ven-
dors. There are not enough studies comparing intervendor
and interscanner variability with respect to the application
of DECT in diffuse liver diseases. This may limit the unifor-
mity of the study results. When DECT was first introduced,
radiation dose was the main concern. However, later multi-
ple studies have shown that DECT does not increase radiation
dose comparedwith conventional CT and it is wellwithin the
ACR standard reference upper limit of 25 mGy for abdominal
CT.89–93 The presence of multiple material elements in the
same area could affect the measurement of fat, iodine, or
iron. It is still not clear whether the presence of fat and iron in
the same voxel results in reduced performance of DECT.
Active inflammation in the parenchyma, which is a key
component of NASH and other chronic liver diseases,94–102

is difficult to evaluate with an imaging modality such as
DECT. Hence, a complete assessment will have to involve
imaging in conjunction with other tests for inflammation.

Conclusion

Dual-energy CT is still in its infancy and most of its appli-
cations are still in the research phase and not yet in wide
clinical use. With exponential technological advances in
scanner hardware, material decomposition algorithms, and
image reconstruction software, the role of DECTwill contin-
ue to grow in body imaging, and diffuse liver diseases is not
an exception. However, MRI and its applications will remain
the imaging gold standard for quantifying liver fat, iron, and
fibrosis. The results fromamajority of preliminary studies on
the role of DECT in diffuse liver diseases are promising.
However, larger cohort studies are needed to further validate
these results before they come into routine clinical practice.
Optimum application of DECT in routine abdominal CT
protocols would not only give additional information for
better patient management but could also potentially pre-
vent unnecessary biopsies.
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