Aktuelle Rheumatologie 2016; 41(04): 300-305
DOI: 10.1055/s-0042-111315
Übersichtsarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Neuroanatomische Grundlagen des Gelenkschmerzes

Neuroanatomical Basics of Joint Pain
E. T. Peuker
1   Hausarztzentrum Münster, Akademische Lehrpraxis der Universität Münster, Münster, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
31 August 2016 (online)

Zusammenfassung

Gelenkschmerzen sind die häufigsten Behandlungsanlässe in der orthopädischen, hausärztlichen und schmerztherapeutischen Praxis. Die gelenkinnervierenden Strukturen spielen eine wichtige Rolle in der Pathogenese unterschiedlicher Arten von schmerzhaften Störungen der Gelenkfunktion. Insbesondere Mechanismen der peripheren Sensibilisierung sind verantwortlich für die Schmerzchronifizierung und fortschreitende Gelenkzerstörung. Diese Übersichtsarbeit gibt einen Überblick hinsichtlich der zu Grunde liegenden Gelenkanatomie und pathologischen Veränderungen der an der Innervation beteiligten Strukturen sowie deren Auswirkungen auf die Gelenkfunktion.

Abstract

Joint pain is the most common reason for treatment in the practice of orthopaedics, primary care and pain therapy. The structures innervating the joints play an important role in the pathogenesis of different types of painful joint dysfunction. In particular, mechanisms of peripheral sensitisation are responsible for chronic pain and progressive joint destruction. This review article provides an overview of the underlying joint anatomy and pathological changes of the structures involved in the innervation of joints and their impact on joint function.

 
  • Literatur

  • 1 Rabenberg M. Gesundheitsberichterstattung des Bundes. Heft 54 – Arthrose. Robert Koch-Institut. Berlin: 2013
  • 2 Arendt-Nielsen L, Nie H, Laursen MB et al. Sensitization in patients with painful knee osteoarthritis. Pain 2010; 149: 573-581
  • 3 Schwab W, Funk RH. Innervation pattern of different cartilaginous tissues in the rat. Acta Anat (Basel). 1998. 163. 184-190
  • 4 Ludwig CA, Mobargha N, Okogbaa J et al. Altered Innervation Pattern in Ligaments of Patients with Basal Thumb Arthritis. J Wrist Surg 2015; 4: 284-291
  • 5 Inoue H, Shimoyama Y, Hirabayashi K et al. Production of neuropeptide substance P by synovial fibroblasts from patients with rheumatoid arthritis and osteoarthritis. Neurosci Lett 2001; 303: 149-152
  • 6 Simone DA, Nolano M, Johnson T et al. Intradermal injection of capsaicin in humans prodruces degeneration and subsequent reinnervation of epidermal nerve fibres: correlation with sensory function. J Neurosci 1998; 18: 8947-8959
  • 7 Hoheisel U, Reuter R, de Freitas MF et al. Injection of nerve growth factor into a low back muscle induces long-lasting latent hypersensitivity in rat dorsal horn neurons. Pain 2013; 154: 1953-1960
  • 8 Weinkauf B, Deising S, Obreja O et al. Comparison of nerve growth factor-induced sensitization pattern in lumbar and tibial muscle and fascia. Muscle Nerve 2015; 52: 265-272
  • 9 Eitner A, Pester J, Nietzsche S et al. The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthritis Cartilage 2013; 21: 1383-1391
  • 10 Salo PT, Seeratten RA, Erwin WM et al. Evidence for a neuropathic contribution to the development of spontaneous knee osteoarthrosis in a mouse model. Acta Orthop Scand 2002; 73: 77-84
  • 11 Dirmeier M, Capellino S, Schubert T et al. Lower density of synovial nerve fibres positive for calcitonin gene-related peptide relative to substance P in rheumatoid arthritis but not in osteoarthritis. Rheumatology (Oxford) 2008; 47: 36-40
  • 12 Suri S, Gill SE, Massena DC et al. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis 2007; 66: 1423-1428
  • 13 Lehner B, Koeck FX, Capellino S et al. Preponderance of sensory versus sympathetic nerve fibers and increased cellularity in the infrapatellar fat pad in anterior knee pain patients after primary arthroplasty. J Orthop Res 2008; 26: 342-350
  • 14 Dauty M, Perrouin Verbe B, Maugars Y et al. Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 2000; 27: 305-309
  • 15 Langevin HM, Fox JR, Koptiuch C et al. Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet Disord 2011; 12: 203-214
  • 16 Stecco C. Functional Atlas of the Human Fascial System. 1st Ed Oxford: Churchill Livingstone – Elsevier; 2014
  • 17 Tesarz J, Hoheisel U Wiedenhöfer et al. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience 2011; 194: 302
  • 18 Barry CM, Kestell G, Gillan M et al. Sensory nerve fibers containing calcitonin gene-related peptide in gastrocnemius, latissimus dorsi and erector spinae muscles and thoracolumbar fascia in mice. Neuroscience 2015; 291: 106-117
  • 19 Hoheisel U, Rosner J, Mense S. Innervation changes induced by inflammation of the rat thoracolumbar fascia. Neuroscience 2015; 300: 351-359
  • 20 Stecco A, Stern R, Fantoni I et al. Fascial disorders: Implications for treatment. PM R 2016; 8: 161-168
  • 21 Kuniya H, Aota Y, Saito T et al. Anatomical study of superior cluneal nerve entrapment. J Neurosurg Spine 2013; 19: 76-80
  • 22 Aota Y. Entrapment of middle cluneal nerves as an unknown cause of low back pain. World J Orthop 2016; 7: 167-70
  • 23 Jerosch J, Filler T, Mertens T. The spinoglenoid ligament – an anatomic study. Z Orthop Unfall 2012; 150: 142-148
  • 24 Schulte TL, Filler TJ, Struwe P et al. Intra-articular meniscoid folds in thoracic zygapophysial joints. Spine (Phila Pa 1976) 2010; 35: E191-E197