Syn lett

Accounts and Rapid Communications in Chemical Synthesis

January 4, 2022 • Vol. 33, 1–102

Editorial written by Benjamin List

Includes Editiorial Board Cluster Articles

α-Cationic Phosphines:from Curiosities to Powerful Ancillary LigandsC. J. Rugen, M. Alcarazo

Accounts and Rapid Communications in Chemical Synthesis 2022 Vol. 33, No. 1 January I

Cover Design: © Thieme Cover Image: C. J. Rugen et. al.

IX

X. Li

University of Hong Kong, P. R. of China

Synlett **2022**, 33, 34–37 DOI: 10.1055/a-1659-7656

R. Padilla K. P. Vollhardt* K. N. Houk J. J. Wong University of California at Berkeley, USA Bis(η^5 -cyclopentadienyl)[μ -(4b,5,5a- η^3 :9b,10,10a- η^3)-2,3,7,8tetrakis(trimethylsilyl)benzo[3,4]cyclobuta[1,2-*b*]biphenylene]-*syn*-dicobalt (Co–Co), a Dinuclear π -Complex of the Linear [3]Phenylene Framework

Cluster

Х

Synlett **2022**, 33, 40–44 DOI: 10.1055/a-1675-0018

T. Suzuka

R. Niimi Y. Uozumi*

Institute for Molecular Science (IMS), Japan

B. List*

Max-Planck-Institut für Kohlenforschung, Germany

 $R^1 = Me, n-Hex, CH_2Cp, (CH_2)_3OTBS, (CH_2)_3Phth, (CH_2)_3OCOPh$ $R^2 = H$, Me R³ = Ph, Me R = -(CH₂)₅-, n-Bu, allyl

Cluster

Syn**lett**

Synlett **2022**, 33, 48–51 DOI: 10.1055/a-1659-6521

H. G. Roth D. A. Nicewicz* University of North Carolina at Chapel Hill, USA

Cluster

48

Synlett	Pd-Catalyzed Arylation of 1,2-Amino Alcohol Derivatives via	Cluster
Synlett 2022 , 33, 52–56 DOI: 10.1055/a-1699-4766	β-Carbon Elimination	52
M. Sau M. A. Pericàs* R. Martin* Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technol- ogy (BIST) and Universitat de Barcelona, Spain	$\begin{array}{c} \begin{array}{c} \begin{array}{c} Het \\ R^{3} \\ Het \\ R^{3} \\ Het \\ R^{3} \\ Het \\ R^{3} \\ Het \\ R^{2} \\ R^{3} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ Het \\ R^{2} \\ Het \\ He \\ R^{2} \\ He \\ R^{2} \\ R^{3} \\ He \\ R^{2} \\ R^{3} $	

Synlett Suzuki-Miyaura Cross-Coupling Reaction with Potassium Aryltrifluo-Letter roborate in Pure Water Using Recyclable Nanoparticle Synlett 2022, 33, 57–61 57 Catalyst DOI: 10.1055/a-1661-3152 M. Kawase K. Matsuoka Ar¹-Br T. Shinagawa Ar¹-Ar² G. Hamasaka Ar²-BF₃K 18 examples Y. Uozumi 23-98% yield O. Shimomura in water

Osaka Institute of Technology, Japan
$$\label{eq:article} \begin{split} & \text{Ar}^1 = 4-\text{MeOC}_6\text{H}_4, \ 4-\text{F}_3\text{CC}_6\text{H}_4, \ 1-\text{naphthyl}, \ 2-\text{thienyl}, \ 2-\text{pyridyl}, \ \text{etc.} \\ & \text{Ar}^2 = 4-\text{MeOC}_6\text{H}_4, \ 4-\text{F}_3\text{CC}_6\text{H}_4, \ 2-\text{MeC}_6\text{H}_4, \ \text{etc.} \end{split}$$

Letter

70

Synlett

H. Gan

C. Feng

L. Zhao

M. Cao

H. Wu

China

Synlett 2022, 33, 70-75

DOI: 10.1055/a-1665-8562

Nanjing Tech University, P. R. of

T

S₈-Mediated Cyclization of Bis(2-aminophenyl) Disulfide/Diselenide

S (2 equiv)

NaHCO₃ (2 equiv)

DMF, 110 °C or

NMP. 130 °C

transition-metal-free
readily available starting materials

azoles/benzoselenazoles

X = S, Se

with Arylacetylenes/Styrenes: Access to 2-(Arylmethyl)-1,3-benzothi-

R

51 examples

up to 94%

Synlett	Enantioselective Synthesis of the Sex Pheromone of Lichen Moth,	Letter
Synlett 2022 , 33, 80–83 DOI: 10.1055/s-0040-1719835	Miltochrista calamine, and Its Diastereomer	80
G. Yuan J. Liu S. Yu	$BnO \longrightarrow O \\ OH + HN \longrightarrow S \\ Bn''s BnO \longrightarrow S \\ S$	
X. Wang Q. Bian M. Wang J. Zhong*	$4 \text{ steps} \qquad \qquad$	
China Agricultural University, P. R. of China		

XIII

٠

4

No additional catalysts or reagents

electrophilic amination

Nucleophilic amination complementary to

Good regioselectivity

Amination reagent used is inexpensive, commercially available and less toxic

Syn lett

R.-S. Zhou C. Cai*

Synlett 2022, 33, 88-92

XIV

Letter