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Abstract Over the past decades, nano-drug delivery systems have shown great potential in
improving tumor treatment. And the controllability and design flexibility of nano-
particles endow them a broad development space. The particle size is one of the most
important factors affecting the potency of nano-drug delivery systems. Large-size
(100–200 nm) nanoparticles are more conducive to long circulation and tumor
retention, but have poor tumor penetration; small-size (<50 nm) nanoparticles can
deeply penetrate tumor but are easily cleared. Most of the current fixed-size nano-
particles are difficult to balance the retention and penetration, while the proposal of
size-adjustable nano-drug delivery systems offers a solution to this paradox. Many
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Introduction

Tumor therapy is still one of the world-class challenges. In
the past decades, nano-drug delivery systems have shown
great potential in controlling drug release, reducing toxic
side effects, and improving therapeutic effects. The control-
lability and design flexibility of nanoparticles (NPs) have
attracted increasing attention in the development of preci-
sion drug delivery platforms for biomedical applications. The
incomplete structure of tumor vascular endothelium pro-
vides the feasibility for the distribution of NPs to tumor sites.
And the enhanced penetration and retention (EPR) effect is
themain principle of NPs delivery to solid tumors.1However,
nanomedicine has not yet achieved satisfactory therapeutic
effect in tumor treatment,which ismainly due to insufficient
accumulation or poor permeability in tumor.2 Solid tumors
possess the characteristics of high extracellularmatrix (ECM)
density, high interstitial fluid pressure (IFP), abnormal blood
vasculature, and impaired lymphatic drainage,3 which con-
stitute a huge obstacle for the effective accumulation and
penetration of nanomedicines in tumors. Therefore,
researchers are committed to adjusting the particle size,
shape, surface physical and chemical properties of NPs to
change their absorption, distribution, metabolism, and ex-
cretion behavior, so as to improve the therapeutic effect.

The particle size is one of the most significant factors
affecting nano-drug delivery systems, including the effects of
plasma clearance rate, body distribution, EPR effect, tissue
diffusion, and cell internalization of NPs.4Many studies have
proved that NPs with a particle size between 30 and 200nm
can effectively reach the tumor site through the EPR effect,
but within such a particle size range, the retention and
penetration capabilities of NPs are far different. NPs with a
relatively small particle size (<50nm) can penetrate to the
deep region of tumor but have a reduced retention due to cell
efflux and backflow to the peripheral blood vessels.5,6 Con-
trarily, NPs with a larger particle size (>100 nm) have a
strong retention effect in tumor, because they are easily
trapped in the matrix between tumor cells and are not easy
to flow back and be excreted by the cells, but in the
meantime, these large particles cannot penetrate deep into
the tumor.7,8 Traditional fixed-size NPs are difficult to bal-
ance accumulation and penetration. To solve this problem,
researchers have proposed a series of smart size-adjustable
strategies of NPs, including size-enlargement strategies and
size-shrinkage strategies. These strategies are generally to

achieve the initial accumulation of NPs in tumors through
the EPR effect, and then transform into larger or smaller
particles through endogenous or exogenous stimuli to pre-
vent efflux or realize deep penetration.

Endogenous or exogenous stimulation is the key to realize
the intelligent adjustment of NP size. Endogenous stimuli are
mainly the unique characteristics of the tumor microenvi-
ronment or tumor cells, such as acidic pH, overexpressed
enzymes, redox conditions, reactive oxygen species (ROS),
and so on. Exogenous stimulimainly include light, exogenous
catalysts, temperature, etc. Compared with exogenous stim-
uli, endogenous stimuli are readily available and do not
require additional equipment or reagents. Exogenous stimuli
are more restrictive in application but have higher control-
lability. In this review, we will summarize the smart size-
adjustable strategies, including size-enlargement strategies
and size-shrinkage strategies, and we will elaborate on
different stimuli, such as pH, enzyme, temperature, light,
catalysts, redox, and ROS (Scheme 1). At the end, we also
summarized the challenges faced by size-adjustable nano-
drug delivery systems, hoping to promote the development
of this strategy.

Size-Enlargeable Nano-Drug Delivery
System

In fact, many NPs currently being used for biomedical
applications have relatively small particle sizes, such as
carbon quantumdots (QDs), magnetic NPs, gold NPs (AuNPs),
and severalmicelles.9–11As described above, small-sizedNPs
have good tumor penetration ability but are easy to be
cleared, resulting in insufficient accumulation of NPs at
tumor sites and limited therapeutic effect. Therefore, en-
hancing the retention of small-sized NPs in tumors is of great
significance for achieving their functions in tumor diagnosis
and treatment. Researchers have proposed a strategy to
enlarge the size at tumor site by using some of the unique
properties of tumor, such as acidic pH, upregulated enzymes,
to trigger the aggregation of NPs. In addition, temperature
and exogenous stimuli such as light, catalysts, etc., can also
be utilized to trigger the aggregation of NPs (►Table 1).

pH-Triggered Size Enlargement
An acidic environment is an important feature of tumor
tissue. Due to the rapid growth of tumor cells, the nutritional
and metabolic environment of tumors is significantly

endogenous and exogenous stimuli, such as acidic pH, upregulated enzymes, temper-
ature, light, catalysts, redox conditions, and reactive oxygen species, can trigger the in
situ transformation of nanoparticles based on protonation, hydrolysis, click reaction,
phase transition, photoisomerization, redox reaction, etc. In this review, we summarize
the principles and applications of stimuli-responsive size-adjustable strategies, includ-
ing size-enlargement strategies and size-shrinkage strategies. We also propose the
challenges faced by size-adjustable nano-drug delivery systems, hoping to promote the
development of this strategy.
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different from that of normal tissues.12 In addition, due to the
lack of oxygen in solid tumors, tumor cells produce large
amounts of lactic acid through anaerobic glycolysis, resulting
in low pH at around 6.0 to 7.0. And in some intracellular
organelles such as endosomes and lysosomes, they exhibit a
lower pH value at around 4.5 to 5.5. While the blood
circulation system and normal tissues maintain neutral pH
of around 7.2 to 7.4.13 Researchers utilized the differences
in pH as a stimulus to design a variety of size-adjustable
nano-drug delivery systems.

pH-sensitive materials are usually zwitterionic com-
pounds, and size enlargement is usually attributed to the
breakdown of the charge balance of the materials in an
acidic environment, NPs aggregate by electrostatic attrac-
tion, van der Waals attraction, hydrogen-bonding attrac-
tion, or other forces. Liu et al modified AuNPs with mixed
self-assembled monolayers of weak electrolytic 11-mer-
captoundecanoic acid (HS-C10-C) and strong electrolytic
(10-mercaptodecyl) trimethylammonium bromide (HS-
C10-N4) to obtain pH-sensitive mixed-charge zwitterionic

Scheme 1 Brief illustration of stimuli types and size adjustment principles of nano-drug delivery system.

Table 1 Size-enlargement strategies and typical NPs

Stimuli Responsive materials Typical NPs Size change Ref.

pH Zwitterionic compounds 16-AuNP-C10-CN4–5:5 �50–100 nm ! �100–300 nm 14

Block copolymer PDPA-b-PAMA/SA@DOX·HCl �154 nm !
�1,517 nm

15

Proteins Hb-IR780 �6 nm !
�100 nm

17

Enzyme Substrates of legumain
(AAN, AK polypeptide, AANL,
AANK, etc.)

AuNPs-A&C �35 nm !
�309 nm

7,28–30

Hyaluronic acid CS-NG �123 nm !
�423 nm–10 μm

34

Temperature PNIPAm, PDEAm, POEGMA PPCs �0 nm !
�600–800 nm

36–39

Light Photosensitizers
(spiropyrans, azobenzene,
salicylideneaniline, diazirine)

dAuNPs �49 nm !
�346 nm

35,45–47

Exogenous
catalysts

Click-reactive groups (azide-
alkyne)

M-Dox/MPLA �25 nm !
�120 nm

6

Abbreviations: AAN, alanine–alanine–asparagine; AK polypeptide, alanine–alanine–asparagine–cysteine–lysine; AANL, alanine–alanine–aspara-
gine–leucine; AANK, alanine–alanine–asparagine–lysine; NPs, nanoparticles; PNIPAm, poly(N-iso propyl acrylamide; PDEAm, poly(N-diethylacry-
lamide); POEGMA, poly[oligo(ethylene glycol) methacrylate].
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AuNPs.14 At high pH, the zwitterionic AuNPs remained
stable due to strong hydration and electrostatic repulsion,
as the pH decreased to 7.0 to 5.5, the HS-C10-C ligands
were partially protonated, resulting in weaker hydration
and increased hydrogen bond attraction. When the van der
Waals force plus the hydrogen-bonding attraction
exceeded the hydration and electrostatic repulsions, NP
aggregation occurred. When the pH was lower than 5.5,
NPs dispersed again due to the strong electrostatic repul-
sions of positive quaternary ammonium (►Fig. 1). In
another case, Wu et al reported a pH-sensitive block
copolymer succinic anhydride (SA)-modified poly(2-diiso-
propylaminoethyl methacrylate)-block-poly(2-aminoethyl
methacrylate hydrochloride) (PDPA-b-PAMA/SA),15 where
the PDPA block could be protonated under a slightly acidic
environment to be positively charged, and then combined
with negatively charged PAMA/SA through electrical inter-
action to form NP aggregation.

In addition, proteins with acidic or basic amino acid
residues are regarded as natural pH-sensitive nanoplatforms.
Proteins exhibit unique colloidal stability at different pH
values, while aggregate near the isoelectric point (pI).16

Thus, proteins with pI close to the slightly acidic pH
of tumors can be used as a tumor-responsive carrier to
enhance tumor retention. Li et al utilized bovine hemoglobin
as the pH-sensitive nanocarrier of the near-infrared (NIR)
dye IR780 iodide to prepare the Hb-IR780 complexes, which
could be well dispersed at the pH of normal tissues, while
aggregated in the acidic tumor environment.17

Enzyme-Induced Size Enlargement
Enzymes play a vital role in the process of biological metab-
olism, and enzymes produced by cells participate in various
physiological activities.18 In the process of tumor develop-
ment and invasion, the regulation of some enzymes will
support tumor growth and lay the foundation for tumor
pathology.19 The expression of these enzymes has become a
sign of tumor tissues and an important target for drug
delivery. Due to the high selectivity between enzymes and
substrates, the catalysis of enzymes possesses high specifici-
ty and can significantly reduce off-target effects. Therefore,
many enzymes are used to trigger the release of drugs or
achieve effective tumor targeting. There are many specific
overexpressed enzymes in tumor tissues including legu-
main,20 hyaluronidase (HAase),21 matrix metalloproteinase
(MMP),22 cathepsin B,23 furin,24 phospholipase A2,25 etc.

Legumain is a highly conserved aspartate endonuclease
with highly stringent position specificity for cleavage and
hydrolysis, which is found to be overexpressed in a variety of
solid tumors and is positively correlated with the aggres-
siveness and metastasis of malignant tumors.26,27 Therefore,
as an enzymatic target, legumain has potential for prodrug
activation and responsive delivery of nano-drug systems. In
the development of drug carriers, the substrates of legumain
are usually introduced, which are generally polypeptides
containing aspartate such as alanine–alanine–asparagine
(AAN),28 alanine–alanine–asparagine–cysteine–lysine
(AK polypeptide),7 alanine–alanine–asparagine–leucine
(AANL),29 alanine–alanine–asparagine–lysine (AANK),30

etc. Ruan et al constructed a legumain-responsive AuNP
drug delivery system AuNPs-A&C,7 which consisted of AK
polypeptide-modified AuNPs (AuNPs-AK) and 2-cyano-6-
aminobenzothiazole-modified AuNPs (AuNPs-CABT). After
entering the blood circulation, AuNPs-A&C reached the
tumor site through the EPR effect. Then the AK polypeptide
of AuNPs-AKwas hydrolyzed by the overexpressed legumain
in the tumor to expose the 1,2-thiolamino groups of cysteine,
which further click-reacted with the cyano group of CABT,
leading to the aggregation of two AuNPs and enhanced
tumor retention of the AuNPs (►Fig. 2A).

Hyaluronic acid (HA) is a recognized ligand for the cell
surface receptors such as CD44 and can be degraded by
HAase.31,32 Notably, both CD44 and HAase are highly related
to the progression of cancer and overexpressed in tumor.33

Thus, HA is usually introduced into nano-drug delivery
systems as a ligand for actively targeting tumors or as a
tumor-responsive material. Hu et al utilized the highly
expressed HAase in the tumor microenvironment to con-
struct a nanocarrier (designated CS-NG) that can aggregate
outside the cell to form extracellular depots.34 CS-NG was a
core–shell-based nanogel. The core was an acid-sensitive
nanogel loaded with tumor necrosis factor-related apoptosis
inducing ligand (TRAIL) and antiangiogenic cilengitide. The
shell loadedwith exogenous catalysts transglutaminase (TG)
was formed by the interfacial polymerization of HA and
further decorated with human serum albumin (HSA). After
intravenous administration, CS-NG accumulates at the tu-
mor site through the EPR effect and the targeting effect

Fig. 1 Schematic illustration of the targeting of acidic tumor
microenvironment by pH-responsive mixed-charge zwitterionic
AuNPs (symbols on the NP [yellow color] surface mean positively
charged groups [blue color] and negatively charged groups [red color]
localized on the NP surface simultaneously). During circulation in the
blood, the NPs with small size and the zwitterionic surface exhibit a
prolonged circulation time and hence can leak into tumor sites via the
EPR effect. Arriving at the tumor site, stimulated by the tumor
extracellular pH (pHe), the zwitterionic AuNPs form aggregates and
sedimentate in the tumor space, leading to enhanced retention and
cellular uptake of NPs in the tumor. Copyright 2013 American
Chemical Society. AuNPs, gold NPs; EPR, enhanced penetration and
retention; NPs, nanoparticles.
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mediated by the interaction of HA and CD44 receptors. The
overexpressed HAase in the tumor microenvironment could
degrade the HA shell, resulting in the exposure of TG, which
catalyze the reaction between the amine group on the
surface of the core nanogel and the acyl group on HSA to
form peptide bonds, so that the nanogel was cross-linked to
form large-size depots (►Fig. 2B). These depots could inhibit
cellular internalization and prolong tumor retention, there-
by enhancing cytotoxicity and improving antitumor efficacy.

Temperature-Responsive Size Enlargement
Polymer solutions usually possess both a lower critical
solution temperature (LCST) and an upper critical solution

temperature. At a temperature lower than the LCST, the
polymer can be completely miscible in the solvent in all
proportions,while at a temperaturehigher than the LCST, the
polymer will undergo a phase transition and precipitates
from the solvent.35 Many natural and synthetic polymers
possess temperature responsiveness, such as poly(N-iso
propyl acrylamide) (PNIPAm),36 poly(N-diethylacrylamide)
(PDEAm),37 and poly[oligo(ethylene glycol) methacrylate]
(POEGMA).38 Notably, the LCST of the polymer can be con-
trolled by adjusting the hydrophilicity, grafting group, and
chain length, which provides possibilities for the develop-
ment of thermal-responsive NPs.35 For instance, Qiao et al
constructed a kind of polymeric peptide conjugates (PPCs)

Fig. 2 (A) Diagram depicting the legumain-triggered aggregation and composition of AuNPs-DOX-A&C. The AuNPs-DOX-AK undergoes a
cleavage by legumain to expose the 1,2-thiolamino group of cysteine, where click cycloaddition further occurs with the contiguous cyano group
of AuNPs-DOX-CABT to form aggregates. Copyright 2016 American Chemical Society. (B) A typical CS-NG is consisted of core-NG (C-NG) loaded
with therapeutics, shell-NG (S-NG) with encapsulated transglutaminase (TG), and human serum albumin (HSA), coated on the surface
of C-NG. The polymeric matrix of C-NG is acid-degradable, and the polymeric matrix of S-NG is made from hyaluronic acid (HA) that can be
degraded by HAase. At the tumor site, the overexpressed HAase digests the HA and releases TG, which catalyzes the cross-linking of HSA and
assembles CS-NG into the “drug-delivery depots.” The matrix of C-NG can be gradually degraded and subsequently release the encapsulated
therapeutics at the acidic tumor microenvironment. Copyright 2016 American Chemical Society.
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that could self-assemble and aggregate in cells.39 PPCs
consist of three parts, a thermal-responsive polymer back-
bone, a grafted peptide, and a signal molecule. The LCST of
PPCs is over 37°C, which ensures the stability of PPCs. After
being internalized by cells, the grafted ligand on the polymer
chain will be cleaved by intracellular enzymes, resulting in a
decrease in LCST to less than 37°C, and then the phase
transition occurs to form aggregates with a size of 600 to
700nm (►Fig. 3). This temperature-triggered transforma-
tion prolongs the residence of PPCs in cells, which is helpful
for monitoring tumor cell apoptosis and tumor treatment
response.

In addition, photothermal molecules and exogenous light
are often introduced into nano-drug delivery systems to
achieve response to different temperatures. For example,
Liu et al synthesized PPCs integrating a poly(β-thioester) as a
thermal-responsive backbone, a functional peptide (cytotox-
ic peptide and cell-penetrating peptide), and NIR photo-
thermal molecules.40 The initial PPCs with small size
(<10nm) could penetrate deeply into the tumor at body
temperature, while under the irradiation of NIR laser, the
temperature raised and led to the intratumoral self-assembly
of PPCs with the size increasing to 30 to 40 nm, and thus
enhanced tumor accumulation and cellular internalization.

Light-Sensitive Size Enlargement
Light-mediated drug delivery has received extensive atten-
tion in tumor treatment due to its noninvasiveness, spatio-
temporal addressability, and high therapeutic efficiency.41

Light, including ultraviolet (UV) light, visible light, blue light,
NIR light, etc., can serve as a phototherapy or photothermal
therapy agent to directly kill tumors, and can also be used as
a stimulus to precisely control drug release and trigger the
transformation of NPs.42–44 To achieve light-triggered self-
assembly of NPs, polymers are usually conjugatedwith light-
sensitivemolecules (photosensitizers) such as spiropyrans,45

azobenzene,46 salicylideneaniline,35 etc. These photosensi-
tizers can undergo isomerization or dimerization at a specific
wavelength to form covalent bonds, leading to the cross-
linking of NPs. For example, Cheng et al reported a photo-
cross-linkable AuNPbased onphoto-labile diazirine.47Under
405nm laser irradiation, the diazirine groups on the surface
of NPs transformed into reactive carbene, which then formed
covalent bonds with ligands of adjacent AuNPs and lead to
the formation of cross-linked aggregates. The aggregated

AuNPs further facilitated photothermal treatment with NIR
light (►Fig. 4).

However, what is worth noting is that the penetration
ability of UV light, visible light, and blue light in biological
tissues is weak, thus limiting their in vivo application. While
NIR light exhibits stronger tissue penetration because most
tissues and biologicalfluids can absorb awavelength range of
700 to 1,100nm.48 If the penetrating NIR light can be
converted into UV–visible light or blue light, the application
of photosensitizers will be greatly expanded. It is reported
that rare-earth metals such as lanthanide ions (Yb3þ, Er3þ,
and Tm3þ) have the ability to convert NIR light into short-
wavelength light via excitation by two or more photons.49

And NPs containing these rare-earth metals, also called up-
conversion NPs (UCNPs), have received great attention.48

However, light-sensitive size enlargements based on UCNPs
are rarely reported. Zhao et al demonstrated that NIR-treated
UCNPs could emitted UV/visible photons and triggered the
photoisomerization of azobenzene,50 which is commonly
used for light-sensitive aggregation; therefore, UCNPs have
great potential in light-sensitive aggregation and deserve
further investigation.

Click-Chemistry-Mediated Size Enlargement
Click chemistry has been widely used in chemical synthesis
and biological systems due to its high efficiency, high selec-
tivity, and simple and benign proceeding conditions.51 Click
reactions include azide–alkyne cycloaddition, thiol-ene, ox-
ime, Diels–Alder, Michael addition, and pyridyl sulfide reac-
tions.52 Among them, copper-catalyzed azide–alkyne
cycloaddition (CuAAC) is by far the most used click reaction.
To achieve size enlargement of NPs, click-reaction groups are
usually modified on the surface of NPs, and exogenous
catalysts or other stimulus are combined to promote the
interaction of groups to form covalent crosslinks. Our group
modified the azide or alkyne group on DSPE-PEG micelles
(�25nm), after the micelles reach tumor tissues, copper
sulfate and sodium ascorbate were intratumorally injected
to catalyze the cycloaddition between azide and alkyne
groups, leading to an increase in NP size and enhanced
tumor retention and accumulation of NPs (►Fig. 5A).6

However, it is undeniable that intratumor injection of
catalyst increased the burden on objects and Cu(I) might
cause biotoxicity. In recent years, a more biocompatible
copper-free click chemistry based on strain-promoted

Fig. 3 Schematic representation of stimuli-instructed construction of controllable nanoaggregates for monitoring tumor therapy response.
Copyright 2017 American Chemical Society.
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alkyne–azide cycloaddition (spAAc), which does not require
a metal catalyst, has evolved and utilized in tumor-targeted
drug delivery systems.53 The most commonly used molecu-
lar pairs with copper-free click reactivity include azide and
dibenzylcyclooctyne (DBCO),54 azide and bicyclo[6.1.0.]non-
yne (BCN),55 tetrazine (Tz), and trans-cyclooctenes (TCO).56

Our group utilized azide and DBCO to construct a size-
enlargeable nanoplatform by modifying them on polycapro-
lactone-polyethylene glycol (PCL-PEG2000) micelles, which
were further coated with acid-cleavable PEG5000. This nano-
platform could respond to acidic tumor microenvironment
and intracellular lysosomes, causing the shedding of PEG
coating and the exposure of azide and DBCO, followed by the
copper-free click reaction and the aggregation of micelles
(►Fig. 5B).57

Size-Shrinkable Nano-Drug Delivery System

Some tumors, such as pancreatic tumor and breast tumor,
have dense ECM and high fluid interstitial pressure. NPs with
large size can hardly pass through the peripheral matrix
barrier to reach the deep region of tumor. In addition, to treat
somemultidrug resistant cells, it is necessary to deliver drugs
into the nucleus, while the small size of the nuclear pore
(�10–39nm) greatly limits the entry of NPs.58 Therefore, the
size-shrinkage strategy of NPs is of great significance in
dense tumor and nuclear-targeted drug delivery. Many stud-
ies have proposed that acidic environment, extracellular
upregulated enzymes, proteases bound to the cell surface,

redoxenvironment, and ROS can trigger the extracellular and
intracellular size shrinkage of NPs (►Table 2).

pH-Triggered Size Shrinkage
Size shrinkage triggered by pH is usually based on acid-labile
chemical bonds and pH-responsive polymers. Acid-labile
chemical bonds, including acetal, orthoester, hydrazone, im-
ine, oxime, and cis-aconyl bonds, are stable at neutral pH but
will undergo degradation or hydrolysis in an acidic environ-
ment, causing thenano-systemtodisintegrate to releasedrugs
or shrink in size.59 Their chemical structures and hydrolyzed
products are shown in►Table 3.60–65 Due to the proximity of
the pendent carboxylic acid, cis-aconyl bonds could undergo
intramolecularly assisted C-4 acid-catalyzed hydrolysis at the
C-1 bond. Li et al constructed a size-shrinkable nano system
iCluster/Pt, which was prepared from coassembly of platinum
(Pt) prodrug-conjugated poly(amidoamine)-graft-polycapro-
lactone (PCL-CDM-PAMAM/Pt), poly(ethylene glycol)-b-poly
(ε-caprolactone) (PEG-b-PCL), andPCLhomopolymerbynano-
precipitation method.66 In the PCL-CDM-PAMAM/Pt part, Pt-
conjugated PAMAM was coupled to PCL through a cis-aconyl
bond, in particular, PCL was first reacted with 2-propionic-3-
methylmaleic anhydride (CDM) to produce PCL-CDM, then Pt-
conjugated PAMAM was coupled to PCL-CDM through the
reaction of the amino groups of PAMAM with the CDM
anhydride residue. At physiological pH, the iCluster/Pt has
an initial size of around 100nm, which is favorable for long
blood circulation and enhanced tumor accumulation through
the EPReffect. Once in the acidic tumor environment, the acid-

Fig. 4 Schematic illustration of light-triggered assembly of dAuNPs. Copyright 2016 WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim.
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Fig. 5 (A) Design of enhanced accumulation of micelles for cancer immunochemotherapy. M-Dox/MPLA (þ), composed of DSPE-PEG-N3 and
DSPE-PEG-Alk, is engineered for Cu(I)-catalyzed azide/alkyne cycloaddition with size increase to improve tumor accumulation of drugs.
Copyright 2018 American Chemical Society. (B) M-DN@DOX/SIS3 was a mixture of M-D@DOX and M-N@SIS3, which could remain relatively
independent in the systemic circulation; once in an acidic environment, the protective PEG5000 coating shed off, leading to the rapid copper-
free click reaction to form stable micellar clusters. Copyright 2021 American Chemical Society.

Table 2 Size shrinkage strategies and typical NPs

Stimuli Responsive materials Typical NPs Size change Ref.

pH Acid-labile chemical bonds iCluster/Pt �100 nm !
�5 nm

66

Polymers containing ionizable
groups (sulfonamide- and L-
histidine-based polymers, etc.)

PAH/RGX-104@PDM/PTX �132 nm !
�35 nm

70,71

Enzyme Gelatin (substrates of MMP2) QDGelNPs �100 nm !
�10 nm

73

EGPLGVRGK (substrate peptide
of MMP2)

DGL/GEM@PP/GA �151 nm !
�28 nm, or 88 nm

75

Hyaluronic acid DA-tMN �100 nm !
�10 nm

78

Redox Disulfide bond PSPD/Dex-P123 �120 nm !
�30 nm

81

ROS Thioether, thioketal, boronic
ester, selenium, sulfide and
ferrocenyl

TK-PPE@NPCe6/DOX �154 nm !
�72 nm

84–87,90

Abbreviation: NPs, nanoparticles.
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labile amide bond will be cleaved and trigger the release of
small PAMAM prodrugs (�5nm) for deep penetration
(►Fig. 6A). Other acid-labile chemical bonds are also frequent-
ly reported to achieve site-specific drug release or exposure of
functional peptides,67,68 while their applications in NP size
shrinkage are worthy of further development.

Polymers containing ionizable groups could undergo hydro-
philic–hydrophobic transitions at different pH values, the poly-
mer is hydrophilic when ionized, but is hydrophobic when
deionized.69 In tumor-targeted nano-systems, ionizable groups
often act as the hydrophobic segment of block copolymers,
which can ionize and becomes hydrophilic in response to an
acidic environment, resulting in size shrinkage or disintegration
of nano-systems. The most commonly used materials of pH-
sensitivehydrophilic–hydrophobic transformability include sul-
fonamide- and L-histidine-based polymers.70 Our group
designedadual-pH-sensitivesize-shrinkableconjugatedmicelle
system (PAH/RGX-104@PDM/PTX) that could simultaneously
target tumor perivascular regions and deep tumor areas.71

PAH/RGX-104@PDM/PTX consists of two mixed micelles
PAH/RGX-104 (containing PEG-PAEMA, DSPE-PEG-SH, and
RGX-104) and PDM/PTX (containing PEG-PDPA, DSPE-PEG-
Mal, andpaclitaxel [PTX]),which are further conjugated through
the Michael addition reaction to form a stable NP of around
132nm.Once it reaches theacidic tumormicroenvironment (pH
6.8), PAEMA is ionized and becomes hydrophilic, PAH/RGX-104
disintegrates to release RGX-104 in the perivascular area. At the
same time, PDM/PTX keeps intact, NP size shrinks to around
35nmand is allowed for deep tumor penetration. After uptaken
by tumor cells, PDPA undergoes ionization in responsive re-
sponse to the endo/lysosome (pH5.6) and becomes hydrophilic,
PDM/PTX disintegrates to release PTX (►Fig. 6B).

Enzyme-Triggered Size Shrinkage
Tumor-associated enzyme-triggered size shrinkage is one of
the most commonly used and effective strategies to achieve
efficient tumor targeting and tumor penetration. There are a
variety of overexpressed enzymes in the tumor microenvi-
ronment, such as MMPs and HAase. MMPs such as MMP-2
are generally secreted by tumor cells for degrading the ECM
and support cancer angiogenesis, progression, metastasis,
and invasion.22,72 Gelatin and collagens are the main sub-
strates that can be recognized and degraded byMMP-2, thus
are frequently introduced inMMP-2-responsive size-tunable
drug delivery nano-systems. Wong et al constructed a mul-
tistage QD gelatin NP (QDGelNP) with initial size of around
100nm.73 After exuding from tumor blood vessels into the
tumor microenvironment, the core gelatin NPs of QDGelNPs
were degraded by the highly expressed MMP-2 in the tumor
microenvironment, releasing smaller 10-nm particle QDs
(►Fig. 7A). This multistage size-shrinkable NP not only has
long blood circulation to facilitate tumor accumulation based
on the EPR effect, but also can overcome the dense collagen
matrix barrier to achieve deep tumor penetration. In addi-
tion to deep tumor penetration, an important mission of the
size-shrinkage strategy is to achieve hierarchical targeting at
tumor sites. In tumor microenvironment, tumor-associated
fibroblasts (TAFs) form a predominant stromal cellular com-
ponent and hinder the delivery of nano-drugs to deep tumor
cells.74 Our group proposed a multifunctional size-shrink-
able nanoplatform DGL/GEM@PP/GA for TAF-targeted
regulation and deep tumor penetration.75 Gemcitabine
(GEM)-conjugated dendrigraft poly-L-lysine (DGL, a den-
drimer of small particle size)was connected to poly(ethylene
glycol)-poly(caprolactone) (PEG-PCL) through the substrate

Table 3 Chemical structures and degradation products of acid-labile chemical bonds

Acid-labile chemical bonds Chemical structure Degradation product Example Ref.

Acetal/ketal 60

Orthoester 61

Hydrazone 62

Imine 63

Oxime 64

Cis-aconyl bonds 65
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peptide of MMP-2 (EGPLGVRGK). DGL/GEM@PP/GA
(�151nm) could release small DGL/GEM (< 50nm) in re-
sponse to MMP-2 for deep tumor penetration, leaving 18β-
glycyrrhetinic acid (GA)-loaded large NPs (>50nm) around
tumor vessels to regulate the TAFs (►Fig. 7B). By adopting
the hierarchical targeting strategy of tumor cells and TAFs,
DGL/GEM@PP/GA showed significant antitumor effects
against pancreatic cancer and breast cancer. To further
improve the accuracy of hierarchical targeting and the
therapeutic efficacy of tumors, our group designed a novel
size-shrinkable NP HSA-PTX@CAP-ITSL, which was respon-
sive to the membrane biomarker fibroblast activation pro-
tein-α (FAP-α) on cancer-associated fibroblasts and NIR laser
irradiation.76 A small-sized albumin NP of PTX (HSA-PTX)
was encapsulated into the CAP-(a substrate peptide of FAP-α)
modified IR-780-incorporated thermosensitive liposomes

(CAP-ITSL) to form the HSA-PTX@CAP-ITSL with an initial
size of 123.9�1.9 nm. Upon arrival at the tumor microenvi-
ronment, FAP-α triggered the release of HSA-PTX with a
small size of around 30nm for deep tumor penetration;
meanwhile, a sequential stimulation of NIR laser irradiation
produced hyperthermia to kill tumor cells and also expand
the tumor interstitial space, which further promoted the
release and penetration of HSA-PTX (►Fig. 7C).

Similar to MMPs, HAase is an abundant component of
tumor microenvironment, which can specifically hydrolyze
HA. HA also possesses excellent CD44 (a receptor overex-
pressed on certain tumor cell surface) targeting ability.77 By
using the HA nanogel as the core NP and modifying the
doxorubicin (DOX) and AP-18 (a transient receptor potential
ankyrin 1 inhibitor) co-loaded tLyP-1-modified DSPE-PEG2000

micelles on its surface, our group developed a dual receptor-

Fig. 6 (A) Self-assembly and structural change of iCluster/Pt in response to tumor acidity and intracellular reductive environment. Copyright
2016 National Academy of Sciences. (B) Structures of the conjugated micelle system and schematic illustration of the construction and the
transformation of PAH/RGX-104@PDM/PTX. The enhanced intratumoral accumulation and penetration resulted from the transformation and
the simultaneous combinational therapy are also shown in the scheme. Copyright 2019 Elsevier B.V. All rights reserved.
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targeting and size-switchable “cluster bomb” DA-tMN.78 The
degradation of core HA nanogels in responsive to HAase could
realize the release of small-sized DSPE-PEG2000 micelles and
the transition of size from �100 to �10nm (►Fig. 7D). Al-
though the enzyme-triggered size-switchable strategy has
become a research hotspot, the heterogeneity of the expres-
sion levels of enzymes in different tumors, which limits the
application scope of NPs, is still worthy of attention.

Redox-Induced Size Shrinkage
The concentration of intracellular glutathione (GSH) in the
tumor microenvironment is significantly higher than that in
the extracellular circulation and fluids,79 thus is regarded as a
promising point to achieve reduction-sensitive drug delivery
of tumor. Disulfide bond is a kind of chemical linkage that is
easy to degrade in the reduction potential environment.80

Wanget al utilizeddisulfidebond toconjugate theamphiphilic
blocks (termed P123) to charge-reversible blocks (termed
DMMA-PEI) to form a pH- and redox-sensitive size-tunable
NP PSPD.81 And further incorporated a dexamethasone (Dex)-
conjugated P123 (denoted as P123-Dex) and encapsulated
DOX through hydrophobic interactions. In GSH-elevated in-
tracellular cytosol of cancer cells, the disulfide bond was
cleaved to detach polyethylenimine (PEI) from the micelle

surface, triggering the size shrinkage of the hybrid micelles
from �120 to�30nm. And the small-sized NPs were allowed
to deliver DOX into cell nuclei through nuclear pores
(►Fig. 8A). Guoet al designedanother size-shrinkablemicellar
nano-system based on mPEG-PLA-ss-PEI-DMMA (PELEss-DA)
polymer,which facilitates direct drugdelivery into thenucleus
for therapyofMDR tumorcells.82ThePELEss-DAfirst increases
in the size under acidic pH conditions of the tumor microen-
vironment via the charge reversal of DMMA, then is internal-
ized by the tumor cells and altered to smaller micelles
triggered by intracellular GSH (►Fig. 8B).

ROS-Triggered Size Shrinkage
Oxidization-based size change is usually triggered by the
high content of ROS in tumor cells. ROS, including hydrogen
peroxides (H2O2), superoxides (O2

�), singlet oxygen (1O2),
and hydroxyl radicals (OH∙), are �100 times higher in tumor
cells than that in normal cells due to a series of oncogenic
transformations.83 ROS-responsive groups mainly contain
thioether, thioketal, boronic ester, selenium, sulfide, and
ferrocenyl.84–87 However, it is difficult to achieve efficient
oxidation-derived chemical bond hydrolysis only relying on
the original amount of ROS in tumor cells. Photodynamic
therapy (PDT), which is facilitated by generating ROS to

Fig. 7 (A) Schematic of 100-nm QDGelNPs changing size to 10-nm QD NPs by cleaving away the gelatin scaffold with MMP-2, a protease highly
expressed in tumor tissue. Copyright 2011 National Academy of Sciences. (B) Schematic Illustration of DGL/GEM@PP/GA for deep tumor
penetration and tumor microenvironment regulation. Copyright 2019 American Chemical Society. (C) Diagram of dual-responsive lipid-albumin
NPs (HSA-PTX@CAP-ITSL) for deep tumor penetration and combined therapy against pancreatic tumors. Copyright 2020 Elsevier B.V. All rights
reserved. (D) Schematic illustration of DA-tMN delivered into tumor. Copyright 2020 Elsevier B.V. All rights reserved. NPs, nanoparticles; MMP-2,
matrix metalloproteinase-2.
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induce cell apoptosis by photosensitizers under red or NIR
light irradiation,88,89 has great potential to be combinedwith
ROS-responsive materials for enhanced tumor drug delivery.
Cao et al constructed a ROS-sensitive polymeric nanocarrier
TK-PPE@NPCe6/DOX to achieve remotely controlled drug re-
lease by light-activated size shrinkage.90 The TK-PPE@NPCe6/
DOX consists of four parts: ROS-responsive poly(thioketal
phosphoester) (TK-PPE), amphiphilic diblock copolymer
PEG-b-PCL, photosensitizer Ce6, and chemotherapeutic
drug DOX. Under 660-nm red light irradiation, the TK-PPE
core was rapidly degraded into oligomers or small molecules
by Ce6-derived ROS, consequently, the NP size shrank from
154�4 to 72�3nm, which triggered the release of encap-
sulated DOX (►Fig. 9).

Conclusion and Perspectives

With the development of cognition in the field of oncology,
tremendous progress has been achieved in the design of
nano-drugdelivery systems in recent years. The awareness of
tumor retention and penetration has led to the emergence of
size-adjustable nano-drug delivery systems. And by using
the external stimuli or the unique characteristics of the
tumor microenvironment and tumor cells, a variety of stim-
uli-responsive size-adjustable nano-drug delivery systems
have been reported. This review summarizes the principles
and applications of size-adjustable nano-drug delivery sys-
tems triggered by acidic pH, overexpressed enzymes, tem-
perature, light, catalysts, redox environment, and ROS.
However, there are still many challenges in scientific re-
search and in clinical application.

On the one hand, tumors possess complex heterogeneity.
The internal physiological properties of tumors of different

types, different stages of progression, and different patho-
logical environments are very different, hence the sensitivity
of NP transformation will be greatly affected. On the other
hand, some tumor-characteristic endogenous stimuli, such
as receptors, enzymes, and acidic pH, are not only exist in
tumors, but more or less exist in normal tissues, which will
cause the off-target of drugs. In addition, the application of
exogenous stimuli is limited by the type of tumor, just as
light stimulation is mostly only suitable for superficial
tumors. Facing the complex tumor microenvironment, the
design of the drug delivery systems should be performed
after fully understanding the biological characteristics of
tumors, the application range and time of the drug delivery
systems should be carefully selected, and more ligand mod-
ification can be used to enhance the active targeting of NPs to
tumor sites.

In terms of clinical application, the increasing controversy
of EPR effect makes the possibility of clinical transformation
of EPR-effect-based NPs greatly reduced. The EPR effect
shows good effect in animal models but the performance
in clinical trials is not satisfactory, which mainly attribute to
the heterogeneity of the EPR effect.91 The EPR effect is highly
dependent on tumor permeability and perfusion and IFP. In
murine models, tumors grow rapidly, their vasculature is
abnormally developed and have higher permeability, perfu-
sion, and lower IFP. While in humans, lack of fenestrations in
the tumor endothelium, lower pericyte coverage, higher
density of the ECM, etc., lead to higher IFP and lower
permeability and perfusion.92 Facing the heterogeneity of
the EPR effect, the use of active targeting strategies or the
remodeling of the tumor microenvironment by PDT, sono-
dynamic therapy, radiation therapy, etc., to improve the EPR
effect are promising solutions.

Fig. 8 (A) Schematic illustration of the cooperative dimensional strategy for anticancer drug delivery mediated by hybrid micelle
PSPD/P123-Dex. By exploiting tumoral pH and intracellular redox potential, as well as the ability of Dex to target and dilate nuclear pores,
PSPD/P123-Dex can efficiently deliver DOX into the nucleus of tumor cells. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B)
Schematic design of the nucleus entry of size-changeable polymer micelles (PELEss-DA) to overcome MDR. Copyright 2015 WILEY-VCH Verlag
GmbH & Co., KGaA, Weinheim. Dex, dexamethasone; MDR, multidrug resistant.
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In general, to further improve the therapeutic effect and
the possibility of clinical transformation of the size-adjustable
nano-drug delivery systems, the biological characteristics
of tumors should be fullyexplored, and thedesignofNPs should
beprecise, personalized, and simplified. Andwebelieve, there is
a broad prospect with efforts of numerous researchers.
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