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ABSTRACT

Hearing aid gain and signal processing are based on assump-
tions about the average user in the average listening environment, but
problems may arise when the individual hearing aid user differs from
these assumptions in general or specific ways. This article describes how
an artificial intelligence (AI) mechanism that operates continuously on
input from the user may alleviate such problems by using a type of
machine learning known as Bayesian optimization. The basic AI
mechanism is described, and studies showing its effects both in the
laboratory and in the field are summarized. A crucial fact about the use
of this AI is that it generates large amounts of user data that serve as
input for scientific understanding as well as for the development of
hearing aids and hearing care. Analyses of users’ listening environments
based on these data show the distribution of activities and intentions in
situations where hearing is challenging. Finally, this article demonstra-
tes how further AI-based analyses of the data can drive development.
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listening intention, data-driven hearing care

Over the years, hearing aids have been
getting increasingly advanced, going from ana-
log to digital signal processing, from linear to
nonlinear gain prescriptions, and from a single
general processing scheme for all listening
environments to sound classification schemes
that adjust the processing to the specific listen-

ing environment. Nonetheless, a fundamental
problem remains that hearing aids are designed
for the average ear of the average user, and they
are designed using assumptions about what is
typical in a given listening environment. Even
the individually adjusted, customized fitting
performed by a qualified clinician cannot
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account for every real-life situation that the
individual hearing aid user experiences.

Problems associated with the average hear-
ing solution may be both general and specific.
The most serious are, of course, the general
problems that arise when the individual hearing
aid user deviates from the assumptions on which
the hearing aid processing, gain rationale, and
fitting are based. The hearing aid user is likely to
be dissatisfied with how they hear, which may
cause them to use their hearing aids less or not at
all, thereby leading them to experience all of the
negative impacts of such behavior.1 The clinician,
in turn, may struggle to help the hearing aid user
and spend valuable time on repeated fine-tunings
that do not necessarily solve the problems.

One general problem is that preferred gain
levels vary substantially between individuals,2

which is obscured by the fact that gain targets
are shown during the fitting as exact levels, not
ranges.This holds forboth theproprietaryfitting
rationales provided by hearing aidmanufacturers
and the generic fitting rationales such as DSL3

and NAL-NL2.4 Keidser and Dillon2 summa-
rized preferred gain levels for 189 adult hearing
aid users. Even disregarding the most extreme
cases, which may be considered outliers, the
average preferred gain for the individual varies
by approximately 15 dB.This indicates that, for a
substantial number of hearing aid users, the
fitting rationale will not provide a level of gain
that is in accordance with their preferences.
Smeds et al5,6 showed similarly large ranges of
loudness preference, thoughwith some variation
depending on the input sound.

Another important parameter to consider
is loudness discomfort levels, which also show
substantial variation. Summarizing studies in-
cluding 710 ears, Bentler and Cooley7 showed
loudness discomfort levels ranging from below
70 to above 130 dB SPL for hearing losses up to
80 dB HL. For hearing losses above 80 dB HL,
the range gets smaller as one would expect, but
it still spans approximately 30 dB SPL.

For both preferred loudness and loudness
discomfort, the hearing aids may be adjusted
appropriately by a knowledgeable clinician, but
this puts a significant burden on the clinician,
and it is not an option for all users. Alternative-
ly, equipping hearing aid users with a volume
control may help alleviate the problem, but this

still falls short of solving it because preferences
vary across frequencies and sound levels.

In addition to these general problems, the
hearing aid user may also experience more local
problems, arising in specific situations for the
individual user whose hearing aids are generally
well-fitted. If this happens often enough, prob-
lems that start as specificmay lead tomore general
dissatisfaction. Contributing to this type of prob-
lem is the fact that hearing aids are generally fitted
in a hearing clinic’s relatively sterile acoustic
environment, which is different from the envi-
ronmental acoustics experienced in real-life lis-
tening environments outside the clinic.

Specific problems may arise when the listen-
ing intention assumed by the hearing aid in its
automatic adjustments does not match the user’s
actual intention. In the extreme, the sameusermay
be in the same listening environment but with
entirely different intentions. For a hearing aid user
who listens to music in the company of other
people, the sound classification settling on a
“music” sound class may be appropriate and en-
hance the enjoymentofmusic.But inother cases, if
the user’s intention is interacting with one ormore
conversation partners, this setting may be annoy-
ing. Sitting on a park bench near a playground, a
hearing aid usermaywish to exclude ambientnoise
entirely to concentrate on work or on having a
conversation, they may want to read or relax while
being aware of the surroundings, or theymay need
to focus on the sounds from the playground to
monitor a child. The hearing aid classification will
be based on assumptions—built into the hearing
aid during its development—of what is typical or
average in the specific listening environment;
therefore, deviation from this is potentially prob-
lematic. See the article by Hayes in this issue for
more information about the development of envi-
ronmental classification systems in hearing aids.

In summary, both general and specific prob-
lems arise from the fact that hearing aids are
designed for the average user in average listening
environments, and fromthe fact that ahearingaid’s
classification of the listening environment does not
always match the user’s intent. A knowledgeable
clinicianmaysolve someof theseproblems,but this
requires that the hearing aid user is able to explain
their listening experiences and preferences, and
that the clinician is able to translate these explana-
tions into appropriate settings, both of which are
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difficult tasks.8 Volume controls, separate adjust-
ments of left and right hearing aids, and multi-
channel equalizers also aim to alleviate these
problems, but they do not necessarily solve them,
and they require the user to interact with increas-
ingly complex controls. This challenge is the
motivation behind using artificial intelligence
(AI) to optimize sound, as described next.

USING ARTIFICIAL INTELLIGENCE
TO OPTIMIZE SOUND
A key insight about sound preferences is that
hearing aid users are able to choose which of

two sound settings they prefer much more
systematically than they are able to describe in
words which sound they prefer. This insight lies
behind the literature on the use of A-B com-
parisons for the fine-tuning of hearing aids,9–11

and it is at the core of the Widex SoundSense
Learn (SSL) solution, which uses AI to opti-
mize sound. SSL is based on the user indicating
their degree of preference between two sound
settings, A and B, in their smartphone app (see
the interface shown in Fig. 1c). SSL uses
machine learning to translate the user’s degree
of preference into a manipulation of hearing aid

Figure 1 A conceptual overview of the steps of the SoundSense Learn (SSL) optimization process. The user
is in a listening environment where the sound is not optimal for them (a). Their internal preference function
for this listening environment is shown in (b) with gain in the three frequency channels illustrated as three
dimensions. The colors (online only) represent preferences, going from yellow for the best match to the
user’s preference, over green and blue, to purple for the worst match. The first step in the process is the user
indicating their activity and intention in the moment (not shown), after which they perform an initial A-B
comparison (c), from which the Gaussian Process model creates a first estimate of the user’s internal
preference function (d). In turn, this estimation is used to create the next two settings to be compared by the
user (e), at which stage the process returns to (c) where the user again indicates their degree of preference.
SSL aims to match the settings in the hearing aid shown in (d) as closely as possible to the user’s preference
function shown in (b). The process stops when the user is satisfied with the settings, or when the model has
converged, so that further improvements to the sound are not expected.
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gain to optimize the sound for the given user in
the given listening environment. The param-
eters manipulated are gain in three different
frequency channels: bass (0.1–0.7 kHz), middle
(0.6–3.6 kHz), and treble (2.2–10 kHz). For
the bass channel, the gain may be turned up
or down by 12 dB relative to the general setting.
For the middle and treble channels, the gain
may be turned down by 12 dB and up by 6 dB.

Machine learning, AI, and related terms are
widely used across various fields, including hear-
ing science and hearing aid marketing (see the
articles by Andersen et al and by Fabry and
Bhowmik in this issue for additional discussion
on these topics). It is beyond the scope of this
article to review and explain these concepts in
detail, but briefly “machine learning” in SSL
refers to the use of a specificmathematicalmodel
known as a Gaussian process12 together with
information theory13 to generate personalized
settings based on user input, as explained in the
following. This is AI because a computer per-
forms a task in real life and in themoment that a
human would otherwise be required to do. In
this case, it would require a clinician to manually
manipulate the relevant parameters based on
verbal feedback from the user. Crucial to the
AI system, thehumanuser remains an integrated
part of theprocess, providing input that is used to
update themachine-learningmodel and, in turn,
fine-tune the hearing aid parameters.

An overview of the SSL process is provided
in Fig. 1. The process assumes that the user’s
preference for sounds as a function of the hearing
aid settings is encoded in an internal preference
function within the user’s mind, which is illus-
trated in Fig. 1b. When two sound settings are
compared, the internal preference function deter-
mines the user’s degree of preference. A user’s
internal preference function cannot be directly
observed but is estimated by SSL (Fig. 1d), based
on their responses to a series of A-B comparisons.

Active Learning and Bayesian

Optimization

The machine learning in SSL utilizes active
learning, also known as sequential experimental
design. Active learning entails that the machine-
learning model is continuously updated based on
input from the user. The active learning approach

is instrumental in cases where a model only has
access to a limited number of assessments and
where assessments are expensive. In SSL, the
assessments are A-B comparisons, which are
considered expensive because large numbers of
assessments cost time and effort for a large
number of users. The active learning is imple-
mented in a Bayesian optimization14,15 frame-
work, using a nonparametric Bayesian Gaussian
process (GP)12 model for pairwise comparisons.
This allows SSL to model user preferences even
though they are inherently “noisy.” This noise
arises because human preferences are not always
stable and because the preferences are formed in
listening environments that fluctuate.

Active learning aims either to learn a full
function or to find the optimum of an unknown
function. For adjusting a hearing aid, learning a
full function would correspond to modeling the
user’s preferences for all possible settings, in-
cluding bad settings. In contrast, finding the
optimum corresponds to learning just enough
information to determine the hearing aid set-
ting that optimizes the user’s preference. SSL
does the latter because its aim is precisely to
provide individualized best settings. This has
the advantage that, although it is fundamentally
a more difficult AI problem, it requires less
effort from the user.

In SSL, the active-learning paradigm uses
the knowledge captured by the Bayesian model
based on previous A-B comparisons to select
the next A-B samples for the user to compare,
with the goal of maximizing the information
yield provided by the user’s response. Several
criteria exist for estimating this,16 of which SSL
uses expected improvement (EI). In general, EI
measures the amount of improvement a sample
(in this case, an A-B comparison) can poten-
tially yield on themaximal value of the function.
Initially, the model does not know the user’s
preferences; so, the first set of hearing aid
settings is chosen at random. After each re-
sponse from the user, the GP model is updated
(trained), and the EI criterion is evaluated to
find a new A-B comparison that will best
inform the model about where to find the
optimal setting for the user. Importantly, the
user’s response is a degree-of-preference rating,
which provides more information to the model-
ing process per user input than a forced-choice
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paradigm. Nonetheless, it remains a relatively
simple perceptual task.

The SSL mechanism has the advantage of
allowing users to indicate preference without
having to describe it in words, which in turn
would have to be translated into parameter
settings by the clinician. In addition, the use of
AI allows SSL to cover a much wider parameter
space than human comparisons alone could
possibly do. In the extreme, the combination
of 13 steps for each of three handles gives 2,197
possible settings; if these were to be exhaustively
compared, more than 2.4 million A-B compa-
risonswould be necessary. UsingAI, by contrast,
optimal settings should be reached in maximally
24A-B comparisons, which is just 0.001% of the
total possible comparisons.

Use of Soundsense Learn

The SSL settings are available immediately in
the listening environment that prompted the
user to initiate the SSL process, but they may
also be usedmore generally if the user chooses to
save them as a personal program. In this way, it is
up to the user to decide whether they consider
their preferences to be local to the listening
environment or to be more globally relevant.

SSL is designed to allow the user to address
hearing problems in the moment, without
having to consult their clinician. However,
the clinician and the dialogue between hearing
aid user and clinician remain crucial for a
successful hearing aid fitting. To leverage the
insights generated by the hearing aid user’s
interaction with SSL, the Widex fitting soft-
ware includes a functionality called “Real Life
Insights”, which allows the clinician to see (1)
the personal programs that the user has created
(using SSL or other manipulations), (2) what
settings were reached, and (3) how much each
program has been used. Since the SSL data in
themselves are completely anonymous, this
functionality requires the user to consent to
having their SSL data shared with their clini-
cian through a secure cloud server. This enables
the clinician to observe any systematic trends in
the programs that the user has created and used
frequently; if these are sufficiently systematic, it
may make sense to implement them as more
universal adjustments to gain. Even if no

general changes are warranted, information
about the personal programs provides a good
starting point for the important dialogue be-
tween the clinician and the hearing aid user.

Studies of User Experiences

An important part of the development of SSL
included studies onhowhearing aid users use and
experience the feature. Development tests17 sho-
wed that eight out of ten participants could use
an early version of SSL to reach settings thatwere
significantly preferred in blind comparisons with
the baseline settings of the hearing aids. For the
remaining two participants, the SSL prototype
did not reach convergence, indicating that their
preferences were not systematic and that there
was no preference function for SSL tomaximize.
So, while SSL may optimize sound for most
users, it may not be a helpful tool for some users.

These initial tests focused on the sound
quality of music using blind comparisons in a
laboratory setting. Two additional blind compar-
ison studies were conducted in which the scope
was broadened to consider three different sound
attributes: basic audio quality, listening comfort,
and speech clarity.18,19 During the first session of
these studies, participants listened viaheadphones
to a range of recordings of different acoustic
scenes that were presented to hearing aids moun-
ted on aKEMAR. For each scene, they used SSL
to create a personalized program. Recordings
were then made using these programs, and, in
a second session, participants rated their person-
alized programs in comparison to their baseline
setting. The results for both studies showed the
strongest effects for basic audio quality, where the
SSL settings in the personalized programs were
rated significantly higher than the baseline set-
ting. There was also a preference for the SSL
settings for listening comfort, but this was signif-
icant only in thefirst study.19 Finally, therewas no
significant difference between the SSL settings
and the baseline settings for speech clarity.

As interesting as they are, these blind labo-
ratory studies remain somewhat removed from
the real-life use of hearing aids that SSL was
designed for. Therefore, questions on the use of
SSL were included in a large-scale survey of
hearing aid satisfaction,20 where 118 experienced
hearing aid usersworeWidexhearing aids in their
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daily lives and rated their satisfaction with differ-
ent aspects of use. Of the 118 participants in the
overall hearing aid survey, 53 indicated that they
had used SSL. In other words, not everyone felt
the need or motivation to adjust their hearing
aids, which is also what one would expect given a
well-fitted modern hearing aid, but a substantial
number did try out the functionality. Of the
participants who did try it out, more than 70%
had experienced an improvement in at least one
listening environment, while almost 80% would
recommend the feature to others. These are, of
course, rather general questions that do not
provide any detail on the listening environments
in which users experienced an improvement.
Instead, this question may be addressed from a
different perspective by exploring the data gener-
ated when SSL is used.

LEARNING FROM DATA
A key characteristic of SSL is that, although the
preference assessments and gain calculations run
on the user’s smartphone, the preference assess-
ments are also stored anonymously on a cloud
computer. This means that SSL generates large
amounts of data, including information on (1)
the settings and amount of use of the programs
created, (2) the activities and intentions indicat-
edby userswhenSSL is used, and (3) the settings
compared and the associated degree of prefer-
ence. These data support both specific impro-
vements to the SSL algorithms and a general
understanding of the problems and preferences
of hearing aid users in real life. With observa-
tions from thousands of users, these data are on a
scale that is usually not seen in hearing research
studies, which typically rely on smaller samples
of users.21–23Moreover, although theremay be a
selection bias because individuals who consent to
share their data are not representative of all SSL
users, or of all hearing aid users, these biases are
likely to be smaller than for traditional laboratory
studies, which are associated with more partici-
pant effort and more restrictions in terms of
accessibility and inclusion criteria.

Data for Development

One example of how data have been used to
improve the SSL process itself is model conver-

gence—the point at which the expected improve-
ment (EI) from additional A-B comparisons is
so low that the model has sufficient information
about the user’s preference.Without data from a
very large number of users, in the original version
of SSL, it was expected that the progress toward
convergence would be linear with a maximum of
20 comparisons. In contrast, later versions of
SSL operate with a more refined convergence
measure based on the preference assessments
from users of the original version who agreed to
share their anonymous data in the cloud. Con-
vergence calculations are based on howmuch EI
remains across the entire input space (i.e., all
combinations of gain settings in the three fre-
quency channels) for different iterations of the
A-B comparisons across users. Based on this, the
degree of convergence can be calculated in the
moment for the individual user so that there are
generally fewer A-B comparisons than if SSL
simply stopped after a fixed number of compa-
risons. This means that, although current SSL
versions are capped at 24 comparisons, conver-
gence is often achieved much earlier, and the
comparisons can stop.

Settings, Listening Environments, and

Intentions

The discussion now shifts from the specific
tuning of the machine-learning algorithms to
a more general understanding based on an
interrogation of the data. The first step in this
process is to explore the variation in the final
settings reached by the users. Fig. 2 shows a
sample of 20,000 programs created and saved in
the year 2020. Each program is represented by a
dot which indicates its gain settings for the bass,
middle, and treble frequency channels. This is an
important validation of SSL’s utility because the
individual programs (dots) are distributed all
over the cube, which indicates that there is a
wide range of individual preferences in individ-
ual listening environments rather than general
group preferences. The only pattern that can be
observed directly is some concentration of pro-
grams around the edges of the cube, indicating
gain that was maximally changed in one or more
of the frequency channels.

Another way these data are informative is
in an analysis of the distribution of activities
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and listening intentions indicated by hearing
aid users because these provide some detail
about the listening environments where hear-
ing aid users are not entirely satisfied and so
choose SSL to remediate their dissatisfaction.
For this analysis, a sample of 31,772 programs
created between March 2020 and Febru-
ary 2021 is considered with a focus on the
activities and intentions that users indicate
before they start SSL comparisons to create
a personalized program. Fig. 3 shows the

distributions of activity and intention tags
(categories selected by the user that corre-
spond to their listening environment and
listening goal, respectively) for this sample.
These distributions should be generalized
with some caution since the programs were
created during periods of extensive COVID-
19 lockdowns in much of the world, which
does affect SSL program creation.24 However,
there are still general trends of interest in these
data.

Figure 2 Sample of 20,000 SSL programs with their settings in the bass, middle, and treble frequency
channels as shown on the different axes. Each dot represents a program, with darker colors indicating
overlapping programs.

Figure 3 Distribution of SSL programs in terms of the activities (1 per program, left) and intentions (0–2 per
program, right) indicated.
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Starting with the activity tags, watching TV
is the overwhelmingly most frequent activity
indicated byusers, a factwhich is probably driven
by two different circumstances. The first is that
watching TV is a very frequent activity, espe-
cially for the older age groups25 who are also
more likely to wear hearing aids. The second is
that a setting where the user watches TV is likely
to be a relatively easy one to create SSLprograms
for, in contrast to a one-to-one conversation,
where it is likely to be more difficult to system-
atically complete the series of A-B comparisons
required for program creation.

Nonetheless, the second most frequent
activity is “Socializing�,” with the asterisk indi-
cating that it is not the activity tag from the app,
but a collection of three different activity tags—
“Socializing,” “Party,” and “Family Gather-
ing”—which are all likely to involve some level
of to-be-attended speech along with noise that
includes competing speech. It is noteworthy
that programs for these activities are relatively
frequent, even though it is likely more chal-
lenging to create programs for these types of
interactive listening environments. On the oth-
er hand, these listening environments are ones
in which hearing is notoriously difficult,26,27

which may motivate users to create personal
programs despite the attentional resources they
need to invest in performing the A-B compa-
risons. This trade-off between the desire to
improve sound and the potential challenge of
creating programs may also help explain the
relative rareness of programs for “Sport” and
“Shopping,” where creating programs is likely
more challenging and the need for improve-
ments likely lower. However, the low numbers
for these activities may also be COVID-19
related.

Turning to the intentions indicated by
users, shown in the right panel of Fig. 3, the
most frequent intentions are “Conversation”
and “Suppressing disturbances.” The co-occur-
rence of these two intentions represents cases
where SSL was activated to address problems
with speech in noise, which shows up in more
than 3,000 unique programs. Another major
type of intention is enjoyment: “enjoying
sound” and “enjoying music” are frequently
used and may be understood together as cases
where SSL was used to improve sound quality.

When considering what these distribu-
tions indicate about hearing aid users’ listen-
ing environments, it is important to remember
that SSL is used when their hearing experien-
ces are suboptimal. This means that these data
do not fully represent hearing aid users’ typical
listening environments. Instead, they repre-
sent those listening environments where there
is some degree of dissatisfaction. This does
not make the data less interesting; in fact, one
could argue that these situations, where hear-
ing aid settings are suboptimal for the indi-
vidual user, are the most interesting for both
clinicians and hearing aid developers. Howev-
er, it remains crucial to remember, as discussed
earlier, that some listening environments, such
as watching TV, are more conducive to creat-
ing SSL programs than others, such as
socializing.

An interesting supplement to this view of
hearing aid users’ everyday lives is found in the
article by Hayes in this issue, where Fig. 10
shows the distribution of everyday environ-
ments as detected by the classifier in the hearing
aid. The data in that article are informative
about the listening environment detected by the
hearing aids, which may not always correspond
to the user’s experience, but do have the advan-
tage of being collected independently of how
the user perceives the situation. By contrast, in
the SSL data, the user’s intention and experi-
ence are central, with a focus on those cases
where the sound is not entirely satisfactory.
This means that the SSL data add a layer of
information that is crucial to understanding
hearing in real life. But it also introduces a
potential bias because the distribution of inten-
tions and activities depend partially on the
relative ease of using SSL in the individual
listening environments. A further difference is
that the current data were collected in the
pandemic-affected world of 2020 and 2021,
while the data reported by Hayes were collected
before the pandemic.

Activity-Dependent Clustering of

Degree-of-Preference Ratings

In addition to the analysis of the final SSL
settings discussed in the previous section, an
alternative approach to the data is an analysis of
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all the paired comparisons and degree-of-pref-
erence ratings that users give while creating SSL
programs. Such an approach to the data repre-
sents an alternative view of SSL as a preference
sensor, a mechanism that maps users’ preferen-
ces, as well as a preference optimizer that provi-
des personalized settings for the individual
user.28 Both views are possible because of the
central role of the internal preference function as
outlined earlier. Analyzing all paired compari-
sons has the advantage that it provides much
richer information than if only the final settings
were considered. However, it also presents the
challenge that there is too much data and too
many complex patterns for simple descriptive
analyses of the type presented earlier. Instead,
machine-learning techniques are employed
again, this time to analyze the data.

To explore systematicities in users’ prefe-
rences for specific activities, the analyses focus on
the activity tags that hearing aid users select at
the outset of creating an SSL program. To keep
the analyses computationally manageable, a sta-
tistically representative subset of A-B compari-
sons was drawn among the entire set of A-B
comparisons for each activity. A subset of 32,000
A-B comparisons was found to be fully repre-
sentative for the entire set of A-B comparisons
while being computationally feasible.

For each activity tag, the subset of A-B
comparisons and degree-of-preference ratings
were analyzed in three steps. First, a GP model
(see earlier) was trained for each situation,
thereby assigning probabilities to all possible
preference functions based on the users’ degrees
of preference. Some preference functions are
associated with large probabilities, while other
preference functions are associated with lower
probabilities. Second, based on these assigned
probabilities, 10,000 preference functions were
sampled. Consequently, preference functions
with higher assigned probabilities would be
more frequent in the samples than preference
functions with lower assigned probabilities.
Third, for all the 10,000 sampled preference
functions, the gain setting that maximized the
preference function was picked. This resulted in
a set of 10,000 settings representing programs
that the model predicts to be optimal for
different users, based on the probabilities de-
rived from the degree-of-preference ratings.

These may be thought of as ideal programs
representing the preferences expressed in the
full set of A-B comparisons conducted by users
for the given activity. The advantage of consid-
ering these 10,000 predicted programs is that
they represent both mean and variance across
many users’ preference functions, whereas con-
sidering 10,000 individual programs would only
allow us to consider final settings. In other
words, considering the predicted programs
allows us to go beyond the individual user’s
optimal settings and consider the preference
functions more broadly.

The predicted programs were distributed
much more systematically in the three-dimen-
sional space than the programs shown in Fig. 2.
They are shown for four different activities
in Fig. 4, clustered using a density-based clus-
tering algorithm.29 This algorithm estimates
the number of clusters that are necessary and
sufficient to describe the data for each activity.
It essentially helps summarize the user prefe-
rences in a meaningful way, predicting how
likely each of them would be.

The outcome of these analyses was a small
number of clusters for each activity. Each
cluster includes a proportion of the predicted
programs for that activity. Table 1 shows the
four most frequent clusters per activity. The
clusters labeled in Table 1 as clusters 1 through
4 do not represent the same settings across
activities; in fact, the settings tend to differ
between activities, as discussed later. Instead,
the proportions for cluster 1 simply describe
how frequent themost frequent cluster is for the
given activity, and similarly for clusters 2
through 4. This analysis provides information
about how systematic the predicted programs—
and by implication, users’ preferences—are for
each activity. At one extreme, all predicted
programs constitute one cluster for transport.
In contrast, for watching TV, the predicted
programs are distributed over more clusters,
with the top four accounting for 74% of pro-
grams. The remaining activities fall between
these two, with relatively good coverage by the
two most frequent clusters of around 70% or
more of the predicted programs.

Together with considering howmany of the
predicted programs are represented by a given
cluster, it is also interesting to analyze the
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Figure 4 Clusters of predicted programs for four activity tags: transport, party, quiet, and watching TV.
Different colors correspond to different clusters, with the size corresponding to the number of predicted
programs represented by a given cluster.

Table 1 The Percentage of Predicted Programs Covered by the Four Strongest Clusters for
each Activity

Activity Cluster 1 Cluster 2 Cluster 3 Cluster 4

Dining 57.9 14.9 8.2 5.0

Entertainment 61.6 29.2 6.5 1.3

Family gathering 84.7 6.3 2.8 1.8

Outdoor 54.8 14.8 9.4 8.8

Party 68.4 23.3 3.6 3.2

Quiet 47.9 26.7 12.9 4.3

Shopping 79.2 7.3 4.4 2.8

Socializing 52.4 26.6 8.8 4.5

Transport 100 – – –

Watching TV 37.4 14.8 14.0 7.9
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settings of the three gain parameters for each
cluster. In Fig. 4, four different activities that
represent different levels of systematicity and
interpretability are considered. First, as indi-
cated earlier, transport represents an extremely
systematic case, with a single cluster charac-
terized by a general turning down of volume,
though less for the bass than the middle and
treble channels. In addition to being system-
atic, this is also relatively clearly interpretable
as the users’ attempts to reduce the transport
noise.

A second activity where the clusters are
audiologically interpretable is the “Party” tag.
Here, the most frequently occurring cluster
(with 68%) turns down the bass and treble
but keeps the middle fixed or a little turned
up; this could represent an attempt to reduce
noise while preserving speech intelligibility.
The second-most frequent cluster (23%) in-
stead represents a general turning down of
volume, thoughmore so for the higher frequen-
cies. The “Quiet” listening environment is
described by two fairly frequent patterns: (1)
all frequencies are turned down, likely repre-
senting a desire for more quiet, and (2) the bass
and treble are turned up, likely representing a
desire for more awareness of the surroundings.
Finally, “Watching TV” includes many differ-
ent settings, although most include increased
gain in the middle, which is important for
speech. All these interpretations of settings
are educated guesses about users’ preferences,
but one should not overlook the fact that
preferences may be driven by many factors
that are specific to individual users and individ-
ual listening environments.

Some activities are more difficult to inter-
pret, including a relatively well-defined activity
like “Watching TV” and a fuzzier label like
“Entertainment.” In fact, a criticism that could
be raised against the SSL activity tags is that
they are not all well-defined and may not all be
easily identifiable and distinguishable for SSL
users. Another example of this is the potential
overlaps between “Socializing,” “Party,” and
“Family Gathering” (which were grouped to-
gether in Fig. 3). This indicates that a revision
of the activity tags may be needed to ensure that
they are easy to distinguish and map onto user
experiences.

In addition to showing interesting patterns
of preference in different listening environ-
ments, these cluster-based analyses also have a
more direct application in a recent update of the
SSL functionality under the label “My Sound”
in the Widex MOMENT app. The update
retains the SSL functionality described earlier
(Fig. 1). It also introduces a faster option for
personalizing sound where the user chooses
between two sound settings sampled from the
best clusters for the activity that the user has
indicated. In this way, the preferences of previ-
ous users produce recommendations for current
users. Importantly, the analyses are dynamic,
which means that if preferences shift—for
instance, as a result of changed defaults in the
hearing aids—the recommendations can also be
updated. Given the large amount of data the
clusters are based on, one would expect prefe-
rences to be relatively stable, but having the
ability to update remains important. For exam-
ple, we recently observed that the global pan-
demic resulted in a shift in the distribution of
activity tags.24

DISCUSSION
This article has focused on the development and
use of AI features to optimize sound. In this
section, the discussion shifts to connections
between the different aspects and findings
from SSL and their implications for the future
of AI in hearing aids. An important point to
emphasize upfront is the human hearing aid
user’s role in theWidex AI solution: In contrast
to sound classification mechanisms that may
also be based on AI30 (see also the article by
Andersen et al in this issue), the machine-
learning algorithms in SSL operate continu-
ously on the input from the individual user so
that the sound settings come about through the
interaction between the user and the applica-
tion. This also means that the SSL data are
informative about both the application and the
user’s hearing needs; these aspects must be
considered together.

Another user-focused aspect to consider is
the effect that the availability of an adjustment
mechanism like SSL has on a hearing aid user,
potentially empowering the user with a larger
sense of control over their hearing. One may
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hypothesize that such a sense of empowerment
may in itself improve hearing aid satisfaction, in
addition to any concrete improvements in spe-
cific listening environments. To what extent
such general effects apply is an interesting
question for future research. SSL is different
from other self-adjustment methods, such as
the “Goldilocks” method31,32 and the ear ma-
chine algorithm,33 among other things by being
intended explicitly for repeated in-the-moment
use, which is likely to engender a more general
sense of empowerment.

Empowerment and motivation may also
contribute to the observed differences between
laboratory studies and large-scale usage data.
While the laboratory studies did not show a
significant effect on perceived speech clarity,
the conversation activity tag was indicated as
an intention for thousands of SSL programs in
the sample analyzed, both alone and in com-
bination with the “Suppress disturbances”
intention. The fact that the users saved these
programs indicates that the programs help
them in speech-in-noise environments. Like-
ly, this finding is partly driven by the fact that
SSL use in real life is motivated by a desire to
improve the sound, while in the laboratory,
participants adjusted the sound whether they
felt the need to or not. The adjustments give
an experienced benefit for some participants in
the laboratory studies, but not for all, which
may be related to whether they felt a need to
improve the sound. Another difference is that
participants were asked to focus exclusively on
speech clarity in the artificial laboratory setup,
which is a narrower focus than what is likely in
real-life speech-in-noise environments. One
may, for example, speculate that the experi-
ence of a more natural or more comfortable
sound in a real-life listening environment may
free up cognitive resources for focusing on
understanding speech.

In addition to the positive effects of empow-
erment and motivation, an important area of
future study is the listening environments in
which hearing aid users re-use the programs they
have created and their satisfaction with the
programs in these potentially varying environ-
ments. Key questions to address are how specific
the preferences expressed in SSL programs are
for a given listening environment and to what

extent changes may meaningfully be applied
more generally in data-based hearing care.

Although big data of the kind analyzed in
this article represent a wide variety of individual
needs and experiences, it is important to re-
member that analyses like those reported here
still focus on the average and the typical. This
means that, in addition to data-driven general
solutions, which are likely to become increas-
ingly important in hearing care as in other
fields, optimization for specific listening envi-
ronments, based on a collaboration between the
individual user and the AI, remains crucial.
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