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ABSTRACT

Hearing aids continue to acquire increasingly sophisticated
sound-processing features beyond basic amplification. On the one hand,
these have the potential to add user benefit and allow for personaliza-
tion. On the other hand, if such features are to benefit according to their
potential, they require clinicians to be acquainted with both the
underlying technologies and the specific fitting handles made available
by the individual hearing aid manufacturers. Ensuring benefit from
hearing aids in typical daily listening environments requires that the
hearing aids handle sounds that interfere with communication, generi-
cally referred to as “noise.”With this aim, considerable efforts from both
academia and industry have led to increasingly advanced algorithms that
handle noise, typically using the principles of directional processing and
postfiltering. This article provides an overview of the techniques used
for noise reduction inmodern hearing aids. First, classical techniques are
covered as they are used in modern hearing aids. The discussion then
shifts to how deep learning, a subfield of artificial intelligence, provides a
radically different way of solving the noise problem. Finally, the results
of several experiments are used to showcase the benefits of recent
algorithmic advances in terms of signal-to-noise ratio, speech intelligi-
bility, selective attention, and listening effort.
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Hearing aids are often misconceived as
being simple amplifiers of sound. While this
may have been true in the past, modern hearing
aids use a vast array of technologies to help the
user perceive their surroundings. One of these
technologies, which particularly finds its use-
fulness in the most challenging and noisy
environments, is the noise reduction system.

The primary “medicine” administered by a
hearing aid is hearing loss compensation. This
applies frequency-dependent gain, derived from
the user’s pure-tone thresholds, and dynamic
range compression to ensure that soft sounds
are amplified enough to be audible without loud
sounds being amplified so much as to cause
discomfort or pain. However, despite such
compensation, many users still report difficulty
coping with noisy environments.1,2 This sug-
gests that the effects of hearing loss cannot
simply be compensated away through the use of
amplification.

While the origins of sensorineural hearing
loss are complicated and incompletely under-
stood, psychophysical experiments have revea-
led a range of deficits in the impaired hearing
system that are not related to a simple loss of
sensitivity. These include the following3:

� Frequency spread of masking. Noise present in
one frequency region may spread over a
broader range to disturb sounds in nearby
frequency regions. This spread is more ex-
tensive for hearing-impaired listeners.

� Temporal spread of masking. Noise bursts may
mask following sounds. The duration across
which this effect is present tends to be longer
for hearing-impaired listeners.

� Reduced ability to use spatial cues. This deficit
reduces the ability to localize sound sources
and the ability to improve speech under-
standing in noise via spatially selective at-
tention.

The aforementioned deficits, which cannot
be compensated by gain or compression, can
make speech intelligibility in noisy environ-
ments worse. Therefore, hearing loss is often
modeled as the sum of an attenuation compo-
nent that can be compensated by amplification
and additional distortion components that
cannot.4,5

To reduce the impact of the deficits men-
tioned earlier and to make challenging listening
environments more accessible to the user, mod-
ern hearing aids apply noise reduction algo-
rithms. These tackle the difficulty of noisy
environments directly by attempting to reduce
distracting background noise without removing
target sounds such as speech.

This article provides the reader with an
understanding of the techniques used for re-
ducing unwanted environmental noise in hear-
ing aids. The focus will be on building intuition
rather than on providing complete mathemati-
cal detail. Section 2 describes the typical struc-
ture of a noise reduction system as employed in
a hearing aid. Such a system primarily com-
prises an adaptive beamformer, which removes
noise by adapting the directional response of the
hearing aid, coupled with a postfilter, which
removes noise by applying time- and frequency-
dependent attenuation to the signal. Section 3
describes how deep learning, a subdiscipline of
artificial intelligence, is currently making
completely new approaches for noise reduction
available. After building basic intuition about
the principle of deep learning, it is described
how a neural network can be trained to replace
the postfilter in a noise reduction system. This is
shown to give rise to considerable improve-
ments in noise reduction performance. Section
4 is a brief comment on the importance of using
an automatic system to regulate the noise
reduction system. Section 5 presents results
from a selection of measurements and clinical
studies that highlight the importance and con-
tinued improvement of noise reduction tech-
nology. Section 6 concludes upon the findings.

1: THE PRINCIPLES OF NOISE
REDUCTION
This section provides an intuitive description of
the core principles used for noise reduction in
hearing aids. Fig. 1 shows themain components
involved in such a noise reduction system. Two
separate—but highly co-dependent—methods
are used to reduce noise:

� Beamforming utilizes the fact that modern
hearing aids most often have multiple mic-
rophones to amplify or suppress sounds
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depending on the direction from which they
originate. This principle may also be referred
to as directionality, directional processing,
or spatial processing.

� Postfiltering aims at suppressing any left-
over noise from the beamforming process. It
does so by attenuating time–frequency
regions that are dominated by leftover noise.
Postfiltering is closely related to single-
channel noise reduction.

Note that the term noise reduction is used
here to refer to the joint use of these two
principles, whereas some authors denote only
postfiltering as noise reduction or single-channel
noise reduction.

Here, the necessary concept of filterbanks is
covered briefly (Section 2.1). Then beamforming
(Section 2.2) and postfiltering (Section 2.3) are
covered separately. Lastly, Section 2.4 comments
on the strong integration between beamforming
and postfiltering, both in theory and practice.

1.1: Analysis and Synthesis Filterbanks

The human auditory system has an amazing
ability to discern different frequencies contai-
ned in audio signals.6 Similarly, hearing aids
can benefit from separately processing different
frequency bands. The frequencies contained in
an audio signal are, however, not readily visible
from the raw audio waveform. This makes the
raw audio waveform difficult to work with in

practice. Hearing aids, therefore, employ an
analysis filterbank to split the input signal
into short overlapping time segments and ana-
lyze the frequency content of these. This results
in a signal representation that is closely related
to a spectrogram. Most processing (e.g., beam-
forming and postfiltering) is conveniently per-
formed on this signal representation. When the
signal has been processed, a synthesis filterbank
converts the signal back to an audio waveform
by resynthesizing overlapping wave segments
and combining them. The principle of analysis,
processing, and synthesis is illustrated in Fig. 2.

1.2: Beamforming

Modern hearing aids typically have two micro-
phonesmountedwith a distance of approximately
6 to 12mm, depending on the hearing aid style
and brand. Depending on the direction of the
impinging sound, itmay arrive at onemicrophone
slightly before the other. While this time differ-
ence is tiny (at most�35microseconds), it holds
valuable information about the direction of the
sound. For instance, as Fig. 3 illustrates, if the two
microphoneoutputs are simply summed together,
the amplitude of the resulting signal depends
greatly on the direction from which the sound
arrived.This suggests that by simply summing the
microphone signals, one can perform filtering in
space: signals from certain directions can be sup-
pressed completely, while signals from other
directions can pass through unaltered.

Figure 1 An overview of the components used in the noise reduction system of a typical modern hearing
aid. The signals from two microphones are converted to a time–frequency representation using separate
analysis filterbanks (AFBs). An adaptive beamformer controls the directional response of the system by
applying variable gains and time delays to one of the two signals before these are summed together. A
postfilter computes a time- and frequency-dependent gain which is applied to the signal before a synthesis
filterbank (SFB) converts the time–frequency representation of the signal back to an audio waveform.
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Figure 2 First, an analysis filterbank reveals the frequency structure inherent in an audio waveform of
speech. Processing is performed in this representation, after which a synthesis filterbank is used to transform
the result back to an audio waveform.

Figure 3 The physical principle utilized in beamforming. (a) A single-tone signal impinging on a pair of
microphones at an angle of 90 degrees relative to the axis of the microphones. The oscillations are picked up
simultaneously by the microphones, resulting in signals that are in phase. When the two signals are summed,
they add constructively to form a signal with twice the individual amplitude. (b) The signal impinges from a
larger angle. Because of this, the sound arrives slightly earlier at the rear microphone compared with the front
microphone. This causes the two signals to be out of phase. When summed, the signals cancel due to
destructive interference.
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A beamformer controls this phenomenon
by applying additional gains and time shifts to
one or both of the signals before summing them
together. These parameters can be determined
mathematically to ensure that sounds from
specific directions are attenuated while sounds
from other directions remain unaltered
(see Fig. 4).

Beamforming allows an enormous degree
of flexibility for continuously reconfiguring
the directional properties of the hearing aid
according to the current listening environment
or the desired focus of the user. Hearing aids
may offer a range of fixed directional patterns
as well as adaptive directional patterns that
change continuously to suit the environmental
characteristics.

1.2.1: FIXED BEAMFORMING

By determining appropriate fixed values for the
delay and gain parameters applied in Fig. 4, it is
possible to produce a range of static directional
patterns, examples of which are shown in Fig. 5.
The most straightforward of these is the omni-
directional response, which is produced by a
single microphone, that is, by applying a gain of
0 (�1 dB) to the other microphone. The
omnidirectional pattern has the same sensitivity
to all impinging sounds. It is typically preferred
in environments where background noise is not
an issue because it maintains the natural balance
of the listening environment. The remaining
patterns are left–right symmetric and have at
most two spatial nulls, which are directions
where sound is completely canceled. The dipole
cancels sound from the sides while passing
sound from the front and rear. The cardioid

cancels sound from behind, making it particu-
larly useful in listening environments where the
target is located in the front and noise in the
back. The hypercardioid has nulls placed at�
109 degrees and provides the highest possible
amount of noise reduction, assuming that the
target is located in the front and the noise comes
evenly from all directions (i.e., a spherically
diffuse noise field). Please refer to Elko7 for a
thorough overview of the properties of various
directional patterns.

The patterns shown in Fig. 5 assume free
field acoustics and thus neglect the acoustic
influence of the hearing aid shell and the user’s
head and body. The user’s head has a consider-
able influence on the directional pattern that is
actually realized, making it less symmetric by
attenuating sounds coming from the opposite
side of the head (see Fig. 6i in the article by
Derleth et al in this issue for an example of this
phenomenon).

1.2.2: ADAPTIVE BEAMFORMING

Fixed beamformers force the user to either
listen with the same directional pattern in all
listening environments or make a conscious
effort to change programs whenever a different
directional response is desired. A less manual
approach is to automatically adapt the beam-
former parameters to minimize background
noise across changing listening environments.
Modern hearing aids tend to include at least
some degree of adaptive beamforming, even in
their default configurations.

A common approach for adaptive beam-
forming is the adaptive minimum variance dis-
tortionless response (MVDR) beamformer.8,9

Figure 4 Showing how the principle illustrated in Fig. 3 can be controlled. The two microphones pick up
signals that are not in phase and do not have the same amplitude. By applying a time delay and a gain to one
of the signals, these differences are removed. The resulting signals sum constructively to a signal with twice
the amplitude, even though the signals picked up by the microphones would not have.
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This collects statistics about the listening envi-
ronment to derive beamformer parameters that
(1) attenuate the total received sound as much as
possible (i.e., achieve minimum variance), while
(2) ensuring that sounds from the target direc-
tion are not attenuated or amplified (i.e., achieve
a distortionless response toward the target). The
target direction must be estimated separately or
simply assumed to be directly in front of the
user. Fig. 6 shows several examples of directional
patterns arising from the use of an MVDR
beamformer for different configurations of noise
sources. The top left example shows how the
MVDR beamformer can completely cancel a
single noise source by placing a null in that
direction. The bottom left example shows how

a group of noise sources can be attenuated by
placing a null in themiddle of them.The bottom
right example shows the pattern that arises when
several noise sources are distributed uniformly
around the user.

The top right plot in Fig. 6 shows that,
while the MVDR beamformer guarantees 0 dB
gain in the target direction, it may actually
amplify signals from other directions. Note,
however, that this has no impact in this partic-
ular example since neither target nor noise is
located in the directions with positive gain.

Since beamforming is applied to the fre-
quency decomposition given by the analysis
filterbank, different directional patterns can
be applied for each frequency band. This allows

Figure 5 Examples of directional responses that can be achieved using the described principles of
beamforming. The plots show the attenuation of sounds reaching the hearing aid depending on the angle of
arrival in the horizontal plane.
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the adaptive beamformer to choose indepen-
dent directional patterns that suppress the
dominating noise sources in each frequency
band.

MVDR beamforming is a very powerful
technique to reduce background noise. Howev-
er, for this same reason, it is often perceived as
being too aggressive. Removing too much
background noise can cause the user to feel
detached from their surroundings. Therefore,
such techniques require additional controls and
limitations to be useful in practice. For instance,
one might constrain the beamformer to select

only from “softer” patterns that do not have
nulls, or avoid strict assumptions on where the
target is located.

1.3: Postfiltering

Beamforming is a very powerful tool for remov-
ing background noise whenever speech and
noise arrive from different directions. It is,
however, unable to remove noise from the
target direction. This problem can instead be
approached using methods from single-micro-
phone noise reduction. When such processing

Figure 6 Examples of directional responses achieved with an adaptive MVDR beamformer for different
configurations of target and noise. In all four examples, the target is located in front of the user (0˚), while one
or more noise sources are located at directions indicated by the dots near the perimeter of the plots.
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is applied after beamforming, it is often referred
to as postfiltering. Such methods attempt to
attenuate time–frequency regions in the signal
(as seen in a spectrogram) dominated by noise.
They do so by applying a postfilter gain of less
than 0 dB to noisy regions. The most well-
known of these methods, the Wiener filter,10

uses a time-varying estimate of the signal-to-
noise ratio (SNR) in each frequency band to
suppress noise at times and frequencies where
this can be done with little effect on the target
signal. Mathematically, the method aims to
make the filtered time-domain signal as similar
to the target signal as possible (in amean squared
error sense). Other methods typically operate

according to a similar principle, but they aim to
solve slightly different mathematical problems
or rely on different speech and noise
models.11,12

The processing of a postfilter is most easily
visualized by considering a spectrogram of noisy
speech, such as Fig. 7b. A good postfilter would
suppress all noise-dominated time–frequency
regions, leaving the speech unharmed. If done
well, the result should be similar to the clean
speech shown in Fig. 7a.

If the underlying target signal is known (as
it is when imagining what a good postfilter
should do to Fig. 7b while observing Fig. 7a),
such processing can be almost infinitely

Figure 7 (a) A spectrogram of a speech utterance. (b) The same utterance mixed with 24-talker babble at
þ3 dB SNR. (c) The noisy utterance after postfiltering. (d) Gray scale version of b, colorized according to the
gain applied by the postfilter.
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effective. For instance, Kjems et al13 showed
that noisy speech at �60 dB SNR can be
rendered completely intelligible by such
processing.

In real-world scenarios, as faced by hearing
aid users, the target signal is obviously not
known (one might even ask, “why attempt to
remove the noise if the underlying target signal is
already known?”). Postfiltering algorithms must
instead rely on their own statistical estimates of
the target and noise properties to determine
which parts of the signal to attenuate. Fig. 7c
shows the result of such processing, as applied by
a typical hearing aid. In comparisonwithFig. 7b,
significant amounts of noise are clearly removed.
On the other hand, some noise remains, and
spectral and temporal details are smeared when
comparing the postfiltered signal to the original
target signal (Fig. 7a). Fig. 7d shows a spectro-
gram of the noisy signal, colorized according to
the attenuation applied by the postfilter. This
clearly reveals that the postfilter correctly applies
attenuation (as shown in purple) inmany regions
with little or no speech while not attenuating (as
shown in cyan) regions with mostly speech.

1.4: Integrated Beamforming and

Postfiltering

The previous sections have treated beamforming
and postfiltering as two separate techniques,
postfiltering being essentially just single-channel
noise reduction applied to the beamformer out-
put. There are, however, important links be-
tween the two systems. As noted, the Wiener
filter attempts to filter a single noisy signal to
make it resemble the target signal as closely as
possible.The samemathematical problemcanbe
formulated when multiple microphones are
available. The solution to this problem is known
as a multichannel Wiener filter.14 It can be
shown to be mathematically identical to an
MVDR beamformer coupled with a single-
channel Wiener filter.15 Thus, the combined
use of beamformers and postfilters for noise
reduction is a theoretically optimal strategy—it
arises as a mathematical consequence when
solving the noise reduction problem.

A related fact makes the combined use of
beamformers and postfilters even more interest-
ing. As stated, the postfilter requires statistical

estimates about the target and noise, which are
used to decide when and where to attenuate. For
a Wiener filter, this involves estimating the
short-time SNR in each frequency band. The
beamformer is uniquely suited to help with the
accurate estimation of SNR.16,17 While a single
directional patternmust be chosen for processing
the signal to be presented to the user, nothing
prevents the hearing aid from simultaneously
using multiple other directional patterns for the
explicit purpose of accurately estimating
SNR16–18 (see the article by Jespersen et al in
this issue for a similar approach that uses dual
microphones to estimate noise levels). This
represents a significant difference between sin-
gle-channel noise reduction and postfiltering.

Researchers have often found that single-
channel noise reduction has no impact on, or
may even deteriorate, speech intelligibility.19–21

This turns single-channel noise reduction into a
tradeoff between speech intelligibility and lis-
tening comfort. This result is often mistakenly
extended to postfiltering. However, because
noise reduction relies on accurate estimates of
SNR and because beamformers can help pro-
vide these, postfiltering has a significant advan-
tage compared with single-channel noise
reduction. In practice, postfiltering can there-
fore increase speech intelligibility, even in nor-
mal-hearing listeners.22

2: NOISE REDUCTION USING
MACHINE LEARNING
Throughout the last decade, artificial intelli-
gence has transformed many technologies be-
yond recognition, including hearing aids (see
the articles by Fabry and Bhowmik and by
Balling et al in this issue for additional applica-
tions of artificial intelligence to hearing aids).
These breakthroughs have mostly come from a
subfield of machine learning called “deep learn-
ing” (see Fig. 8), which covers the training and
use of neural networks for solving tasks.23

Neural networks with multiple layers are some-
times referred to as deep neural networks
(DNNs). Like many other technologies, deep
learning has already had an enormous impact on
noise reduction technology.

The previous section covered noise re-
duction without reference to techniques that
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employ machine learning or deep learning.
The discussed classical methods are charac-
terized by using statistical models and
methods to tell the target signal and back-
ground noise apart. However, there is a limit
to the accuracy with which such models can
reflect the diversity of real-world listening
environments. This is because the models
need to be fairly simple to allow for carrying
out the mathematical derivations that lead to
noise reduction algorithms. For instance, it is
common to assume that speech is not corre-
lated across frequency, that is, that there is no
correspondence between what happens at one
frequency and what happens at another fre-
quency at the same moment. However, speech
signals contain an intricate phonetic structure
that is indeed highly correlated across fre-
quency. By assuming independence of fre-
quency channels, noise reduction algorithms
miss the opportunity of benefiting from the
structure of speech.

Machine learning (including deep learn-
ing) approaches the same problem in an
entirely different manner. Instead of directly
designing a specific algorithm to carry out a
task (e.g., reducing noise), machine learning
applies flexible, generic algorithms that can be
trained to solve a task by analyzing examples
of how the task should be solved. The applied
algorithm is completely free to model whatev-
er structures can be found in the examples, and
there is no requirement for the solution to be
mathematically simple or easy to explain. See
Bishop24 for a thorough overview of machine
learning.

2.1: Training a Neural Network for

Postfiltering

This section explains the basic principles involved
in training a neural network to reduce noise. The
training is executed on a database of examples of
corresponding clean and noisy speech signals,
such as the pair that comprise Fig. 7a
and Fig.7b. Pairs like these are referred to as
training examples. The aim is to train a neural
network to compute postfilter gains thatmake the
noisy signals similar to the clean ones. The
architecture used for doing so is shown in Fig. 9.

The neural network itself is composed of
layers of neurons. The neurons in a layer are
connected to the neurons in the previous layer
by connections of varying strength.

An input to the neural network is a sequence
of numbers: one number per neuron in the input
layer. The input is transmitted and processed
through the layers of neurons via the connections
that link the layers. Finally, the last layer of the
neural network returns an output, given as a
sequence of numbers: one for each neuron in
the output layer. Therefore, the neural network is
simply amachine that takes an input andproduces
a corresponding output.How the output depends
on the input is governed by a large number of
parameters, given by the strengths of the connec-
tions between the layers. The number of param-
eters (connections) can range from thousands to
billions depending on the design of the neural
network (the famous GPT-3 language model
trained by researchers at OpenAI has 175 billion
parameters25). Training a neural network corre-
sponds to adjusting the parameters in a way that
makes the neural network solve a task.

Figure 8 Deep learning refers to the training and use of neural networks to solve tasks. It is a subfield of
machine learning which itself is a field of artificial intelligence.
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To use a neural network for postfiltering,
an input that is somehow derived from the noisy
signal is provided. This could correspond to
simply the output of the beamformer or some-
thing more refined like estimates of SNR. The
neural network outputs are the postfilter gains
that are applied to the noisy signal (one gain
value per frequency band).

Before training, the connections of a neural
network are typically initialized to random values.
Thus, to begin with, when a noisy signal is
presented to the system, the neural network
behaves mostly arbitrarily. The resulting, poorly
postfiltered signal is compared with the target
signal using a numerical rating known as a loss
function. A loss function is a numerical metric that
quantifies the difference between the two signals.
For the untrained neural network, the loss func-
tionwill likely report that there is a poor similarity
between thepostfilterednoisy signal and the target
signal. The aim is to adjust the neural network
connections through training to improve this
similarity or, more specifically, decrease the loss.

Using a technique known as backpropaga-
tion, one can compute backward from the loss
value to determine how a small change in any
parameter would affect the loss. Using this
knowledge, one can devise a small update to

all the neural network parameters, which will
tend to slightly decrease the loss. When repeat-
ed over and over for different training examples,
this process is known as stochastic gradient
descent. If done carefully, this gradually causes
the neural network to start behaving like a
postfilter. Interestingly, this is achieved solely
by showing the neural network examples of
what a good postfilter should do (i.e., make the
noisy signal less noisy), but without ever speci-
fying how to do so.

Fig. 10a, b shows the output when the
noisy signal from Fig. 7b is processed with a
conventional postfilter and a postfilter based on
a neural network, respectively. Processing with
a neural network (Fig. 10b) results in a notably
sharper and more speech-like result. This dif-
ference becomes even more apparent when
comparing the applied postfilter gains, as shown
in Fig. 10c, d. The conventional postfilter
largely succeeds in identifying the speech
regions, but otherwise appears somewhat un-
coordinated. In contrast, the neural network
postfilter displays a sharp and coordinated
behavior across both time and frequency, cor-
rectly identifying most of the underlying speech
and letting it through. These differences are not
merely visual—the neural network postfilter

Figure 9 Showing how a neural network is trained to perform postfiltering. The neural network is used to
compute postfilter gains for examples of noisy audio from the training database. These postfilter gains are
applied to the noisy signals, and the result is compared with the underlying clean target signal using a loss
function. Through the mathematical techniques of backpropagation and gradient descent, the neural network
connections are updated to make the loss progressively smaller so that the postfiltered noisy signal is more
similar to the underlying clean target.

270 SEMINARS IN HEARING/VOLUME 42, NUMBER 3 2021 # 2021. THE AUTHOR(S).



improves the speech intelligibility index (SII)
weighted SNR by almost 2 dB over the con-
ventional postfilter in the example shown.

While the above serves mainly as an illus-
tration of the advantages associated with the use
of neural networks for noise reduction, many
academic studies have found comparable bene-
fits on technical measures.26 Behavioral studies
have also reported intelligibility improvements
in hearing-impaired listeners27–29 and even
normal-hearing listeners.30 Similarly, it has
been reported that normal-hearing listeners
prefer neural network-based noise reduction

to conventional noise reduction.31 There are,
however, many intricacies involved in the train-
ing and evaluation of systems based on machine
learning that can make it difficult to assess the
real-world implications of such results. After
carefully training and testing a state-of-the-art
system based on neural networks to ensure that
it was not evaluated on data that it had seen
during training, Kolbæk et al26 found that it
could not reliably improve speech intelligibility
for normal-hearing listeners. This result, how-
ever, was obtained for a single-channel noise
reduction system, which generally does not

Figure 10 Comparison of conventional postfiltering and DNN-based postfiltering. (a) A noisy speech
utterance processed by a conventional postfilter (same as Fig. 7c). (b) The same noisy utterance processed by
a DNN-based postfilter. (c) A gray scale spectrogram of the noisy utterance colorized according to the gain
applied by the conventional postfilter (same as Fig. 7d). (d) Same as c, but for the DNN-based postfilter.
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benefit from the improved SNR estimates that a
directional system can produce.

2.2: Collection of Environmental

Recordings

An essential resource for training neural networks
is the database of training examples. Academic
studies, which are most often focused on single-
channel noise reduction, typically generate examp-
les by mixing recordings from publicly available
databases of speech and noise recordings. This
allows large training databases to be produced
while retaining complete control over factors
such as noise type and SNR. On the contrary,
such artificially produced sound examples are
typically neither ecologically plausible nor repre-
sentative of everyday environments for a hearing
aid user. Furthermore, when training noise reduc-
tion systems for hearing aids, one relies on input
signals as recorded from the hearing aid’s micro-
phones, including the acoustics of the hearing aid
shell and the user’s head. When training neural
networks fornoise reductionatOticon, theauthors
have found that agood—albeit time-consuming—
solution to the discussed issues is to use a database
of ecologically valid spherical microphone array
recordings. A substantial collection of such recor-
dings has therefore been made. These consist of
real conversations in different noisy listening envi-
ronments commonly experienced by hearing aid
users. The recordings were made at various physi-
cal locations, such as restaurants, caf�es, offices, cars,
and busy streets. The complete workflow from
recording to training is illustrated in Fig. 11.

The sound environments were captured
with a spherical microphone array containing
32 microphone capsules (Fig. 11a). This re-
cording technique allows the sound environ-
ments to be reproduced in a sound studio with
many loudspeakers. The sound-rendering pro-
cedure is described by Minnaar et al.32 The
technique relies on a calibration step where the
microphone array is placed at the center of the
loudspeaker array so that the transfer functions
from all loudspeakers to all microphones on the
sphere can be measured (Fig. 11b). Using an
inverse filtering method,33 each loudspeaker
signal is computed as the sum of the micro-
phone recordings that have been filtered to
render the sound at the center of the loudspeak-

er array as close as possible to the original sound
recorded by the microphone array. With more
loudspeakers, a better rendering of the original
listening environment can be obtained.

With this approach, an acoustic scene of
the original listening environment can be accu-
rately reproduced near the center of the loud-
speaker array (Fig. 11c). Before the acoustic
scenes can be used as training material for
neural networks, it is necessary to reproduce
them as if they were recorded by a hearing aid
mounted on a person’s ear. A simple option
could be to record from the microphones of a
hearing aid mounted on a person or a manikin
at the center of the loudspeaker array. However,
to avoid the inconvenience of doing so for a
large number of recordings, one can instead
measure impulse responses from the studio
loudspeakers to the hearing aid microphones.
These can then be used to quickly accomplish
the same result for any number of recordings,
hearing aid styles, or people.

When using acoustic scenes as training
material for a neural network, it is necessary
to have separate recordings of the target speech
signal and the background noise. It is well-
known that humans tend to raise their vocal
effort when speaking in a noisy background.34

Therefore, an acoustic scene consisting of back-
ground noise mixed with a target talker who
was recorded in the absence of noise will be
perceived as unnatural because the vocal effort
does not correspond to the noisy background.
To improve the ecological validity of the acous-
tic scene, the original recording of the listening
environment (Fig. 11a) is converted into a
binaural audio signal. In the absence of noise,
the target signal is recorded while the noise is
presented to the talker(s) via open headphones
(Fig. 11d). In this way, target speech and noise
for a given acoustic scene are captured separate-
ly. Finally, the recorded speech and noise sig-
nals are mixed to generate an ecologically valid
acoustic scene.

3: PERSONALIZATION AND
AUTOMATICS
The noise reduction systems described in Sec-
tions 2 and 3 are highly effective at removing
noise. However, at the same time, they
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introduce various forms of unwanted distortion.
Furthermore, there is generally a large variation
among hearing aid users regarding the preferred
amount of noise reduction.19 Such factors have
led researchers to introduce heuristic limits that
control the influence of the noise reduction
system.35 This makes it possible to mostly
eliminate unwanted distortion and to adjust
the amount of noise reduction to meet the
user’s preference.

The preferred amount of noise reduction
varies across users, but it also varies across time.
In a very noisy environment like a busy restau-
rant, most users may be willing to tolerate some
distortion as long as the noise reduction provi-
des the needed relief from the background
noise. On the other hand, in a quiet environ-
ment, noise reduction might not be necessary or
desired. Modern hearing aids have an automatic
system that continuously adapts the noise re-
duction system to suit the listening environ-
ment. Automatic adjustment of the hearing aid
is based on the results of an environmental
classifier and the user’s preferences for noise
reduction as selected during the fitting process
(see the article by Hayes in this issue for more
details on environmental classifiers). The auto-
matics system primarily acts by controlling the
amount of directionality and postfiltering ap-
plied (as shown in Fig. 1), but it may influence
other systems in the hearing aid too.

When surveying the academic literature on
noise reduction, it becomes clear that the topic of
automatics systems is an underappreciated part
of hearing aid design. This is perhaps because it
is a relatively softer discipline than the mathe-
matically exact one of designing the underlying
noise reduction system. However, the automa-
tics system serves a critical function by ensuring
that the individual user is exposed to the correct
amount of noise reduction in any given listening
environment. For the same reason, the clinician
responsible for the fitting must be well-acquain-
ted with the features of the noise reduction and
automatics systems in the selected hearing aid.

4: TECHNICAL AND CLINICAL
BENEFITS OF NOISE REDUCTION
This section reports the results of technical and
clinical investigations of the effects of different

noise reduction systems based on the approa-
ches described in the previous sections, using
two commercially available premium hearing
aids (referred to as HA1 and HA2 in the
following). HA1 employs a 16-channel noise
reduction system with a fast-acting combina-
tion of an MVDR beamformer16 and a single-
channel Wiener postfilter.17 HA2 employs a
fast-acting 24-channel noise reduction system
with a higher-resolution MVDR beamformer
combined with the processing of a DNN-based
postfilter that was trained to enhance the con-
trast between speech and noise using across-
channel information.36

4.1: Signal-to-Noise Ratio Benefit

To compare the SNR benefits of the two
hearing aids, output SNR measurements were
performed using the Hagerman and Olofsson
phase-inversion technique37 for HA1 and
HA2. For each, a pair of hearing aids were
fitted to the ears of a head-and-torso simulator
(HATS) using closed-ear tips. The HATS was
placed in the center of a circular loudspeaker
setup containing 12 loudspeakers equally spa-
ced by 30 degrees in the horizontal plane.
Continuous speech was presented from the
front loudspeaker at 0-degree azimuth, while
cafeteria noise with an overall level of 65 dB
SPL was presented from all loudspeakers si-
multaneously, such that noise came from all
directions, including that of the speech, a
situation that is especially challenging for tra-
ditional noise reduction systems. The measu-
rements were obtained for speech levels of 60
dB SPL (corresponding to �5 dB unaided

Table 1 SII-weighted output SNR improve-
ment in dB, relative to the unaided output
SNR, for HA1 and HA2 at two different input
SNRs when noise reduction is deactivated
("off"), the postfilter only is activated ("PF
only"), and both beamformer and postfilter are
activated ("BFþ PF")

�5 dB input SNR 0 dB input SNR

HA1 HA2 HA1 HA2

Off �0.75 �0.16 �1.18 �0.39

PF only 0.11 1.81 �0.08 2.16

BFþ PF 4.04 4.54 3.82 4.65
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SNR) and 65 dB SPL (0 dB unaided SNR).
The hearing aid output signals were recorded
via the HATS internal microphones with the
phase of the noise either unchanged or inverted
so that the speech and noise levels at the output
of the hearing aids could be estimated.37

The SII-weighted output SNR improve-
ments using this method are listed in Table 1
for measurements in which (1) the noise reduc-
tion systems in HA1 and HA2 were disabled
(“Off”); (2) only the postfilter algorithm was
activated (“PF only”); and (3) both the beam-
former and the postfilter were activated (“BFþ
PF”). Note that all output SNRs reported
in Table 1 for these three conditions are relative
to the unaided output SNR (similar to the input
SNR), such that positive values reflect an SNR
improvement and negative values reflect a
worsening of the SNR.

In the “PF only” condition, the DNN-based
HA2 produces SNR improvements that far ex-
ceed the Wiener-filter-based HA1 (a 1-dB in-
crease in SNR can lead to an increase of 10
percentage points in speech intelligibility when
performance is at the steepest portion of the
performance-intensity curve). This SNR benefit
will be partly or fully present in environments
where the automatics system does not fully use
beamforming. The results of “BFþ PF” show
that the full activation of beamforming provides
an even larger SNR benefit that can exceed 4 dB.
At the same time, the effects of beamforming
somewhat reduce the postfilter-related differen-
ces between HA1 and HA2 in the “PF only”
condition. While beamforming is highly effec-
tive, it should be noted that aggressive beam-
forming can lead to side effects such as feeling
detached fromone’s surroundings (see the articles
by Jespersen et al; Derleth et al; and Branda and
Wurzbacher in this issue for additional discussion
about this problem). Therefore, users are rarely
exposed to the full potential of beamforming.

4.2: Speech Intelligibility Benefit

While technical benefits, like those described in
the previous section, can be measured, there is
no guarantee that these will translate into
improvements in speech intelligibility. To test
whether the documented SNR improvements
provided by the DNN-based HA2 translate to

improved speech intelligibility in noise, 20
experienced adult hearing-aid users completed
a matrix sentence test. Participants had mild-
to-moderate symmetrical sensorineural hearing
loss and qualified to be fit with receiver-in-the-
ear (RITE) hearing aids. They also provided
informed consent and received financial com-
pensation for their participation. The current
study was approved by the ethics committee of
the University of Oldenburg.

All participants performed the Oldenburg
sentence test38 while wearing either HA1 or
HA2 fitted with closed-ear tips and amplifica-
tion based on the voice-aligned compression
(VACþ ) rationale, a quasi-linear fitting ratio-
nale with low compression knee-points based
on the loudness data from.39 The same test
setup and stimuli as in the previous technical
measurements were used, with an overall noise
level of 68 dB SPL and an adaptive speech level.
After performing two training lists, each parti-
cipant’s speech reception threshold (SRT) for a
50%-correct intelligibility level was measured
for each hearing aid in the “Off,” “PF only,” and
“BFþ PF” conditions (see Section 5.1). This
yielded a total of six test conditions that were
measured in random order.

Fig. 12 shows the mean SRTs obtained for
each condition. On average, activating the
different components of the noise reduction
systems led to increased speech intelligibility
(i.e., lower SRTs). Furthermore, HA2 (dark
gray bars) led to higher intelligibility than HA1
(light gray bars). A repeated-measures analysis
of variance (ANOVA) revealed significant
main effects of hearing aid ([F1,19¼ 5.1, p<
0.035] and noise reduction [F2,38¼ 17.6, p<
0.001]). Post hoc multiple comparisons using
Tukey’s honest significant difference criterion
showed that SRTs in the “BFþ PF” and “Off”
conditions differed significantly for both hear-
ing aids (HA1: p¼ 0.022, HA2, p< 0.001).
The “PF only” versus “Off” comparison was
significant only for HA2 (p¼ 0.036). The only
condition in which SRTs differed significantly
between HA1 and HA2 was the PF only
condition (p¼ 0.046).

These results confirm that the investigated
noise reduction systems’ SNR benefits translate
into real speech intelligibility improvements in
a complex listening environment. Note,
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especially, that the DNN-based HA2 in the
“PF only” condition produces a statistically
significant improvement in intelligibility com-
pared with “Off.” This runs counter to the
conventional expectation that only beamfor-
ming can improve intelligibility and clearly
showcases the differences between postfiltering
and single-channel noise reduction.

4.3: Effects on Cortical Representations

and Listening Effort

Noise reduction systems in hearing aids have
been shown to reduce listening effort during
speech recognition tasks in noise (e.g., as shown
by Ohlenforst et al40,41) and to enhance the
cortical representation of speech in the auditory
cortex in noisy multitalker environments.42,43

The protocols from previous electroencepha-
lography (EEG) and pupillometry stud-
ies42,44,45 were adapted to compare how the
noise reduction systems from HA1 and HA2
affect these two outcomes. Since the same
protocols were strictly followed, only an over-

view and differences in participants and test
setups are provided here. The reader is referred
to the articles mentioned for further methodo-
logical details.

Thirty-one experienced hearing-aid users
with mild to moderately severe sensorineural
hearing loss who qualified for fitting with RITE
hearing aids (mean age: 65.6 years) were en-
rolled in the study. All provided informed
consent and the experiments were approved
by the Science Ethics Committee for the Capi-
tal Region of Denmark (journal no.
H20028542). As described in the article by
Alickovic et al,44 two continuous speech signals
from different talkers were presented at 73 dB
SPL from two different loudspeakers in front of
the participants (�30-degree azimuth). Parti-
cipants were instructed to attend to one of the
foreground talkers (the target talker) and to
ignore the other (the masker talker). Mean-
while, babble noise at 70 dB SPL was presented
from four loudspeakers in the background
(�100- and� 153-degree azimuth), with a
mix of 4 talkers in each loudspeaker. The study

Figure 12 Mean SRTs for 50% correct speech intelligibility obtained in the Oldenburg sentence test (N¼ 20).
Error bars indicate the standard error of the mean. Note that the y-axis is reversed, such that higher bars
indicate higher speech intelligibility. �p< 0.05, ��p< 0.01, ���p< 0.001.
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was designed to measure the benefit of noise
reduction in HA2 and to compare the noise
reduction systems of HA1 and HA2, yielding
three test conditions: noise reduction deactiva-
ted in HA2 (“Off”) and noise reduction acti-
vated in HA1 and HA2 (“BFþ PF”). For each
test condition, the participants listened to 20
trials of 38 seconds each. Both hearing aids were
fitted to participants in the same way as de-
scribed in Section 5.2.

During this task, EEG was recorded, from
which a measure was derived that indicates how
strongly parts of the acoustic scene or single
sound sources are represented in the auditory
cortex.42,44,46 This measure is referred to as
cortical representation. By analyzing the EEG

data in different time windows (see Fig. 3 in
Alickovic et al44), these cortical representations
at different stages of auditory cortical proces-
sing can be estimated. Early EEG responses
(<85 milliseconds) are thought to originate
from the primary areas of the auditory cortex
and are less influenced by selective attention so
that all sounds in the acoustic scene are co-
represented. In contrast, late EEG responses
(>85 milliseconds) are generated from higher-
order, nonprimary cortical areas and show a
large effect of selective attention, such that the
cortical representation of the target talker is
emphasized compared with that of the masker
talker and the background.47–49 Following this
premise, the cortical representation of the entire

Figure 13 Strength of cortical representation of the entire acoustic scene (top left) and of the foreground
(top right) as estimated from early EEG responses, and of the target talker (bottom left) and of the masker
talker (bottom right) as estimated from late EEG responses. Gray dots indicate trial-averaged individual results,
whereas black dots and error bars show the group strengths of cortical representation (grand average� 1
between-subject standard error of the mean). Each horizontal line in gray denotes a single participant.
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acoustic scene (comprising target talker, masker
talker, and background noise) and of the fore-
ground (comprising target and masker talkers)
was investigated using early EEG responses,
while the cortical representation of the individ-
ual foreground talkers (target and masker) was
investigated using late EEG responses.

The top panels inFig. 13 show the strengthof
the cortical representation of the entire acoustic
scene (i.e., the combination of all objects in the
environment) and of the foreground (i.e., the
combination of the two possible talkers that the
usermay attend to) based on earlyEEGresponses.
A one-way linear mixed model ANOVA revealed
a significant main effect of condition (entire
acoustic scene: F2,1232¼ 9.4, p< 0.001; fore-
ground: F2,1230¼ 11.3, p< 0.001). Post hoc pair-
wise comparisons (Bonferroni corrected) revealed
that the strength of early cortical representations
was significantly higher for the “BFþ PF” condi-
tions than for the “Off” condition (entire acoustic
scene: p< 0.001; foreground: p< 0.001) and sig-
nificantly higher for HA2 than for HA1 (entire
acoustic scene: p¼ 0.020; foreground: p¼ 0.029).
These results suggest that activating noise reduc-
tion contributes to a more accurate representation
of the hearing aid user’s whole listening environ-
ment in the early stages of cortical processing. The
same can be said about foreground sound sources
thatmaybecomethe focusof attention.Finally, the
results suggest that the DNN-based noise reduc-
tion system ofHA2 is more advantageous in these
regards.

The bottom panels in Fig. 13 show the
strength of the cortical representation of the
target and masker talkers based on late EEG
responses. A one-way linear mixed model
ANOVA revealed a significant main effect of
condition (target:F2,1225¼ 4.1, p¼ 0.016;mask-
er: F2,1226¼ 5.6, p¼ 0.004). Post hoc pairwise
comparisons (Bonferroni corrected) showed that
the strength of late cortical representations was
significantly higher for “BFþ PF” conditions
than for the “Off” condition (target: p¼ 0.038;
masker: p¼ 0.003) and significantly higher for
HA2 than for HA1 for the target talker (p¼
0.040). These results suggest that the tested noise
reduction systems help the user selectively attend
to a talker of interest in complex listening envi-
ronments while maintaining access to
other secondary talkers, which is important to

allow the user to switch attention as the situation
calls for it. The DNN-based HA2 seems to
provide a greater advantage in this regard.

Finally, thepupil size of 17of theparticipants
was recorded while they selectively attended to
the target talker during the same EEG experi-
ment. Pupil size indicates how much cognitive
effort is spent on a listening task.45,50,51 As a
general rule, a smaller pupil size indicates reduced
listening effort compared with a larger pupil size.

The pupillometry results (Fig. 14) showed
a significant difference between test conditions
(one-way ANOVA, F2,937¼ 5.3, p¼ 0.005).
Post hoc tests revealed that there was a signifi-
cantly smaller pupil size for HA2 “BFþ PF”
compared with “Off” (t931¼�3.2, p¼ 0.001),

Figure 14 Pupil size depicted as the average
change from baseline. Black dots and error bars
indicate the average across participants (mean �1
between-subject standard error of the mean). Gray
dots and lines depict individual means across trials.
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while the other two comparisons did not reach
significance (HA1 “BFþ PF” vs. “Off”:
t931¼�1.6, p¼ 0.11; HA2 “BFþ PF” vs.
HA1 “BFþ PF”: t931¼�1.6, p¼ 0.11). This
indicates that the noise reduction system of
HA2 reduces listening effort during a selective-
attention task in a complex multitalker noisy
environment, in line with the findings of Fied-
ler et al.45

In summary, the studies discussed here
indicate that noise reduction systems in com-
mercial hearing aids which combine anMVDR
beamformer with a postfilter can provide clini-
cal benefits to users, with the most significant
effects obtained with the DNN-based HA2.
Benefits are seen in terms of increased speech
intelligibility in noise, stronger cortical repre-
sentations of multiple sound sources, and re-
duced listening effort.

5: CONCLUSION
Noise reduction inmodern hearing aids typically
takes the form of joint beamforming and post-
filtering, which work particularly well when the
noise is separate from the target speech in either
time, frequency, or direction of arrival. Rapid
advances in machine learning are increasingly
influencing the design approach to such systems.
In fact, hearing aids using neural networks for
postfiltering are already commercially available.

Experimental results presented in this arti-
cle indicate that noise reduction algorithms
provide a range of benefits. First, they can
improve SNR and speech intelligibility in noisy
environments. Second, they can decrease listen-
ing effort and improve the user’s ability to focus
on specific targets. As discussed here, impro-
vements in noise reduction algorithms are
highly relevant because they effectively extend
the range of listening environments in which
hearing aids can benefit the user.
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the effect of noise reduction algorithms using
simultaneous speech and noise. Acta Acust United
Acust 2004;90(02):356–361

38. Wardenga N, Batsoulis C, Wagener KC, Brand T,
Lenarz T, Maier H. Do you hear the noise? The
Germanmatrix sentence test with a fixed noise level
in subjects with normal hearing and hearing im-
pairment. Int J Audiol 2015;54(Suppl 2):71–79

39. Buus S, Florentine M. Growth of loudness in
listeners with cochlear hearing losses: recruitment
reconsidered. J Assoc Res Otolaryngol 2002;3(02):
120–139

40. Ohlenforst B, Zekveld AA, Jansma EPet al..
Effects of hearing impairment and hearing aid
amplification on listening effort: a systematic re-
view. Ear Hear 2017;38(03):267–281

41. Ohlenforst B, Wendt D, Kramer SE, Naylor G,
Zekveld AA, Lunner T. Impact of SNR, masker
type and noise reduction processing on sentence

280 SEMINARS IN HEARING/VOLUME 42, NUMBER 3 2021 # 2021. THE AUTHOR(S).



recognition performance and listening effort as
indicated by the pupil dilation response. Hear
Res 2018;365:90–99

42. Alickovic E, Lunner T, Wendt Det al.. Neural
representation enhanced for speech and reduced for
background noise with a hearing aid noise reduc-
tion scheme during a selective attention task. Front
Neurosci 2020;14:846

43. Lunner T, Alickovic E, Graversen C, Ng EHN,
Wendt D, Keidser G. three new outcome measures
that tap into cognitive processes required for real-
life communication. Ear Hear 2020;41(Suppl
1):39S–47S

44. Alickovic E, Ng EHN, Fiedler L, Santurette S,
Innes-Brown H, Graversen C. Effects of hearing
aid noise reduction on early and late cortical
representations of competing talkers in noise. Front
Neurosci 2021;15:636060

45. Fiedler L, Seifi Ala T, Graversen C, Alickovic E,
Lunner T, Wendt D. Hearing Aid Noise Reduc-
tion Lowers the Sustained Listening Effort During
Continuous Speech inNoise—ACombined Pupil-
lometry andEEGStudy. Ear andHearing; in press.
Doi: 10.1097/AUD.0000000000001050
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