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Zusammenfassung
!

Ziel: Ziel der Studie war die Auswertung der
Texturanalyse in Bezug auf eine mögliche Un-
terscheidung zwischen benignen und malignen
Kopf-Hals-Raumforderungen mittels konventio-
neller MRT-Sequenzen.
Material und Methoden: Die MRT-Daten von 100
Patienten mit histologisch verifizierten Kopf-Hals-
Raumforderungen aus zwei Institutionen wurden
mit einer Texturanalyse-Software untersucht. Da-
für wurden 2D- und 3D-Messfelder auf allen axia-
len Sequenzen eingezeichnet. Folgende Textur-
parameter wurden für alle Messfelder berechnet:
COC, RUN, GRA, ARM und WAV. Benigne und ma-
ligne Raumforderungen wurden anhand von zehn
Untergruppen einer linearen Diskriminanzanalyse
mit einer k-nearest-neighbor-Klassifikation zu-
geführt.
Ergebnisse: Die Bilder unterschieden sich auf-
grund des Fabrikats und der Feldstärke der MRT-
Geräte voneinander. Es war bei folgenden Sequen-
zen möglich zwischen benignen und malignen RF
mittels TA zu differenzieren: auf den axialen STIR
und T2-gewichteten-Bildern mit 2D-Messfeldern,
und auf den kontrastmittelverstärktenT1-gewich-
teten Bilder mit Fettunterdrückung für 3D-Mess-
felder. In einer Subgruppenanalyse für 1,5 T- und
3T-Feldstärke konnten weitere diskriminierende
Parameter erarbeitet werden.
Schlussfolgerung: Es ist möglich benigne und
maligne Kopf-Hals-Raumforderungen anhand von
Texturparametern zu unterscheiden, falls diese
mit einem einheitlichen Protokoll auf einem Ge-
rät untersucht werden. Wir können diese Methode
allerdings nicht für eine Multicenterstudie emp-
fehlen.
Kernaussagen:
1. Kopf-Hals-Raumforderungen können mittels

2D/3D-Texturanalyse untersucht werden

Abstract
!

Aim: To evaluate whether texture-based analysis
of standard MRI sequences can help in the discri-
mination between benign and malignant head
and neck tumors.
Materials and Methods: The MR images of 100 pa-
tients with a histologically clarified head or neck
mass, from two different institutions, were ana-
lyzed. Texture-based analysis was performed using
texture analysis software, with region of interest
measurements for 2D and 3D evaluation inde-
pendently for all axial sequences. COC, RUN, GRA,
ARM, and WAV features were calculated for all
ROIs. 10 texture feature subsetswere used for a lin-
ear discriminant analysis, in combination with k-
nearest-neighbor classification. Benign and malig-
nant tumors were compared with regard to tex-
ture-based values.
Results: There were differences in the images
from different field-strength scanners, as well as
from different vendors. For the differentiation of
benign and malignant tumors, we found differen-
ces on STIR and T2-weighted images for 2D, and
on contrast-enhanced T1-TSE with fat saturation
for 3D evaluation. In a separate analysis of the
subgroups 1.5 and 3 Tesla, more discriminating
features were found.
Conclusion: Texture-based analysis is a useful tool
in the discrimination of benign and malignant tu-
mors when performed on one scanner with the
same protocol. We cannot recommend this tech-
nique for the use of multicenter studies with clin-
ical data.
Key Points:
1. 2D/3D texture-based analysis can be performed

in head and neck tumors
2. Texture-based analysis can differentiate be-

tween benign and malignant masses
3. AnalyzedMR images should originate from one

scanner with an identical protocol
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Introduction
!

Malignant head and neck tumors account for approximately 3%
of all malignancies [1]. Over 85% of head and neck tumors are
squamous cell carcinomas (SCC). They are strongly related to to-
bacco and alcohol abuse, more common in the male population,
and mostly located on the mucosal surface. Tumor extent is
usually evaluated with cross-sectional imaging.
Texture analysis is a computer-assisted technique that is condu-
tive to the detection and quantification of mathematical patterns
called texture features. Those texture features exist in the gray-
level distribution of pixels of digital images, which the human
eye can only recognize to a limited degree and is unable to quan-
tify. With texture-based analysis, it is possible to distinguish be-
tween different types of tissues, and also between healthy and
pathologically altered tissues. Texture features derived from the
gray-level histogram, the co-occurrence matrix (COC; informa-
tion about the gray-level value distribution of pairs of pixels, sep-
arated by a defined distance, in a given direction), the run-length
matrix (RUN; information about runs of pixels with the same
gray-level values, in a given direction), the absolute gradient
(GRA; information about sudden signal intensity changes in the
gray-level values), the auto-regressive model (ARM; description
of texture based on the statistical correlation between neighbor-
ing pixels), and the wavelet transform (WAV; information about
the frequency content of an image within different scales of that
image) are used for tissue differentiation [2–5].
Texture analysis of MR images is of particular interest, because
this imaging modality offers excellent depiction of anatomic de-
tails, high soft-tissue contrast, and allows enhancement of differ-
ent types of tissues through the use of different pulse sequences,
even without the application of contrast media [6, 7].
The aim of the study was to determine whether texture analysis
of native, non-contrast-enhanced T1- and T2-weighted MR ima-
ges or contrast-enhanced T1-weighted images, obtained in rou-
tine clinical practice, can provide sufficiently low rates of mis-
classification (high rates of correctly classified data vectors) of
benign and malignant head and neck lesions.

Materials and Methods
!

This retrospective study included patients from two institutions
who underwent a routine MR examination, and who subsequently
had surgery or biopsy for pathologic correlation. The studywas ap-
proved by both institutional review boards. A search for patients
was performed using a full-text search in the radiology informa-
tion system between January 2008 and August 2011. The single
criterion for inclusion in our study was the presence of one head
and neck mass, proven through fine-needle aspiration, biopsy, or
operation. Exclusion criteria were the presence of motion artifacts,
or a maximal lesion diameter <5mm. This 5mm cut-off value was
chosen to minimize the influence of partial volume effects, which
might distort the true tissue-specific image texture. Based on the
above-defined criteria, 100 patients (50 per institution; 55 male,
45 female) with a mean age of 50.9 years (ranging from 12 to 83
years) were included.
The MR examinations were performed on different MR scanners;
1.5 T GE (General Electric) and Siemens scanners and a 3T GE
scanner at site A, and a 1.5 T and 3T Siemens scanner and a 3T
Philips scanner at site B. The standard examination protocols
also varied somewhat. At site A, the standard protocol was: axial
T1 TSE (turbo spin echo); T2 TSE fs (fat saturation) and coronal
T1; and axial and coronal T1 TSE with fat saturation after gadoli-
nium administration. The standard protocol of site B was: axial
and coronal STIR (short tau inversion recovery) or T2-TIRM; axial
T1-TSE before and after contrast administration; and coronal T1-
TSE fs after contrast administration (sequence parameters are lis-
ted in●" Table 1). We decided to evaluate only the axial sequences
(T1-TSE, STIR, T2-TSE fs, contrast-enhanced T1-TSE, and T1-TSE
fs). Due to the retrospective character of the study, some sequen-
ces were not available in some patients. In total, we evaluated the
following sequences: 97 T1-TSE, 22 T2-TSE, 46 T2-TSE fs, 31 STIR,
48 contrast-enhanced (ce) T1-TSE, and 43 with fat saturation.
Texture analysis was performed independently for all axial se-
quences (STIR, T2-TSE fs, T1-TSE before and after i. v. contrast ad-
ministration (with fat saturation)). First, for the 2D texture anal-
ysis, a manually drawn region-of-interest (ROI) was defined
independently for each lesion and MRI sequence, covering the

2. Es ist möglich benigne undmaligne Raumforderungen anhand
von Texturparametern zu unterschieden.

3. Die MRT Untersuchung sollte mit gleichem Protokoll auf ei-
nem Gerät stattfinden.

Citation Format:

▶ Fruehwald-Pallamar J., Hesselink J. R., Mafee M. F. et al. Tex-
ture-Based Analysis of 100 MR Examinations of Head and
Neck Tumors – Is It Possible to Discriminate Between Benign
and Malignant Masses in a Multicenter Trial?. Fortschr
Röntgenstr 2016; 188: 195–202

Table 1 Sequence parameters.

Tab. 1 Sequenz Parameter.

manufacturer field strength sequence (axial) TR (ms) TE (ms) IT (ms) matrix

Siemens 1.5 T (ce) T1-TSE 700 11 384 × 250

T2-TIRM 4000 – 6000 73 150 320 × 256

3 T (ce) T1-TSE 600 11 448 × 310

T2-TIRM 6000 74 180 256 × 230

Philips 3 T (ce) T1-TSE 630 13.5 400 × 282

STIR 6000 – 8000 15 150 400 × 256

GE 1.5 T T1-FSE 700 13 320 × 224

T2-FSE fs 4000 – 6000 85 256 × 224

Ce T1-FSE fs 700 13 320 × 224

3 T T1-FSE 625 7 384 × 192

T2-FSE fs 4000 – 5000 85 384 × 256

Ce T1-FSE fs 700 8 384 × 192
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entire lesion on the image that depicted the lesion at its greatest
diameter. A semi-automatic, active computer algorithm using the
default setting and automatic fill-in defined the ROI. Then, for the
3D texture analysis, the tumor was encircled on every slice visi-
ble on every axial sequence in the samemanner. Gray-level histo-
gram features, co-occurrence matrix (COC) and run-length ma-
trix (RUN) features were calculated for all 2D and 3D ROIs,
using the popular texture analysis software MaZda (version 4.7,
available at http://www.eletel.p.lodz.pl/mazda/) [8]. Additionally
for all 2D ROIs absolute gradient (GRA), autoregressive model
(ARM), and wavelet transform (WAV) features were calculated
by the same program (●" Table 2).
First, we wanted to investigate whether field strength influenced
the performance of texture analysis on 1.5 Tversus 3T. In order to
analyze this influence, we chose to evaluate and compare the tex-
ture features within our largest homogeneous group, the squa-
mous cell carcinomas. With this group, we also analyzedwhether
there were differences when performing texture analysis on the
MR images from different vendors (GE, Siemens, Philips).
We then tested our primary hypothesis regarding whether we
could find texture features that would distinguish between be-
nign and malignant head and neck tumors.
To identify the most valuable texture features for distinguishing
between benign and malignant lesions, three subsets of 10 tex-
ture features were extracted, independently for T1-weighted,
T2-TSE (±fs), STIR, and contrast-enhanced T1-weighted images
(±fs), based on Fisher coefficients (ratio of between-class to

within-class variance), minimization of both classification error
probability and average correlation coefficients (POE+ACC), and
mutual information (MI) coefficients, which measure the depen-
dence between two or more random variable coefficients [2, 9].
This extraction was performed with the program, B11, which is
integrated in the MaZda software.
For computer-assisted differentiation between benign andmalig-
nant head and neck tumors, based on the previously calculated
texture feature subsets (Fisher, POE+ACC, and MI), we used linear
discriminant analysis (LDA) in combination with k-nearest-
neighbor classification (k-NN). K-NN calculates the rate of mis-
classified data vectors by comparisonwith the previously defined
true class affiliations. The k-NN classifier implemented in the
MaZda software uses the leave-one-out testing technique for
this task. Thus, no separation of datasets into a training and test
dataset is required. The rates of correctly classified data vectors
were used as the primary outcome variables. This strategy of tex-
ture-based lesion classification has been used in previously pub-
lished papers [3–5, 10].

Results
!

Of the 100 patients in our study with a head and neck mass, 54
patients (33 male, 21 female) were diagnosed with a malignant
mass and 46 patients with a benign mass (24 female, 22 male).
The largest histologically homogeneous group was the patients

Table 2 List of texture features and abbreviations (as used in●" Table 4, 5).

Tab. 2 Texturparameter und Abkürzungen (wie in●" Tab. 4, 5 verwendet).

Gray-level histogram
2 D and 3 D

mean, variance, skewness, kurto-
sis, percentiles (1, 10, 50, 90, 99 %)

mean (3 D)
variance (3 D)
skewness (3 D)
kurtosis (3 D)
perc.01 %, Perc.10 %, Perc.50 %, Perc.90 %, Perc.99 % (3 D)

co-occurrence matrix
(COC)
2 D and 3 D

angular second moment, contrast,
correlation, entropy, sum entropy,
sum of squares, sum average, sum
variance, inverse difference mo-
ment, difference entropy, differ-
ence variance; (for four directions
and five interpixel distances (off-
sets; n = 1 to 5)

S(2,-2)AngScMom, S(3,-3)AngScMom, S(1,-1)AngScMom, S(5.5)AngScMom, S(0.2)AngScMom
S(3.0)Contrast, S(3.3)Contrast, S(2.2)Contrast, S(4.4)Contrast, S(5.0)Contrast, S(0.1)Contrast
S(5.0)Correlat, S(5,-5)Correlat, S(2,-2)Correlat, S(1,-1)Correlat, S(0.1)Correlat, S(3,-3)Correlat
S(3.0)Entropy, S(5,-5)Entropy, S(2,-2)Entropy, S(4,-4)Entropy, S(0.5)Entrop, S(3,-3)Entropy
S(1.0)SumEntrp, S(0.2)Entropy, S(0.5)SumEntrp, S(4.0)SumEntrp, S(3.0)SumEntrp,
S(3.0)SumOfSqs, S(4.0)SumOfSqs, S(0.5)SumOfSqs, S(5,-5)SumOfSqs
S(2,-2)SumAverg, S(3,-3)SumAverg, S(0.3)SumAverg, S(0.5)SumAverg, S(0.4)SumAverg
S(1.1)SumVarnc, S(3.0)SumVarnc, S(5,-5)SumVarnc,
S(0.3)InvDfMom, S(1.0)InvDfMom, S(4,-4)InvDfMom, S(5.0)InvDfMom, S(0.1)InvDfMom,
S(5.5)DifEntrp, S(4.4)DifEntrp, S(1,-1)DifEntrp, S(0.1)DifEntrp, S(2.0)DifEntrp, S(1.0)DifEntrp
S(3.3)DifVarnc, S(1,-1)DifVarnc, S(2,-2)DifVarnc, S(5,-5)DifVarnc, S(2.0)DifVarnc

run-length matrix
(RUN)
2 D and 3 D

run-length non-uniformity, gray-
level non-uniformity, long run em-
phasis, short run emphasis, frac-
tion of image in runs; (for four
angles)

Vertl_GLevNonU,,45dgr_GLevNonU, Horzl_GLevNonU, 135dr_GLevNonU, Z_GLevNonU
Vertl_RLNonUni, 45dgr_RLNonUni,135dr_RLNonUni
Vertl_LngREmph, 45dgr_LngREmph, Horzl_LngREmph, 135dr_LngREmph
Vertl_ShrtREmp, 45dgr_ShrtREmp, Horzl_ShrtREmp, 135dr_ShrtREmp
Vertl_Fraction, 45dgr_Fraction, Horzl_Fraction, 135dr_Fraction, Z_Fraction

absolute gradient
(GRA)
2 D

gradient mean, variance, skew-
ness, kurtosis, non-zeros

GrMean
GrVariance
GrSkewness
GrKurtosis
GrNonZeros

autoregressive model
(ARM)
2 D

theta 1 to 4, sigma Teta1, Teta2, Teta3, Teta4
Sigma

wavelet transform
(WAV)
2 D

energies of wavelet transform
coefficients in sub-bands LL,LH,
HL,HH; (for three subsampling
factors)

WavEnLL_s-1, WavEnLL_s-2,, WavEnLL_s-3, WavEnLL_s-4
WavEnLH_s-1, WavEnLH_s-2, WavEnLH_s-3
WavEnHL_s-1, WavEnHL_s-2, WavEnHL_s-3, WavEnHL_s-4
WavEnHH_s-1, WavEnHH_s-2, WavEnHH_s-3
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diagnosed with (SCC) squamous cell carcinoma (n =31; 21 male,
10 female;●" Table 3).

SCC – comparison of vendors and field strength
Considerable differences in terms of texture features were ob-
served between the squamous cell carcinomas at 1.5 and 3 Te-
sla. Discrimination based on 2D texture features extracted from
T1-weighted sequences produced misclassification numbers of
12.9 % for POE+ACC, and 19.35% for MI. We found a lowmisclas-
sification rate only for MI (19.35%). Similar results were found
in the analysis of the T1-weighted sequences with the 3D ROI
(correctly classified data vectors [percentages] and the list of
the 10 extracted features are listed in●" Table 4). For the discri-
mination of SCC, mutual information coefficients proved to be
the most effective method.

Table 3 Histologic subgroups.

Tab. 3 Pathologien.

histologic subgroup number of patients

benign
tumors
n = 46

cysts 8

inflammatory mass/abscess 5

parotid tumor 9

glomus tumor 9

vascular lesion/malformation 5

schwannoma 4

other 6

malignant
tumors
n = 54

squamous cell carcinoma 31

lymphoma 8

adenoid cystic carcinoma 5

adenocarcinoma 4

other 6

Table 4 List of correctly classified data vectors and the texture feature subset best suited for the discrimination of SCC at 1.5 and 3.0 Tesla.

Tab. 4 Korrekt klassifizierte Datenvektoren und Texturparameter Subset für die Unterscheidung von Plattenepithelkarzinomen bei 1,5 und 3 Tesla.

sequence fisher POE+ACC MI

2 D T1-TSE 18/31 or 58.06 % 27/31 or 87.1 % 25/31 or 80.65 %

features 1 Perc.01 %
2 S(5.5)DifEntrp
3 Perc.10 %
4 Mean
5 Perc.90 %
6 Perc.50 %
7 Perc.99 %
8 Vertl_RLNonUni
9 S(4.4)DifEntrp
10 Vertl_ShrtREmp

1 Vertl_RLNonUni
2 Perc.50 %
3 Vertl_ShrtREmp
4 Mean
5 Perc.10 %
6 S(5.5)DifEntrp
7 Perc.90 %
8 S(4.4)DifEntrp
9 Perc.01 %
10 Perc.99 %

1 S(4.4)DifEntrp
2 S(1,-1)DifEntrp
3 S(3.0)Entropy
4 S(0.3)SumAverg
5 S(0.5)SumAverg
6 S(0.3)InvDfMom
7 135dr_Fraction
8 135dr_ShrtREmp
9 S(2,-2)SumAverg
10 S(3,-3)SumAverg

without gray-level histogram features 24/31 or 77.42 % 21/31 or 67.7 % 25/31 or 80.65 %

features 1 S(5.5)DifEntrp
2 Vertl_RLNonUni
3 S(4.4)DifEntrp
4 Vertl_ShrtREmp
5 S(5.5)Entropy
6 S(5.0)Correlat
7 Vertl_LngREmph
8 45dgr_ShrtREmp
9 S(3.3)DifVarnc
10 Vertl_Fraction

1 Vertl_GLevNonU
2 WavEnHL_s-2
3 Vertl_ShrtREmp
4 Vertl_RLNonUni
5 WavEnLH_s-2
6 Vertl_LngREmph
7 S(3.0)Entropy
8 WavEnLL_s-1
9 WavEnHH_s-1
10 Vertl_Fraction

1 S(4.4)DifEntrp
2 S(1,-1)DifEntrp
3 S(3.0)Entropy
4 S(0.3)SumAverg
5 S(0.5)SumAverg
6 S(0.3)InvDfMom
7 135dr_Fraction
8 135dr_ShrtREmp
9 S(2,-2)SumAverg
10 S(3,-3)SumAverg

T2-TSE fs 14/18 or 77.78 % 12/18 or 66.66 % 16/18 or 88.9 %

features 1 45dgr_ShrtREmp
2 45dgr_Fraction
3 S(5,-5)Correlat
4 S(2,-2)Correlat
5 S(5,-5)Entropy
6 WavEnHL_s-1
7 S(5,-5)SumEntrp
8 45dgr_LngREmph
9 S(1,-1)Correlat

1 Vertl_GLevNonU
2 S(2,-2)AngScMom
3 WavEnHL_s-2
4 Variance
5 Vertl_ShrtREmp
6 WavEnHL_s-1
7 WavEnLH_s-3
8 WavEnLL_s-4
9 Vertl_RLNonUni
10 WavEnHH_s-1

1 S(3,-3)AngScMom
2 S(2,-2)Entropy
3 S(1.0)SumEntrp
4 S(0.2)Entropy
5 S(2,-2)AngScMom
6 S(4,-4)Entropy
7 S(0.5)Entropy
8 S(3,-3)Entropy
9 S(0.5)SumEntrp
10 S(1,-1)Correlat

3 D T1-TSE 24/31 or 77.42 % 24/31 or 77.42 % 25/31 or 80.65 %

features 1 Vertl_ShrtREmp
2 Vertl_GLevNonU
3 135dr_GLevNonU
4 Vertl_Fraction
5 45dgr_GLevNonU
6 Z_GLevNonU
7 Vertl_LngREmph
8 Horzl_GLevNonU
9 S(1,-1.0)DifEntrp
10 S(1,-1.0)DifVarnc

1 S(0.1.0)InvDfMom
2 Horzl_LngREmph
3 135dr_GLevNonU
4 GrKurtosis
5 GrMean
6 GrNonZeros
7 GrSkewness
8 GrVariance
9 Vertl_LngREmph
10 Vertl_GLevNonU

1 Vertl_ShrtREmp
2 Vertl_Fraction
3 Vertl_LngREmph
4 135dr_Fraction
5 Perc.01 %3 D
6 135dr_ShrtREmp
7 Perc.90 %3 D
8 Mean3 D
9 Perc.50 %3 D
10 Perc.99 %3 D
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We also found textural differences between the three different
vendors (GE, Siemens, and Philips) for the 2D ROIs on the T1-
weighted sequence, with the following correctly classified data
vectors: 26/31 or 83.87% for Fisher (41.94% without gray-level
histogram features); 24/31 or 77.42% for POE+ACC; and 28/31 or
90.32% for MI (80.65% without gray-level histogram features).

Discrimination of benign and malignant tumors
For the discrimination of benign and malignant lesions, STIR and
T2-weighted images contained themost relevant texture features
for 2D evaluation. For 3D texture-based analysis, only contrast-
enhanced, T1-weighted imageswith fat saturation had a lowmis-
classification rate.●" Table 5 shows the results for the LDA of the
comparison between benign and malignant tumors.

Table 5 List of correctly classified data vectors and the texture feature subset best suited for the discrimination of benign and malignant tumors.

Tab. 5 Korrekt klassifizierte Datenvektoren und Texturparameter Subset für die Unterscheidung von benignen und malignen Raumforderungen.

sequence fisher POE+ACC MI

2 D T1-TSE 51/97 or 52.58 % 60/97 or 38.14 % 50/97 or 48.45 %

features 1 S(2,-2)Correlat
2 S(1.1)Correlat
3 S(2.2)Correlat
4 S(5.0)Correlat
5 S(3.3)DifVarnc
6 S(1,-1)Correlat
7 S(2,-2)DifVarnc
8 S(0.1)Correlat
9 S(3,-3)DifVarnc
10 S(5,-5)DifVarnc

1 Vertl_RLNonUni
2 WavEnLH_s-3
3 Variance
4 Vertl_LngREmph
5 WavEnLL_s-1
6 Vertl_GLevNonU
7 WavEnHL_s-1
8 Vertl_ShrtREmp
9 WavEnHH_s-1
10 S(3.3)DifVarnc

1 S(2,-2)Correlat
2 S(3.0)Contrast
3 Vertl_RLNonUni
4 Vertl_GLevNonU
5 S(5,-5)DifVarnc
6 WavEnHH_s-2
7 S(1.1)SumVarnc
8 S(2.0)DifVarnc
9 S(2.2)DifVarnc
10 S(4,-4)InvDfMom

STIR 19/31 or 61.29 % 20/31 or 64.52 % 25/31 or 80.65 %

features 1 S(0.1)Correlat
2 Vertl_ShrtREmp
3 Vertl_Fraction
4 S(0.1)InvDfMom
5 WavEnHL_s-2
6 S(1.0)InvDfMom
7 WavEnHL_s-1
8 S(1,-1)Correlat
9 Vertl_LngREmph
10 WavEnHH_s-3

1 Vertl_Fraction
2 WavEnHL_s-4
3 Variance
4 WavEnHH_s-2
5 WavEnHL_s-1
6 Vertl_LngREmph
7 Vertl_RLNonUni
8 Vertl_ShrtREmp
9 WavEnLL_s-3
10 S(3,-3)Correlat

1 WavEnHL_s-4
2 S(0.1)Correlat
3 WavEnLH_s-1
4 S(4.0)SumEntrp
5 S(1.1)DifEntrp
6 S(1,-1)AngScMom
7 S(3.0)SumEntrp
8 WavEnHH_s-3
9 S(1,-1)Correlat
10 S(3.3)Correlat

Ce T1 35/48 or 77.92 % 36/48 or 75 % 27/48 or 56.25 %

features 1 Skewness
2 S(1.1)Correlat
3 S(0.1)Correlat
4 S(5.5)AngScMom
5 Perc.01 %
6 WavEnLH_s-3
7 S(1.1)AngScMom
8 S(0.2)AngScMom
9 S(1,-1)Contrast
10 S(3.3)Correlat

1 Vertl_GLevNonU
2 Vertl_LngREmph
3 WavEnLL_s-3
4 Variance
5 WavEnLL_s-2
6 Vertl_ShrtREmp
7 Vertl_RLNonUni
8 WavEnHH_s-3
9 WavEnHL_s-3
10 S(3.0)SumOfSqs

1 S(1,-1)DifEntrp
2 S(2,-2)SumEntrp
3 S(4.0)SumEntrp
4 S(3.0)SumVarnc
5 S(0.3)SumEntrp
6 S(0.1)DifEntrp
7 S(2.0)DifEntrp
8 S(4.0)SumOfSqs
9 S(5.0)InvDfMom
10 S(0.1)InvDfMom

T2-TSE 18/22 or 81.82 % 22/22 or 100 %

features 1 Teta4
2 Teta3
3 Teta2
4 Teta1
5 Sigma
6 S(3.3)Contrast
7 S(1.0)DifEntrp
8 S(4,-4)InvDfMom
9 S(0.1)DifEntrp
10 S(1.0)InvDfMom

1WavEnHH_s-3
2 WavEnHH_s-1
3 WavEnHL_s-2
4 WavEnHL_s-1
5 Vertl_LngREmph
6 WavEnHL_s-3
7 WavEnLH_s-1
8 WavEnLH_s-3
9 Vertl_RLNonUni
10 Vertl_GLevNonU

1 S(2,-2)InvDfMom
2 S(0.1)DifEntrp
3 WavEnLH_s-1
4 WavEnHH_s-3
5 WavEnHL_s-2
6 S(3.3)InvDfMom
7 S(1,-1)DifEntrp
8 S(4.4)InvDfMom
9 S(4.0)DifVarnc
10 S(2.2)Contrast

T2-TSE fs 36/46 or 78.26 % 33/46 or 71.74 % 34/46 or 73.91 %

features 1 GrKurtosis
2 S(5.0)DifVarnc
3 S(5.0)Contrast
4 S(5,-5)SumVarnc
5 S(0.1)DifVarnc
6 S(5.0)SumOfSqs
7 S(5,-5)DifVarnc
8 S(4.0)DifVarnc
9 S(5,-5)SumOfSqs
10 WavEnHH_s-1

1 WavEnHH_s-1
2 WavEnLL_s-3
3 Variance
4 Vertl_GLevNonU
5 Vertl_LngREmph
6 WavEnHH_s-3
7 WavEnLL_s-2
8 Vertl_RLNonUni
9 WavEnLH_s-3
10 S(4,-4)Correlat

1 S(4.4)AngScMom
2 GrKurtosis
3 S(0.2)DifEntrp
4 S(0.1)AngScMom
5 S(0.1)DifVarnc
6 S(0.2)Correlat
7 S(0.1)Contrast
8 S(4.4)DifEntrp
9 S(3.3)AngScMom
10 S(5.5)Entropy

Fruehwald-Pallamar J et al. Texture-Based Analysis of… Fortschr Röntgenstr 2016; 188: 195–202

Technical Innovations 199

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Table 5 (Continuation)

sequence fisher POE+ACC MI

ce T1-TSE fs 26/43 or 80.47 % 20/43 or 46.51 % 25/43 or 58.14 %

features 1 S(4.4)Correlat
2 S(3.0)Correlat
3 S(2.0)Correlat
4 S(1.0)DifVarnc
5 S(5.0)Correlat
6 S(3.3)Correlat
7 S(1.0)Contrast
8 S(1.0)Correlat
9 45dgr_Fraction
10 S(4.4)Contrast

1 Variance
2 WavEnLL_s-1
3 Vertl_RLNonUni
4 WavEnHH_s-1
5 Vertl_LngREmph
6 Vertl_GLevNonU
7 WavEnLL_s-2
8 Vertl_ShrtREmp
9 WavEnHL_s-1
10 S(2.0)Correlat

1 S(0.5)InvDfMom
2 S(4.4)DifEntrp
3 S(0.3)SumAverg
4 S(0.4)SumAverg
5 S(0.5)Entropy
6 S(0.5)SumAverg
7 S(0.5)SumOfSqs
8 S(0.4)InvDfMom
9 S(3.0)Correlat
10 S(2.0)SumAverg

3 D T1-TSE 40/96 or 41.67 % 45/96 or 46.88 % 43/96 or 44.79 %

features 1 Vertl_ShrtREmp
2 Vertl_GLevNonU
3 Vertl_LngREmph
4 Horzl_GLevNonU
5 45dgr_LngREmph
6 45dgr_GLevNonU
7 45dgr_Fraction
8 135dr_GLevNonU
9 Vertl_Fraction
10 Vertl_RLNonUni

1 45dgr_LngREmph
2 Vertl_LngREmph
3 Horzl_LngREmph
4 135dr_LngREmph
5 Vertl_GLevNonU
6 Horzl_GLevNonU
7 Horzl_Fraction
8 45dgr_ShrtREmp
9 Vertl_Fraction
10 135dr_GLevNonU

1 Horzl_Fraction
2 Horzl_ShrtREmp
3 Horzl_LngREmph
4 45dgr_RLNonUni
5 135dr_GLevNonU
6 Vertl_GLevNonU
7 45dgr_LngREmph
8 135dr_LngREmph
9 Horzl_GLevNonU
10 135dr_RLNonUni

ce T1-TSE 27/52 or 51.92 % 32/52 or 61.54 % 29/52 or 55.77 %

features 1 45dgr_ShrtREmp
2 45dgr_Fraction
3 S(0.0.1)AngScMom
4 S(1.0.0)Contrast
5 S(1.0.0)InvDfMom
6 S(0.0.1)SumVarnc
7 S(1.0.0)DifVarnc
8 S(1.1.0)Correlat
9 S(0.0.1)SumOfSqs
10 S(0.0.1)InvDfMom

1 S(1.0.0)Correlat
2 135dr_RLNonUni
3 Z_LngREmph
4 S(0.0.1)InvDfMom
5 Skewness3 D
6 S(0.0.1)Correlat
7 Vertl_LngREmph
8 Kurtosis3 D
9 Mean3 D
10 45dgr_LngREmph

1 45dgr_Fraction
2 45dgr_LngREmph
3 135dr_ShrtREmp
4 Kurtosis3 D
5 Horzl_Fraction
6 45dgr_ShrtREmp
7 Vertl_ShrtREmp
8 Vertl_Fraction
9 S(0.0.1)SumAverg
10 Skewness3 D

T2-TSE 17/26 or 65.38 % 15/26 or 57.69 % 13/26 or 50.00 %

features 1 45dgr_LngREmph
2 45dgr_Fraction
3 Vertl_Fraction
4 Vertl_ShrtREmp
5 45dgr_ShrtREmp
6 Vertl_LngREmph
7 Horzl_ShrtREmp
8 Horzl_Fraction
9 135dr_LngREmph
10 135dr_Fraction

1 Horzl_GLevNonU
2 Skewness3 D
3 Vertl_LngREmph
4 Z_Fraction
5 Perc.01 %3 D
6 S(0.0.1)Correlat
7 Vertl_GLevNonU
8 45dgr_LngREmph
9 Z_LngREmph
10 45dgr_Fraction

1 45dgr_LngREmph
2 Perc.01 %3 D
3 Horzl_Fraction
4 45dgr_Fraction
5 Z_Fraction
6 45dgr_ShrtREmp
7 Z_LngREmph
8 Horzl_LngREmph
9 Horzl_ShrtREmp
10 Z_ShrtREmp

T2-TSE fs 30/44 or 68.18 % 32/44 or 72.73 % 32/44 or 72.73 %

features 1 Z_LngREmph
2 Horzl_LngREmph
3 135dr_LngREmph
4 S(0.0.1)Correlat
5 S(0.0.1)SumAverg
6 GrVariance
7 GrSkewness
8 GrKurtosis
9 GrNonZeros
10 GrMean

1 S(0.1.0)Correlat
2 S(0.0.1)Correlat
3 S(1.0.0)Contrast
4 Vertl_ShrtREmp
5 Skewness3 D
6 Horzl_Fraction
7 S(1.1.0)Correlat
8 Z_GLevNonU
9 Kurtosis3 D
10 Horzl_LngREmph

1 Variance3 D
2 Z_ShrtREmp
3 Z_Fraction
4 Horzl_LngREmph
5 Z_LngREmph
6 Vertl_ShrtREmp
7 Skewness3 D
8 Vertl_RLNonUni
9 135dr_LngREmph
10 Horzl_Fraction

ce T1-TSE fs 24/41 or 58.54 % 35/41 or 85.37 %* 29/41 or 70.73 %

features 1 S(0.1.0)Correlat
2 S(1.0.0)Correlat
3 S(1.1.0)Correlat
4 S(1,-1.0)Correlat
5 45dgr_ShrtREmp
6 S(0.0.1)SumAverg
7 Z_ShrtREmp
8 45dgr_Fraction
9 S(0.0.1)SumEntrp
10 S(0.0.1)DifEntrp

1 135dr_ShrtREmp
2 S(1,-1.0)Correlat
3 Perc.10 %3 D
4 Z_GLevNonU
5 Kurtosis3 D
6 45dgr_ShrtREmp
7 Vertl_LngREmph
8 S(1.0.0)Correlat
9 135dr_GLevNonU
10 Perc.01 %3 D

1 135dr_GLevNonU
2 135dr_RLNonUni
3 S(0.0.1)Correlat
4 Perc.01 %3 D
5 45dgr_Fraction
6 Horzl_ShrtREmp
7 135dr_ShrtREmp
8 Horzl_Fraction
9 Z_GLevNonU
10 S(0.1.0)Correlat
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We then decided to analyze the 2D ROI of benign and malignant
tumors at 1.5 and 3.0 Tesla separately. This analysis showed bet-
ter results in the discrimination between benign and malignant
tumors. For the T1-weighted images, we found 41/49 or 83.67%
correctly classified data vectors at 3 T with MI. The contrast-en-
hanced, T1-weighted images with fat saturation at 1.5 T had
86.67% (or 26/30) correctly classified data vectors. For the T2-
weighted images with fat saturation (fs), all vectors were correct-
ly classified at 3 T, with 81.48% (Fisher), and, at 1.5 T, 92.59% (POE
+ACC – and MI) were correctly classified (n =27).
Additionally, we analyzed the 2D ROI on axial STIR images of a
single 3T unit (n =28). All vectors were correctly classified in
71.43% vs. 68.82% (n=31) for Fisher, POE+ACC and MI – in detail:
16/28 for Fisher; 18/28 for POE+ACC, and 22/28 for MI.

Discussion
!

In contrast to the published literature about the application of
texture-based analysis in phantoms and in patients examined
on one scanner with the same protocol, our data show that,
when using different MR protocols on different MR scanners
(field-strength, vendor), texture-based analysis is not practical
for the differentiation between benign and malignant head and
neck tumors. Although we found discriminating features for
STIR and T2-weighted images, the number of correctly classified
data vectors was not sufficient to implement this technique in
the routine evaluation of MR images.
Several studies have shown the successful use of texture-based
analysis in the brain [11, 12], the liver [3, 10], and muscle [13].
Herlidu-Meme et al. performed MR imaging at three sites, but
with the same brand and field-strength MR unit [14]. Jirak et
al. performed phantommeasurements on six differentMR scan-
ners, all using identical MR parameters for the acquisition pro-
tocol [15]. In a recently published study, Fruehwald-Pallamar et
al. were able to discriminate between benign and malignant
parotid tumors based on texture analysis [5] – notably, using
images obtained using a single MR unit and identical protocol.
Contrary to the above described successful applications of tex-
ture analysis with (more or less) uniform scanning conditions,
previous studies indicated considerable influence of protocol
heterogeneity. In two articles Lerski et al. reported that tex-
ture-based information extracted from foam test objects was
susceptible to the choice of MR protocol and scanner [16, 17].
Mayerhoefer et al. showed in a phantom study that texture fea-
tures (especially COC and RUN) are sensitive to variations in the
scanned protocol (matrix size, TR, TE, and number of acquisi-
tions) [7].
To our knowledge, texture-based analysis has not been applied
for the analysis of different tissue types (different kinds of head
and neck masses) in a multicenter study. In the present study,
routine MR images were obtained on several MR units, with
similar imaging protocols (plane, and the use of fat saturation),
but with each center using its own acquisition parameters. This
was done to determine the clinical value of this technique and
to analyze which texture feature subset and extraction method
would perform best under given conditions. Therefore, we also
tried to acquire a large collective of 100 patients.
Our clinical data resemble the phantom data from the above-
mentioned study by Lerski et al. because the texture features
extracted from SCC clearly differed between examinations per-
formed at different field strengths, and also between images ob-

tained from scanners by different vendors [16]. For instance, our
classifier was able to differentiate between the SCC at 1.5 and
the SCC at 3 Tesla in almost 90% of the cases, based on texture
features extracted from T2 TSE fs images. It is quite possible that
the strong influence of acquisition parameters affected the tex-
ture-based discrimination of benign and malignant head and
neck tumors in our study. When performing the analysis with
the data of one scanner (benign vs. malignant lesions on one
3T unit), we were able to increase the correctly classified data
vectors by 3% for axial STIR images. Our results were generally
less favorable than those reported by Fruehwald-Pallamar et al.
[5] in a single-center study using 2D texture features. Notably,
our results indicate that 3D texture features are not superior to
a 2D evaluation of a single slice for head and neck masses—this
topic has not been evaluated thus far in a clinical setting. For a
possible future introduction into routine clinical practice, and
also for clinical trials involving texture analysis, we recommend
that only data from a single scanner are used, in order to avoid
an incalculable influence from hardware specifications. Fur-
thermore, 2D evaluation is less time-consuming, and therefore,
more practical, while providing results comparable to 3D eval-
uation, where every slice of the tumor has to be processed.
We note the limitations of our study: There were minor acquisi-
tion parameter differences, even between comparable pulse se-
quences obtained by the different scanners, as mentioned
above.
In conclusion, texture-based analysis has the potential to help
with the discrimination of benign and malignant head and neck
tumors when performed on the same scanner with an identi-
cal protocol. We cannot recommend the application of texture-
based analysis in a multicenter study with different types of
scanners and varying acquisition parameters.

Clinical relevance

Sincemorphological sequences alone often do not allow a cor-
rect diagnosis of different types of tumors in the head-neck-
region, it is of great help for radiologists to have additional
information to generate the correct diagnosis. Texture-based
analysis is a tool, which has the potential to help with the dis-
crimination between benign and malignant head and neck
tumors, provided that the examinations take place on one
specific machine with a defined protocol.
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