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Abstract It is well known that high von Willebrand factor (VWF) and factor VIII (FVIII) levels are
associatedwith an increased riskof cardiovascular disease. It is still debatedwhetherVWFand
FVIII are biomarkers of endothelial dysfunction and atherosclerosis or whether they have a
direct causative role. Therefore, we aimed to unravel the pathophysiological pathways of
increasedVWFand FVIII levels associatedwith cardiovascular risk factors. First, we performed
a randomized controlled trial in 34Göttingenminiswine. Diabetesmellitus (DM)was induced
with streptozotocin andhypercholesterolemia (HC) via a high-fat diet in 18 swine (DMþHC),
while 16 healthy swine served as controls. After 5 months of follow-up, FVIII activity (FVIII:C)
was significantly higher in DMþHC swine (5.85 IU/mL [5.00–6.81]) compared with controls
(4.57 [3.76–5.40], p¼0.010), whereas VWFantigen (VWF:Ag) was similar (respectively 0.34
IU/mL [0.28–0.39] vs. 0.34 [0.31–0.38], p¼0.644). DMþHC swine had no endothelial
dysfunction or atherosclerosis during this short-term follow-up. Subsequently, we performed
a long-term (15months) longitudinal cohort study in 10 Landrace–Yorkshire swine, in five of
which HC and in five combined DMþHC were induced. VWF:Ag was higher at 15 months
compared with 9 months in HC (0.37 [0.32–0.42] vs. 0.27 [0.23–0.40], p¼0.042) and
DMþHC (0.33 [0.32–0.37] vs. 0.25 [0.24–0.33], p¼ 0.042). Both long-term groups had
endothelial dysfunction compared with controls and atherosclerosis after 15 months. In
conclusion, short-term hyperglycemia and dyslipidemia increase FVIII, independent of VWF.
Long-term DM and HC increase VWF via endothelial dysfunction and atherosclerosis.
Therefore, VWF seems to be a biomarker for advanced cardiovascular disease.
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Introduction

von Willebrand factor (VWF), which is mainly produced in
endothelial cells, is a prohemostatic protein with an impor-
tant role in hemostasis.1,2 The primary function of VWF is to
mediate platelet adhesion and aggregation.1,2 VWF is also a
carrier protein for factor VIII (FVIII), and thereby prevents
FVIII degradation. Consequently, plasma levels of VWF and
FVIII are strongly correlated.1,2

It is known from large-population studies that high VWF
levels are associated with an increased risk of cardiovascular
disease, such as acute myocardial infarction and ischemic
stroke, worse outcome of cardiovascular disease, and cardio-
vascularmortality.3–7VWFandFVIII levelshavebeenshownto
be influenced by genetic factors, age, blood group, physical
stress, and several other environmental factors.8–10 For deca-
des it was thought that aging directly leads to an increase in
VWFandFVIII levels.8,9,11,12However, recentlywehave shown
that incidenceofcomorbidities such asdiabetesmellitus (DM),
hypertension, cancer, and thyroid dysfunction at an older age
mayexplain theassociationbetweenaging and increasedVWF
and FVIII levels.10 Nevertheless, due to the cross-sectional
design of that study, it could not be determinedwhether there
was a causal relation between comorbidities and the increase
in VWF and FVIII levels. Moreover, we could not investigate
whether comorbidities directly lead to an increase in VWFand
FVIII levels, or whether this occurs secondary to endothelial
dysfunction or atherosclerosis. Indeed, previous studies found
that VWF levelswere associatedwith carotid artery and aortic
arch calcification, suggesting that increasedVWF levelsmaybe
the result of endothelial dysfunction or atherosclerosis.5,6

Since the association between VWF and cardiovascular
disease and mortality is still not fully understood, it is impor-
tant togainmore insight into thepathophysiological pathways
linking cardiovascular risk factors with the increase in VWF
and FVIII levels.13–15 On one hand, increased VWF and FVIII
levels may be strong, independent risk factors for cardiovas-
cular disease and mortality.14,15 On the other hand, the
association between increased VWF and FVIII levels and
cardiovascular disease andmortality may be partly confound-
ed by comorbidities, such as DM and hypercholesterolemia
(HC), which are also well-established risk factors for cardio-
vascular disease and mortality.13 Moreover, it is still debated
whether increased VWF and FVIII levels lead to endothelial
dysfunction and atherosclerosis or vice versa.13 The large
population studies on which most of our current knowledge
about the association between VWF and cardiovascular dis-
ease and mortality are based could not determine the patho-
physiological pathways underlying the association between
VWF, endothelial dysfunction, atherosclerosis, and cardiovas-
cular disease and outcomes. Knowledge about these pathways
may contribute to a better understanding of previous studies
and to establish whether VWF is merely a biomarker for
endothelial dysfunction and atherosclerosis or whether it
has a direct causative role, making it suitable as a drug target
for prevention or treatment of cardiovascular disease.13

To address these questions, we first investigated the
pathophysiological pathways of the comorbidity-related in-

crease of VWF and FVIII levels in a randomized controlled
trial (RCT) design in swine with short-term (5 months)
DMþHC, to study the direct effects of these comorbidities
on VWF and FVIII levels, at a time when endothelial dysfunc-
tion and atherosclerosis were still absent. Subsequently, we
studied VWF levels in swine exposed to longer term (15
months) DMþHC at a time when endothelial dysfunction
and atherosclerosis were present.

Methods

We studied two cohorts of swine. In the first cohort Göttin-
gen miniswine were subjected to 5 months of DMþHC,
while in the second cohort Landrace–Yorkshire farm swine
were subjected to 15 months of DMþHC or HC alone. All
experiments were conducted in a time period of 20 months,
animals were ordered in groups of eight or nine animals, and
each group was evenly randomized to prevent selection bias
and minimize the possibility of time-dependent confound-
ing. All experiments were performed in accordance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals (eighth edition, National Research Coun-
cil, Washington, DC, The National Academies Press, 2011)
and were approved by the Animal Care Committee at Eras-
mus Medical Center.

Short-Term Cohort

Induction of Metabolic Derangement in Swine
A total of 34 adult male Göttingen miniswine (Ellegaard
Göttingen Miniswine A/S, Dalmose, Denmark) were enrolled
in the first part of the study. Swine were randomized into an
experimental group inwhichDMandHCwere induced, and a
control group which continued on normal swine chow. DM
was induced with intravenous injections of streptozotocin
(25mg/kg/d), over 3 days (total dose: 75mg/kg) as previously
described.16 One week later an isocaloric high-fat and high-
sugar diet (25% of saturated fats, 1% of cholesterol, 10%
sucrose, and 15% fructose) was gradually introduced in these
swine.16 Swine were group-housed with a separate individ-
ual access to food for 1 hour/meal, twice daily for the entire
study duration, and ad libitum access to water. All swine
were followed up for 5months, to study the short-term effect
of DMþHC on VWF and FVIII levels.

Of note, after 3 months of follow-up, both control and
DMþHC groups were further subdivided into a subgroup
exposed to exercise training and a sedentary subgroup. Since
exercise training did not influence the results and conclu-
sions of the current study, we pooled the exercised and
sedentary swine, and present the results for the pooled
DMþHC and pooled control group. The influence of exercise
on VWF and FVIII levels are presented in ►Supplementary

Table S1 (available in the online version).

Plasma Metabolic, VWF, and FVIII Laboratory
Measurements
Venous blood samples were obtained from lightly sedated
animals by insertion of a 20 Gauge Venflon into an ear vein.
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Blood was collected in a heparin-coated collecting tube at
fasting state at baseline, 3-month, and 5-month (termina-
tion) time points, and analyzed for glucose, triglyceride, and
cholesterol using standardized human protocols at the clini-
cal chemical laboratory of the Erasmus Medical Center,
Rotterdam. Venous blood samples were also collected in
collecting tubes containing 3.2% trisodium citrate, centri-
fuged, and stored at �80°C for analyses of VWF and FVIII.
VWF antigen (VWF:Ag) was measured with an in‐house
enzyme‐linked immunosorbent assay using polyclonal rab-
bit anti‐human VWF antibodies (DakoCytomation, Glostrup,
Denmark). It has previously been shown that human VWF
assays can be used tomeasure VWF inporcine plasma.17 FVIII
activity (FVIII:C) was measured using a one‐stage clotting
assay on the Sysmex CS-5100 (Siemens).

Hemodynamic Assessments, Coronary Angiography, and
Cardiac Tissue Sampling and Analyses
After 5 months (at termination), animals were sedated with
zoletil (Tiletamine/Zolazepam; 5mg/kg intramuscular),
rompun (xylazine; 2.25mg/kg intramuscular), and atropine
(2mL intramuscular), anesthetized with pentobarbital (20
mg/kg intravenous) and artificially ventilated. Thereafter, a
9F sheath was placed in the left carotid artery and a standard
clinical guiding catheter (JL3.5, Boston Scientific) was ad-
vanced through the carotid artery to the coronary ostium for
angiography of the coronary arteries using iodixanol as a
contrast agent (Visipaque, GE Healthcare BV, Eindhoven, The
Netherlands). Following thoracotomy, hearts were arrested,
immediately excised ,and quickly washed in cold saline
solution and then the apex was placed in ice-cold, oxygenat-
ed Krebs bicarbonate buffer solution. Subsequently, epicar-
dial small coronary arteries (�300µm diameter) were
isolated of both groups for functional experiments. The large
coronary arteries were fixed in 4% buffered formaldehyde,
embedded in paraffin, and stained with resorcin-fuchsin to
assess atherosclerosis development in both groups.

Microvascular Function In Vitro
The isolated segments were studied in vitro in a Mulvany
wire myograph (DMT, Aarhus, Denmark) as previously de-
scribed.18 In short, after a 30-minute stabilization period,
vessels were normalized to 90% of the estimated diameter at
100 mmHg effective transmural pressure. Thereafter, the
vascular segments were depolarized by 100mM KCl (Sigma-
Aldrich, Zwijndrecht, The Netherlands) to determine the
maximal contractile response of the small-artery segments.
Subsequently, vasodilator or vasoconstrictor responses to
various substances (all bought from Sigma-Aldrich) were
acquired using separate, but in vivo adjacently positioned,
segments. Endothelium-dependent vasodilationwas studied
by measurement of vasodilation in response to bradykinin
(BK 10�8 M) following preconstriction by the thromboxane
A2 analog U46619 (10�6 M). Endothelium-independent va-
sodilation was studied in separate small-artery segments by
measuring the vasodilatory response to the exogenous NO-
donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP 10�7 M).
In additional small-artery segments, vasoconstriction to

endothelin-1 (ET-1 10�8 M) was measured. Previous re-
search studies fromour group and others have demonstrated
a group size of five to eight swine to be sufficient to detect
biological relevant differences in coronary microvascular
function (80% confidence, two-tailed test, α ¼ 0.05).18–23

Long-Term Longitudinal Cohort
The longitudinal cohort was described in detail previously.18

Briefly, 10 Landrace–Yorkshire swine were included in the
study at 3 months of age. In five swine DMwas induced with
a single intravenous injection of streptozotocin (140–180
mg/kg). In the DM swine and the remaining five swine
without DM, HC was induced with a high-fat and high-sugar
diet, as described above. Food intake was monitored for each
animal separately and titrated to maintain growth at ap-
proximately 1.5 kg/week. After 9, 12, and 15 months of
exposure to HC or DMþHC, arterial citrate plasma samples
were collected to measure VWF:Ag, and coronary angio-
gramswere recorded, as described above. After 15months of
induction of DMþHC, animals were terminated and micro-
vascular function and large coronary atherosclerosis devel-
opment were determined, as described above. Additionally,
12 fresh slaughterhouse swine hearts were collected as
controls to assess small coronary artery function.

Statistical Analysis
Continuous data are presented as median and interquartile
range (IQR; in square brackets), whereas categorical data are
presented as frequency and proportion (in first parentheses).
Normality of data was visually assessed with histograms.
Because VWF:Ag and FVIII:C were not normally distributed,
nonparametric tests were used. The Mann–Whitney U test
was used to analyze a difference between two independent
groups, whereas the Kruskal–Wallis test was used to analyze
a difference between three groups. A difference between two
related groups was analyzed with the Wilcoxon signed-rank
test.

The correlation between VWFand FVIII was assessedwith
Spearman’s correlation analysis. Outcomes of this analysis
are presented as Spearman’s rho (ρ) and p-value. The associ-
ation between the FVIII:C/VWF:Ag ratio and cholesterol
levels was calculated with linear regression analysis, since
the FVIII:C/VWF:Ag ratio was normally distributed. Out-
comes of linear regression analysis are presented as unstan-
dardized β and p-value.

A p-value below 0.05 was defined as statistically signifi-
cant. Analyses were performed with SPSS Statistics Version
25.0 (IBM Corp. Armonk, New York, United States).

Results

Short-Term Cohort
Thirty-four adult male Göttingen miniswine were included
in our RCT, of which 18 swine were randomized to the
experimental group (DMþHC) and 16 swine to the control
group. At baseline no differencewas observed in age (respec-
tively 19.0 months [16.5–19.0] vs. 18.0 months [15.5–19.0],
p¼0.699; values in median [IQR]), body weight (31.1 kg
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[25.9–36.1] vs. 27.8 kg [ 25.3–37.3], p¼0.931), or in meta-
bolic parameters between DMþHC swine and control swine
(►Table 1). As expected, DMþHC swine demonstrated
robust hyperglycemia and dyslipidemia with triglycerides,
low-density lipoprotein (LDL) cholesterol, high-density lipo-
protein (HDL) cholesterol, total cholesterol, and glucose all
two- to fivefold higher in DMþHC swine compared with
control swine at 3 and 5 months (►Table 1). However,
5 months of exposure to hyperglycemia and dyslipidemia
did not result in coronary atherosclerosis, as evidenced by
the absence of atherosclerosis on the coronary angiograms
and histologic preparations of coronary arteries in DMþHC
and control swine (►Fig. 1).

Microvascular Function
In the coronary small arteries, endothelium-dependent va-
sodilation to BK was similar in DMþHC swine compared
with controls at 5 months (p¼0.497, ►Table 2). Endotheli-
um-independent vasodilation was also similar, as the re-

sponse to NO-donor SNAP was also not different between
groups (p¼0.217). Vasoconstriction to ET-1 resulted also in
similar responses in both groups (p¼0.739). Taken together,
these data show the absence of endothelial dysfunction in
the coronary circulation in swine up to 5 months after
induction of DMþHC.

VWF:Ag and FVIII:C during 5 Months of Follow-Up
VWF:Ag was not different between DMþHC and control
swine at baseline (0.44 IU/mL [0.38–0.50] vs. 0.40 IU/mL
[0.36–0.45], p¼0.171). Also no difference was observed at
3months (0.31 IU/mL [0.29–0.33] vs. 0.33 IU/mL [0.26–0.35],
p¼0.191) or 5 months (0.34 IU/mL [0.28–0.39] vs. 0.34
[0.31–0.38], p¼0.644) of follow-up (►Fig. 2A). Furthermore,
no increase of VWF:Ag was observed between baseline and
5-month follow-up in either group (►Fig. 2A).

FVIII:C remained unchanged over time in controls, where-
as it steadily increased in DMþHC swine, reaching statistical
significance at 5 month follow-up compared with baseline

Table 1 Characteristics of swine enrolled in the short-term RCT

DMþHC (n¼18) Controls (n¼16) p-Valuea

Age at inclusion (mo) 19.0 [16.5–19.0] 18.0 [15.5–19.0] p¼ 0.699

Weight (kg)

Baseline 32.1 [25.9–36.1] 27.8 [25.3–37.3] p¼ 0.931

3 mo 34.0 [30.6–43.8] 34.2 [30.4–39.1] p¼ 0.783

5 mo 37.4 [29.1–42.9] 35.8 [34.1–39.5] p¼ 0.904

Triglycerides (mmol/L)

Baseline 0.24 [0.21–0.31] 0.29 [0.24–0.37] p¼ 0.087

3 mo 0.42 [0.26–1.34] 0.26 [0.25–0.34] p¼ 0.031

5 mo 0.51 [0.27–1.14] 0.25 [0.21–0.30] p¼ 0.001

Total cholesterol (mmol/L)

Baseline 0.90 [0.80–1.10] 0.90 [0.70–1.05] p¼ 0.515

3 mo 5.35 [2.45–8.35] 1.15 [0.83–1.38] p< 0.001

5 mo 5.10 [2.80–6.68] 1.15 [1.00–1.28] p< 0.001

HDL cholesterol (mmol/L)

Baseline 0.58 [0.49–0.63] 0.54 [0.38–0.64] p¼ 0.490

3 mo 2.71 [1.82–3.31] 0.72 [0.64–0.80] p< 0.001

5 mo 2.61 [1.75–3.20] 0.68 [0.61–0.97] p< 0.001

LDL cholesterol (mmol/L)

Baseline 0.38 [0.32–0.51] 0.40 [0.31–0.53] p¼ 0.959

3 mo 2.60 [0.85–5.96] 0.41 [0.34–0.53] p< 0.001

5 mo 2.50 [1.06–4.31] 0.41 [0.34–0.49] p< 0.001

Glucose (mmol/L)

Baseline 4.8 [4.2–6.0] 5.7 [5.3–6.6] p¼ 0.015

3 mo 11.5 [7.7–17.9] 5.7 [4.5–6.4] p< 0.001

5 mo 15.7 [8.1–18.3] 6.3 [4.5–8.4] p< 0.001

Abbreviations: DM, diabetes mellitus; HC, hypercholesterolemia; HDL, high-density lipoprotein; LDL, low-density lipoprotein; RCT, randomized
controlled trial.
Note: Data are presented as median and interquartile range.
aMann–Whitney U test between DMþHC and controls.
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levels (p¼0.026, ►Fig. 2B). As a result, FVIII:C was signifi-
cantly higher in DMþHC swine compared with control
swine at 5-month follow-up (respectively 5.85 IU/mL
[5.00–6.81] vs. 4.57 IU/mL [3.76–5.40], p¼0.010; ►Fig. 2B).

Correlation between VWF:Ag and FVIII:C
At baseline, a strong correlationwas observed between VWF:
Ag and FVIII:C (►Fig. 3A), which was statistically significant
in DMþHC swine (r¼0.63, p¼0.006). At 3-month follow-up

this correlation slightly decreased in DMþHC swine
(r¼0.55, p¼0.027, ►Fig. 3B), and at 5 months this correla-
tion disappeared in DMþHC swine (r¼0.18, p¼0.513),
whereas it was strongly present in controls (r¼0.84,
p<0.001, ►Fig. 3C). This was due to the fact that DMþHC
swinehad relatively higher FVIII:C comparedwithVWF:Ag at
5-month follow-up (►Fig. 3C).

Cholesterol levels were positively associatedwith the FVIII:-
C/VWF:Ag ratio at 3 and 5 months of follow-up (►Fig. 4). The

Fig. 1 No signs of atherosclerosis of coronary arteries in both DMþHC and control swine after 5 months of follow-up. No signs of coronary
atherosclerosis were observed in both groups. Typical examples of (A) coronary angiograms at a left anterior oblique 30° and a cranial 0° view and
(B) resorcin-fuchsin stained large coronary arteries of controls and DMþHC. DM, diabetes mellitus; HC, hypercholesterolemia; VWF, von
Willebrand factor.

Table 2 No difference in coronary endothelial function between DMþHC swine and controls in the short-term RCT

DMþHC (n¼14) Control (n¼ 13) p-Valuea

Bradykininb 71.9% [49.9–90.1] 53.3% [40.6–87.2] p¼ 0.497

SNAPb 34.1% [11.4–60.4] 51.4% [28.5–69.1] p¼ 0.217

ET-1c 55.1% [31.5–78.6] 41.1% [14.2–100.0] p¼ 0.739

Abbreviations: DM, diabetes mellitus; ET-1, endothelin-1; HC, hypercholesterolemia; RCT, randomized controlled trial; SNAP, S-nitroso-N-acetyl-D,L-
penicillamine.
Note: Data are presented as median and interquartile range.
aMann–Whitney U test between DMþHC and controls.
b% Vasodilation.
c% Vasoconstriction.
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Fig. 2 VWF antigen did not increase during 5 months of follow-up (A), whereas FVIII activity did increase (B). Data presented as mean and 95%
confidence interval. �p< 0.05 between DMþHC and controls. †p< 0.05 compared with baseline levels in DMþHC swine. DM, diabetes mellitus;
FVIII, factor VIII; HC, hypercholesterolemia; VWF, von Willebrand factor.

Fig. 3 The correlation between VWF and FVIII disappeared in DMþHC swine during 5 months of follow-up. (A) At baseline, the correlation
between VWF:Ag and FVIII:C was r¼ 0.63 (p¼ 0.006) in DMþHC swine and r¼ 0.44 (p¼ 0.116) in controls. (B) At 3 months of follow-up, this
correlation was r¼ 0.55 (p¼ 0.027) in DMþHC swine and r¼ 52 (0.058) in controls. (C) At 5 months, this correlation disappeared in DMþHC
swine (r¼ 0.18, p¼ 0.513), whereas it was strongly present in controls (r¼ 0.84, p< 0.001). Outcomes of Spearman’s correlation analysis are
provided. Ag, antigen; DM diabetes mellitus; FVIII, factor VIII; HC hypercholesterolemia; VWF, von Willebrand factor.

Fig. 4 Higher cholesterol was associated with a higher FVIII/VWF ratio. (A) At baseline, there was no correlation between total cholesterol and
FVIII:C/VWF:Ag ratio. (B) At 3 months total cholesterol was correlated with FVIII:C/VWF:Ag, and (C) at 5 months this correlation was even
stronger. Outcomes of linear regression analysis are provided. Ag, antigen; DM diabetes mellitus; FVIII, factor VIII; HC hypercholesterolemia;
VWF, von Willebrand factor.
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linear association between cholesterol and the FVIII:C/VWF:Ag
ratio was β ¼ 1.2 (p¼0.490) at baseline, β ¼ 0.6 (p¼0.022) at
3 months, and β ¼ 0.9 (p¼0.002) at 5 months. Similar associ-
ations were found between LDL, HDL, triglycerides, and FVIII:-
C/VWF:Ag ratio (►Supplementary Fig. S1, available in the
online version). Cholesterol was not significantly associated
with FVIII:C alone at baseline, 3 months, and 5 months
(►Supplementary Fig. S2, available in the online version).
Furthermore, higher glucose at 5 months was also associated
withhigherFVIII:C (β¼0.08,p¼0.043), butnotwithVWF:Ag (β
¼ 0.00, p¼0.120, ►Supplementary Fig. S3, available in the
online version). Together these results indicate that increased
plasma levels of cholesterol and glucose result in higher FVIII:C
without change of VWF:Ag.

Long-Term Longitudinal Cohort
In the long-term longitudinal cohort, VWF:Ag was first
measured 9 months after induction of HC and DMþHC. At
that time, both groups had robust dyslipidemia as evidenced
by—comparable to the short-term cohort—high levels of
cholesterol and triglycerides, whereas fasting hyperglycemia
was only present in DMþHC swine (►Table 3). Plasma lipid
and glucose levels of these swine remained constant be-
tween 9 and 15 months of follow-up (►Table 3).

In contrast to the short-term cohort, coronary angiograms
showed that from 9months on, atherosclerosis progressively

developed in large coronary arteries of both HC and DMþHC
swine (►Fig. 5A). Histological studies at 15 months also
showed clear atherosclerosis in large coronary arteries of
both HC and DMþHC swine (►Fig. 5B). Likewise, at
15 months both HC and DMþHC swine had endothelial
dysfunction as evidenced by significantly increased vasocon-
strictor responses to ET-1 (►Table 4), which was, at least
partly, due to a loss of endothelium-dependent endothelin
receptor B-mediated dilation as discussed before.18

Increase of VWF:Ag during 15 Months of Follow-Up
In line with the progressive development of atherosclerosis,
VWF levels gradually increased over time in HC and DMþHC
swine (►Fig. 6). In HC swine, VWF:Ag was 0.27 IU/mL
[0.23–0.40] at 9 months, 0.34 IU/mL [0.28–0.36] at
12 months, and 0.37 IU/mL [0.32–0.42] at 15 months
(►Fig. 6). Thus, VWF:Ag was significantly higher at
15 months compared with 9 months (p¼0.042) and
12 months (p¼0.043, ►Fig. 6). In DMþHC swine, VWF:Ag
was 0.25 IU/mL [0.24–0.33] at 9 months and significantly
increased to 0.30 IU/mL [0.28–0.35] (p¼0.042) at 12months
and 0.33 IU/mL [0.32–0.37] (p¼0.042) at 15 months
(►Fig. 6).

Discussion

In the present study in swine exposed to cardiovascular risk
factors, we found that FVIII levels, but not VWF levels,
increased after 5 months of exposure to DM and HC. This
increase in FVIII levelswas independent of VWF levels, which
remained stable over time, and was associated with plasma
cholesterol, LDL, HDL, triglycerides, and glucose levels. Five
months of exposure to HC and DMdid not lead to endothelial
dysfunction or atherosclerosis. However, long-term (15
months) exposure to DM and HC did result in increased
VWF levels, at a time when endothelial dysfunction and
atherosclerosis were present.

These results suggest that endothelial dysfunction and
atherosclerosis are themajor determinants of the increase in
VWF levels over time in swine with DM and HC. Similarly, a
study in mice found that DM and hyperglycemia eventually
led to increased VWF levels via endothelial dysfunction.24

Our findings may explain the results of previous studies in
humans showing an association between high VWF levels
and extensive atherosclerosis, cardiovascular disease, and
worse cardiovascular outcomes.5,6 Since atherosclerosis and
endothelial dysfunction lead to both higher VWF levels and
worse cardiovascular outcomes, VWF may be seen as a
biomarker for advanced cardiovascular disease. In line with
this, two large population-based cohort studies concluded
that VWF is primarily a biomarker of cardiovascular disease,
instead of a strong causal factor.25,26 However, VWF may, by
its procoagulant function promoting platelet aggregation
and thrombosis, also have an additional direct effect on
cardiovascular outcomes.14,27 Therefore, well-designed
studies are needed to investigate the contribution of each
of these two mechanisms (i.e., indirect role of VWF as
biomarker vs. direct procoagulant role of VWF) in the

Table 3 Characteristics of swine in the long-term longitudinal
cohort

HC (n¼5) DMþHC (n¼5)

Triglycerides (mmol/L)

9 mo 0.37 [0.16–1.33] 0.87 [0.39–1.63]

12 mo 0.32 [0.23–0.62] 0.41 [0.30–1.41]

15 mo 0.42 [0.32–1.08] 0.64 [0.38–2.46]

Total cholesterol (mmol/L)

9 mo 18.0 [14.1–27.1] 16.1 [15.2–26.1]

12 mo 18.6 [13.8–25.8] 18.2 [12.6–21.9]

15 mo 19.0 [12.0–23.8] 17.9 [12.9–20.3]

HDL cholesterol (mmol/L)

9 mo 5.87 [5.44–6.50] 5.02 [4.47–6.01]

12 mo 6.10 [5.21–6.57] 5.99 [4.48–6.52]

15 mo 5.72 [5.04–6.36] 5.30 [4.33–5.82]

LDL cholesterol (mmol/L)

9 mo 15.3 [11.6–21.9] 12.3 [11.5–22.4]

12 mo 14.9 [11.3–22.2] 15.0 [9.4–17.2]

15 mo 15.2 [9.4–20.2] 14.0 [9.8–17.3]

Glucose (mmol/L)

9 mo 3.7 [3.4–4.8] 11.1 [9.1–24.4]

12 mo 4.0 [3.8–4.4] 9.4 [8.5–20.9]

15 mo 4.8 [4.5–5.9] 15.8 [9.0–27.3]

Abbreviations: DM, diabetes mellitus; HC, hypercholesterolemia; HDL,
high-density lipoprotein; LDL, low-density lipoprotein.
Note: Data are presented as median and interquartile range.
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relation between VWF and cardiovascular disease and out-
comes. Such information may provide more insights into
how effective potential VWF-targeted treatment for preven-
tion or treatment of cardiovascular disease may be.

Endothelial dysfunction and atherosclerosis may lead to
higher VWF levels due to increased VWF release from
dysfunctional endothelial cells.28 However, atherosclerosis
development may also attenuate VWF clearance by macro-
phages. It is known that macrophages play a critical role in
VWF clearance, by binding and clearing VWF in a dose-
dependent manner.29,30 At the same time, macrophages
play a key role in development of atherosclerosis.31 Internal-

ization of LDL particles by macrophages and formation of
foam cells can be accompanied by macrophage apoptosis.31

Therefore, it is very likely that changes in macrophages
during the development of atherosclerosis may contribute
to the increase of VWF levels over time. In line with this, it
has been shown that diet-induced obesity leads to higher
VWFand FVIII levels inmice via both increased synthesis and
reduced clearance of VWF.32

Interestingly, FVIII levels increased shortly after induction
of HC and hyperglycemia, whereas VWF levels remained
unchanged, resulting in the disappearance of the correlation
between VWF and FVIII levels in DMþHC swine after
5 months of follow-up. In line with this, a recent large study
in the general population of 5,778 individuals found that
higher fasting glucosewas associatedwith higher FVIII levels,
even after adjustment for confounders, whereas a RCT in 12
healthy volunteers found that hyperglycemia did not affect
VWF levels during a short-term follow-up period.33,34On the
long term, it has also been shown that patientswith DMhave
higher VWF and FVIII levels than healthy individuals in the
general population, possibly due to long-term consequences
of DM.35–37However, in contrast, the BiobreedingWistar rat,
which is a model of spontaneous autoimmune type 1 DM,
showed similar VWF levels compared with controls during a
long-term follow-up period.38 There are several possible
mechanisms by which hyperglycemia may increase FVIII
levels. Hyperglycemia may lead to loss of endothelial glyco-
calyx and subsequently activation of the coagulation system,
resulting in a direct increase of FVIII levels.39 Additionally,
increased oxidative stress during hyperglycemia may lead to
higher FVIII levels.33 Furthermore, FVIII levels may be direct-
ly increased due to HC, as the regionwithin the C2 domain of
FVIII involved in VWF binding can also bind lipids.40 There-
fore, in severe HC, FVIII may (besides VWF) bind lipids,
thereby prolonging the half-life of FVIII, independent of
VWF. In line with this, we found that a higher FVIII/VWF ratio

Fig. 5 There were clear signs of atherosclerosis present in large
coronary arteries of both HC and DMþHC swine after 15 months of
follow-up in the long-term longitudinal cohort. (A) Examples of
progressive, from 9 (9M), 12 (12M), and 15 (15M) months, coronary
lesions on coronary angiograms at a left anterior oblique 30° and a
cranial 0° view of both HC and DMþHC swine. (B) Typical examples
resorcin-fuchsin stained large coronary arteries of atherosclerosis of
HC and DMþHC swine at 15 months (15M) of the long-term
longitudinal cohort. DM diabetes mellitus; HC hypercholesterolemia.

Fig. 6 VWF levels progressively increased in HC and DMþHC swine in
the long-term longitudinal cohort. Data presented as mean and 95%
confidence interval. �p< 0.05 compared with baseline levels in both
groups. †p< 0.05 compared with levels at 12 months in HC swine.
#p< 0.05 compared with baseline levels in DMþHC swine. DM
diabetes mellitus; HC hypercholesterolemia; VWF, von Willebrand
factor.
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wasassociatedwithhigher levels of total cholesterol, LDL,HDL,
and triglycerides. Also, it has previously been shown in mice
that FVIII–lipid binding, besides VWF–FVIII binding, synergis-
tically prolongs the plasma survival of FVIII.41 During normal
conditions the role of VWF–FVIII binding on FVIII survival is
larger, because of the high binding affinity of VWF with FVIII
(0.5nM).42,43However, inahigh lipidenvironment, lipidsmay,
despite a lower binding affinity to FVIII (6nM, compared with
VWF), contribute significantly to FVIII survival by additional
lipid–FVIII binding.41,42 In line with this, we have found that
cholesterol is associated with the FVIII:C/VWF:Ag ratio stron-
ger than that with the FVIII:C ratio alone.

The current study may also have important implications
for patients with von Willebrand disease (VWD), which is
caused by reduced VWF levels, leading to bleeding symp-
toms.44–47 Our results suggest that endothelial dysfunction
and atherosclerosis mediate comorbidity-dependent in-
crease in VWF levels in patients with type 1 VWD.10 Similar-
ly, our data are in accordance with human data showing that
body mass index, which is highly related to endothelial
dysfunction and atherosclerosis, was associated with higher
VWF and FVIII levels in type 1 VWD patients.48 Altogether,
these data suggest that not only the incidence of comorbid-
ities, but also the severity of endothelial dysfunction and
atherosclerosis modulates VWF and FVIII levels.12,31,48,49

Prospective studies in VWD patients are needed to investi-
gate the effect of the comorbidity-related increase of VWF
and FVIII levels on the bleeding tendency of these patients.50

To our knowledge, this is the first study to investigate the
pathophysiological mechanisms of the increase of VWF and
FVIII levels in a relevant large animal model with cardiovas-
cular risk factors using a RCT design. For this study, we
employed swine,which have proven to be an excellentmodel
for human metabolic syndrome and cardiovascular disease,
mainly due to their similarities to humans with regards to
their glucose and lipid metabolism, cardiovascular anatomy,
physiology, and myocardial metabolism.51–53 Swine also
show great resemblance to humans with regards to both
VWF and VWD.54 In this study, we showed that hyperglyce-
mia and HC increase FVIII levels, independent of VWF. In
addition, we showed that VWF levels only increased when
endothelial dysfunction and atherosclerosis were present.
Nevertheless, this study has several potential limitations.
First, the most important limitation is that we did not
measure baseline VWF levels in the long-term longitudinal

cohort study, as no citrated blood was collected at inclusion
in the study. Notwithstanding this limitation, we found that
VWF levels progressively increased in HC andDMþHC swine
with overt endothelial dysfunction and atherosclerosis dur-
ing the period between 9- and 15- months of follow-up.
Second, there was no control group in the long-term cohort
study. Finally, we did not measure FVIII levels in the long-
term longitudinal cohort, as citrate plasmawas not available
anymore to measure FVIII levels. However, we clearly show
in the short-term RCT cohort that FVIII levels increased
because of hyperglycemia and HC, independent of VWF.

In conclusion, the present study shows that endothelial
dysfunction and atherosclerosis lead to an increase of VWF
levels in swine, whereas hyperglycemia and HC already
increased FVIII levels prior to development of endothelial
dysfunction and atherosclerosis (►Fig. 7). Therefore, VWF
seems to be a biomarker for advanced cardiovascular disease.
These findings contribute to a better understanding of the
association between high VWF and FVIII levels and athero-
sclerosis, cardiovascular disease, and a worse cardiovascular
outcome in humans.

What is known about this topic?

• VWF and FVIII levels are associated with an increased
risk of cardiovascular disease.

• VWF and FVIII levels increase with aging, possibly due
to incidence of comorbidities at an older age.

What does this paper add?

• VWF increase over time is mediated via endothelial
dysfunction and atherosclerosis, whereas short-term
hyperglycemia and dyslipidemia increase FVIII.

• VWF seems to be a biomarker for advanced cardiovas-
cular disease, explaining its association with cardio-
vascular disease and outcomes.
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