Synthesis

Reviews and Full Papers in Chemical Synthesis

October 15, 2024 • Vol. 56, 3083-3232

A Comprehensive Approach to C3a-Aryl-Substituted Hydroindole Alkaloids by Utilizing Enantioselective Gold Catalysis

J. K. Yu, C. Czekelius

20

Synthesis

Reviews and Full Papers in Chemical Synthesis

2024 Vol. 56, No. 20 October II

Cover Design: © Thieme Cover Image: J. K. Yu, C. Czekelius

Review

3083

3108

Synthesis

Synthesis 2024, 56, 3083-3107 DOI: 10.1055/a-2335-8516

S. Park*

Guangdong Technion Israel Institute of Technology, P. R. of China Recent Advances in Ligand-Controlled Regio- or Stereodivergent Transition-Metal-Catalyzed Hydroelementation (H[E]) (E = H, B, Si, Ge) of C-C Unsaturated Systems

Synthesis 2024, 56, 3108-3118 DOI: 10.1055/a-2317-6730

S. Arepally

J. K. Park Pusan National University, Republic of Korea

VI

Synthesis	Lewis Acid Mediated Synthesis of 4-Aminoquinoline Derivatives	Feature
Synthesis 2024 , 56, 3131–3141 DOI: 10.1055/a-2368-8500	from 2-Aminobenzonitriles and Activated Alkynes <i>via</i> Aza-Michael and Annulation Reactions	3131
B. Porashar A. K. Saikia* Indian Institute of Technology Guwahati, India	$ \begin{array}{c} $	
	R ¹ = H, F, Cl, Br, NO ₂ , CF ₃ , OMe, Me 27 examples R ² = OEt, OMe, Ph (up to 87% yield) R ³ = CO ₂ Et, CO ₂ Me, aryl, (het)aryl, alkyl	
	 C-N and C-C bond formation gram-scale synthesis inexpensive Fe(III) salt promoted easily available starting materials 	

Syn <mark>thesis</mark>	β -Nitroacrylates and Phenols as Key Precursors of	Paper
Synthesis 2024 , 56, 3167–3172	Arenoturan-3-carboxylates	3167
DOI: 10.1055/a-2367-1877	5-35	
B. Bassetti M. Principi R. Ballini M. Petrini A. Palmieri* University of Camerino, Italy	O_2N H^1 $O_R + ($ H^2 OH H^2 OH H^2 OH H^2 OR H^2 OR H^1 H^2 OR H^1 H^2 OR H^1 H^2 H^2 OR H^1 H^2 H^2 OR H^1 H^2 $H^$	

Synthesis

Synthesis **2024**, 56, 3173–3180 DOI: 10.1055/s-0043-1775390

V. Y. Radhakrishna G. L. Khatik V. A. Nair * Amrita Vishwa Vidyapeetham, Amritapuri Campus, India

1,3-Dipolar Cycloaddition Reaction of Nitrile Oxide to Thiocyanates: An Efficient and Eco-Friendly Synthesis of *N*-Aryl-2-((3-aryl-1,2,4-oxadiazol-5-yl)thio)acetamides

3173

ł	ĥ	ĺ.
ľ	>	(

Synthesis

Synthesis **2024**, 56, 3199–3205 DOI: 10.1055/s-0043-1775386

A. Alizadeh* E. A. Chelebari R. Rezaiyehraad

Department of Chemistry, Tarbiat Modares University, Iran Regio- and Chemoselective Synthesis of 4,6-Dithia-1,2,9-triazaspiro-[4.4]non-2-en-8-ones through an Ultrasound-Promoted One-Pot Sequential Pseudo-Five-Component Reaction Paper 3199

Syn <mark>thesis</mark>	Selective Synthesis of Deuterated cis- and trans-Isohumulones and	Paper
Synthesis 2024 , 56, 3206–3214 DOI: 10.1055/a-2359-8813	trans-Isohumulinones	3206
B. C. Hamper [*] H. J. Campbell R. Luo M. Murphy P. Gleason T. Smith R. Jagan University of Missouri-St. Louis, USA	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	

Syn thesis	Efficient Oxidation with Singlet Oxygen from 5,10,15,20-Tetraphenyl-	Paper
Synthesis 2024 , 56, 3215–3219 DOI: 10.1055/a-2361-0069	porphyrin under Blue LED Irradiation and Air Atmosphere: Simplified Preparation of Key Building Blocks for Natural Product Synthesis	3215
M. Hasumi T. Tsutsumi D. Shikama	blue LED H O or air atmosphere, TPP	

ט. Snikama I. Hayakawa*

Nihon University, Japan

Х

Synthesis

Synthesis **2024**, 56, 3220–3232 DOI: 10.1055/a-2360-8289

S. Zhang

L. Sun D. Li J. Zhao

- J. Qu
- Y. Zhou*
- Dalian University of Technology, P. R. of China

Palladium-Catalyzed Asymmetric Allylic Alkylation of Azlactones: An Efficient Access to Unsaturated Trifluoromethylated α -Amino Acid Derivatives Possessing α -Quaternary Stereogenic Centers

Paper 3220

- Good yields, exclusive regioselectivity and good stereoselectivity
- Mild reaction conditions
- Readily scalable to gram scale
- Diverse transformations