Synleii

Accounts and Rapid Communications in Chemical Synthesis

March 2, 2021 • Vol. 32, 329–428

Cluster

Radicals – by Young Chinese Organic Chemists Editor: Ang Li, Guest Editors: Chen Zhu, Xin-Yuan Liu

Accounts and Rapid Communications in Chemical Synthesis 2021 Vol. 32, No. 4 March I

Cover Design: © Thieme Cover Image: H. Zhang et al.

Syn <mark>lett</mark>	Designing the Secondary Coordination Sphere in Small-Molecule	Synpacts
Synlett 2021 , 32, 329–336 DOI: 10.1055/s-0040-1707326	Catalysis	329
I. L. Zak S. C. Gadekar A. Milo* Ben-Gurion University of the Negev, Israel	Ph Ph B Coordination sphere Secondary coordination sphere	

Syn lett	Cluster Preface: Radicals – by Young Chinese Organic Chemists	Cluster
<i>Synlett</i> 2021 , 32, 354–355 DOI: 10.1055/s-0040-1706712		354
C. Zhu XY. Liu		
Soochow University, P. R. of China		

VII

Synlett

Synlett 2021, 32, 356-361 DOI: 10.1055/a-1300-3453

D. Liu J. Zhang Y. Chen*

Shanghai Institute of Organic Chemistry, P. R. of China Hangzhou Institute for Advanced Study, P. R. of China

Investigations on the 1,2-Hydrogen Atom Transfer Reactivity of Alkoxyl Radicals under Visible-Light-Induced Reaction Conditions

Ή

Cluster 356

Cluster

362

[Ir], HE blue LED X = N-phthalimide or N-0 R R alkoxylpyridinium salt or HE = Hantzsch ester $\sqrt{}$ Ĥ

a series of mechanistic investigations to validate the 1,2-HAT of alkoxyl radicals

Synlett

Synlett **2021**, *32*, 362–368 DOI: 10.1055/s-0040-1706646

Z.-H. Zhang H. Wei Z.-L. Li X.-Y. Liu* Southern University of Science and Technology, P. R. of China

R = 2° and 3° alkyl

Synlett	C–H Alkylation of Heteroarenes with Alkyl Oxalates by Molecular Pho-	Cluster
Synlett 2021 , 32, 369–372 DOI: 10.1055/a-1296-8652	toelectrocatalysis	369
F. Xu XL. Lai HC. Xu* Xiamen University, P. R. of China	$(Het) - H + R^{O} \rightarrow O_{O}^{CO_{2}H} \xrightarrow{(Het) - R} (Het) - R$	
	 No metal catalyst O 20 examples No external oxidant 18–96% yields 	

VIII

Syn <mark>lett</mark>	Visible-Light-Driven Phosphonoalkylation of Alkenes	Cluster
Synlett 2021, 32, 378–382 DOI: 10.1055/s-0040-1706681 YM. Jiang J. Liu Q. Fu* YM. Yu* DG. Yu* Xinjiang University, P. R. of China Sichuan University, P. R. of China Southwest Medical University, P. R. of China	Ar OMs/OTs + HP(O)R ₂ R = Ar' or OR' • Mild reaction conditions • Good functional group tolerance • Important products	378

Synlett	Radical-Hydroboration-Involved One-Pot Synthesis of Boron-Handled	Cluster
Synlett 2021 , 32, 383–386	Glycol Derivatives	383
B-Y. Zhuang JK. Jin FL. Zhang* YF. Wang* University of Science and Tech- pology of China. P. R. of China	$Ar \longrightarrow BH_{3}^{(ac)} Ar \longrightarrow Bh_{3}$	

University of Chinese Academy of Sciences, P. R. of China

іх

Х

Synlett Radical-Mediated Hetaryl Functionalization of Nonactivated Alkenes Cluster through Distal ipso-Migration of O- or S-Hetaryls Synlett 2021, 32, 401-405 401 DOI: 10.1055/s-0040-1705968 OF

Addition of heteroatom radicals Formation of C–Het and C–C bonds

Soochow University, P. R. of China Shanghai Institute of Organic Chemistry, P. R. of China

H. Zhang

M. li

Y. Wei

H. Chen

X. Wu

C. Zhu

-	
Svn	lett

Synlett 2021, 32, 411-416 DOI: 10.1055/s-0040-1706600

N. Dua

S. Ghosh

R. K. Peddinti* Indian Institute of Technology Roorkee, India

> R² = H, Me R³ = alkyl

Regioselective

Zn(OTf)₂-Catalyzed 1,6-Conjugate Addition of Benzoxazinones to

Letter 411

Synlett **2021**, 32, 423–428 DOI: 10.1055/a-1303-5613

H. Nakakohara

Y. Hirano

K. Ohmori H. Takikawa

K. Suzuki*

Tokyo Institute of Technology, Japan

Synthetic Study on Acremoxanthone A, Part 2: Model Study on the EFG

Letter

423

XI