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Knee pain and injury are commonly encountered in
clinical practice. Sports-related knee injuries alone account
for> 2.5.million emergency department visits annually,1 and
increasingly, clinicians are relying on the results of musculo-
skeletal (MSK) imaging to guide diagnosis and management.2

Interpretation ofadvancedMSK imaging is both labor intensive
and subject to reader variability even when interpreted by
subspecialty trained MSK radiologists, partly attributed to the
large quantity of data presented by each study and the level of
imaging detail.3 The integration of artificial intelligence (AI)
algorithms into the workflow of MSK radiology holds the
potential to improve diagnostic accuracy, expedite cases with
urgent findings, reduce reader fatigue, and provide decision
support where radiology expertise is unavailable.4

In the diagnostic evaluation of knee pathology, most AI
literature has focused on building convolutional neural net-
works (CNNs) that canperforma single interpretive task under
the categories of pathology detection (ligament or meniscus
tear, cartilage lesion), classification (assignosteoarthritisgrad-
ing to knee radiographs, classifymeniscus tears), and segmen-
tation (cartilage and meniscus segmentation) (►Fig. 1). CNNs
are a form of deep learning, a subcategory ofmachine learning
(ML) that refers to algorithms with multiple interconnected
layers reminiscent of the layered approach used by neurons in
thebrain.5CNNsare a specific class ofdeep-learning technique

that use a mathematical operation called a convolution. This
classof network is commonly used for image classificationand
analysis tasks.All of these techniques fall under theumbrellaof
“artificial intelligence” (►Fig. 2). Advances are being made
using AI to accelerate magnetic resonance imaging (MRI)
acquisition. This topic is addressed in a separate dedicated
article in this journal. In terms of image-based tasks in the
evaluation of knee pathology following image acquisition, AI
currently holds the most potential for influencing lesion
detection, characterization, and disease monitoring (►Fig. 3).

Cartilage/Osteoarthritis

Among the many AI applications being investigated in the
setting of diagnostic imaging of the knee, one of the more
established is the evaluation of cartilage disease. This is in part
due to the worldwide disease prevalence of osteoarthritis
(OA).6 Knee OA is one of the most common forms of arthritis
and a leading cause of chronic disability, projected to affect 59
million people in the United States in 2019.7,8 Another key
driver inML algorithmdevelopment for cartilage evaluation is
thepublic availabilityof large repositoriesofcombinedclinical
and imaging data through the Osteoarthritis Initiative (OAI)
and other large epidemiologic studies of OA. Building and
training robustML algorithms forcartilage evaluationdepends
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on access to large data sets containing this type of curated
information.

The diagnosis of knee OA is currently made by clinical
assessment of symptoms in combination with radiographic
findings indicative of OA including joint space narrowing
and osteophyte formation. Although radiographs are wide-
ly available, safe, and inexpensive, severity grading of knee
OA by radiographs, the current imaging standard, suffers
from the inherent insensitivity of radiographs to detect
early changes indicative of OA and subjective variability in
radiographic interpretation. The semiquantitative Kellgren-
Lawrence (KL) grading scale9 is the traditional method by
which knee OA is assessed on radiographs, where a 0
through 4 ordinal scale is used (0¼ normal; 4¼ severe
osteoarthritis). Interrater agreement when using this
method ranges from 0.5 to 0.8, reflecting substantial levels
of interobserver disagreement.10,11 Driven by these chal-
lenges, interest in automating the task of knee OA quanti-
fication from radiographs has a long history, dating back to
the late 1980s.12

Fig. 1 Interpretive applications of artificial intelligence (AI) in the evaluation of knee pathology. AI algorithms have been built that can perform the
following interpretive tasks: (a) Assign osteoarthritis severity grade to radiographs: Anteroposterior (AP) weight-bearing radiograph demonstrates
mild medial tibiofemoral joint space narrowing and osteophytic spurring, Kellgren-Lawrence grade 2 (arrow). (b) Detect fractures on radiographs: AP
radiograph demonstrates subtle lateral tibial plateau fracture (arrow). (c) Detect and classify cartilage lesions on MRI: Axial T2 fat-saturated sequence
demonstrates broad-based full-thickness cartilage loss in the patellofemoral compartment (arrows). (d) Detect and classify meniscus tears on MRI:
Sagittal proton-density (PD) fat-saturated sequence demonstrates a horizontal tear of the medial meniscus (arrow). (e) Detect anterior cruciate
ligament (ACL) tears on MRI: Sagittal PD fat-saturated sequence demonstrates a complete midsubstance tear of the ACL (arrow).

Fig. 2 Schematic of definitions. Convolutional neural networks (CNNS)
are a specific class of deep neural network commonly used for image
classification, analysis, and segmentation tasks. CNNs are a form of
deep learning, a subcategory of machine learning. All of these tech-
niques fall under the umbrella of artificial intelligence.
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Cartilage/Osteoarthritis Evaluation: Radiographs
Several research groups have recently developed computer-
assisted and ML models for predicting KL scores based on
radiographic features.7,13–18 The studies using AI methods
for automation are summarized in ►Table 1.

Tiulpin et al sought to grade knee OA automatically by
assigning a KL score based on a computer-aided diagnosis
tool powered by a novel CNN based on Deep Siamese CNN
architecture using image symmetry.18 The algorithm was
trained using the Multicenter Osteoarthritis Study (MOST)
data set, a publicly available data set of manually KL-graded
knee radiographs, and testing it using the OAI data set
containing radiographs of 5,960 knee joints from 3,000
subjects. The algorithm had excellent agreement with man-
ually graded radiographs, with a quadratic κ coefficient of
0.83. The study also used visual “attention maps” to aid in
multiclass discrimination, and the algorithmperformedwith
an average multiclass accuracy of 66.71%.

In a similar study conducted by Norman et al, a CNN
utilizing DenseNet ensemble learning and direct demo-
graphic input was used to automatically produce KL grades

of OA on knee radiographs.19 Sensitivity rates for the detec-
tion of no OA, mild, moderate, and severe OA were 83.7%,
70.2%, 68.9%, and 86.0%, respectively. The corresponding
specificity rates were higher at 86.1%, 83.8%, 97.1%, and
99.1%. Visual depictions, or “saliency maps,” were used to
confirm that the neural networks were basing the assess-
ment on osteoarthritic features rather than to regions that do
not have relevant radiologic features.

Antony et al introduced the concept of an “end-to-end” AI
model for the automatic radiographic grading of knee OA
based on the KL scale.13 By first using a convolutional neural
network, the authors were able to localize the knee joint
accurately on radiographic images. In the second stage, the
classification networkwas trained using a regressionmodel to
treat the discrete 0 through 4 KL grades as a continuous scale,
which the authors argue better approximates the continuous
progression of OA in vivo. The study found that the jointly
trained classification and regression CNN produced a higher
multiclass classification accuracy (63.4%) compared with the
classification-only CNN (60.3%). The same research group
followed this report, in 2019, with a study using statistical

Fig. 3 How artificial intelligence (AI) may impact image-based tasks in the evaluation of knee pathology. This schematic outlines imaging-based
tasks following image acquisition in musculoskeletal radiology where AI may have a potential impact, using an anterior cruciate ligament (ACL)
tear as an example.

Table 1 Studies investigating artificial intelligence in diagnostic evaluation of knee cartilagea

Modality Study Study features Specificity Sensitivity Multiclass
classification
accuracy

Reader agreement

Radiograph Tiulpin et al18 Attention maps NA NA 66.7% 0.83 κ

Radiograph Norman et al19 Saliency maps 83.8–99.1% 68.9–86.0% NA NA

Radiograph Antony et al17 CNN plus
regression model

NA NA 63.4% NA

MRI Liu et al23 Tibiofemoral
cartilage

85.2%, 87.9% 84.1%, 80.5% NA 0.57–0.73 κ (humans)
0.76 κ (system)

MRI Pedoia et al24 Patellar cartilage 80.3% 80.0% NA NA

Abbreviations: CNN, convolutional neural network; MRI, magnetic resonance imaging; NA, not applicable.
aSegmentation literature excluded.
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models topredict theseverityof kneeOAbasedonpatientdata
alone and compared that result with CNN-based analysis of
knee radiographs alone, again using the OAI data set with the
hypothesis that a good predictivemodel based on clinical data
alone may obviate the need for radiographs in the diagnosis
and quantification of OA severity.20 They found that the
statistical models based on patient data could predict OA
severity with a good level of accuracy comparable with the
CNN model using radiographs alone.

Cartilage/Osteoarthritis Evaluation: MRI
Although radiography remains the most common imaging
modality by which OA is detected, the evolution of cartilage
damage on radiographs must necessarily be inferred
through secondary changes such as joint space narrowing
because the cartilage itself is not directly visualized. But MRI
offers direct visualization of both acute and degenerative
cartilaginous lesions. Historically MRI was shown to be a
highly specific andmoderately sensitive tool in the assessment
of knee cartilage lesions,21 and specifically tailored morpho-
logic cartilageMRI techniques have continued to advance over
the years.22 Recently, there has been growing interest in the
developmentofAI applications aimed at enhancingMRI utility
in the assessmentof knee cartilage lesions (►Table 1).Manyof
these techniques rely on algorithms that automate cartilage
segmentation, and this topic is covered in a dedicated article
on segmentation in this issue.

Liu et al used a two-step process in the creation of amethod
based on deep learning to detect cartilage lesions by sequen-
tiallyutilizing twodifferent two-dimensional (2D)CNNs in the
evaluation of 175 knee MRIs.23 The first CNN was used for
cartilage segmentation and the second for lesion detection.
Theauthors trainedandtested thesystemtwice, treating them
as separate data sets to assess intraobserver agreement. The
results of the study showed improved sensitivity for lesion
detection by the automated system (84.1% and 80.5%) com-
paredwith the radiologists (60.8–80.2%), but lower specificity
for the automated system (85.2% and 87.9%) compared with
the radiologists (92.2–96.5%). There was also higher intra-
observer agreement (κ of 0.76) for the automated system
compared with the interobserver agreement (κ of 0.57–0.73)
between the human radiologists. The lower specificity of the
automated system was attributed to the limitations of a 2D
system, only using one sagittal fast spin-echo sequence (fat-
saturated T2) for lesion detection, whereas the radiologists
used three sagittal sequences for lesion detection. The authors
contend that the increased sensitivity and intraobserver
agreement demonstrated by the automated systemmay allow
for more reliable detection of early cartilage damage because
superficial cartilage lesion detection is currently a known
limitation among radiologists.21

In a study conducted by Pedoia et al,24 a deep-learning
systemwas created to detect bothmeniscal injury and patellar
cartilage defects in a radiologist-annotated data set of 302
patients (1478 total MRIs), composed of individuals with and
without OA, after anterior cruciate ligament (ACL) injury and
after ACL reconstruction. In this data set, themeniscus and the
patellofemoral cartilage compartment were graded by radiol-

ogists using the modified Whole-organ Magnetic Resonance
Imaging Score (WORMS). As in the automated study by Liu
et al,23 a two-step process was used. A 2D U-Net architecture
wasfirst used for automaticmeniscal and cartilage segmenta-
tion, followedbya three-dimensional (3D) CNNused for lesion
detection. The results of the study showed binary cartilage
lesiondetection (WORMS score2–6 for lesionversus score 0–1
for no lesion) sensitivity of 80.0% and specificity of 80.27%
using the radiologist annotationas thegold standard.Ahuman
group composed of three radiologists also reviewed a very
small subset of cases (17MRIs) to ascertain interrater variabil-
ity, yielding average agreements of 89.56% for no cartilage
lesion and 79.74% for the presence of a cartilage lesion.

With the continued advancement of clinical AI support, it
may be possible to provide earlier and more reliable detec-
tion of knee cartilage disease and make outcome predictions
based on those observations. AI support tools could poten-
tially play a key role in the diagnosis and treatment of a
globally debilitating and costly disease.

Ligaments

Anterior Cruciate Ligament Evaluation: MRI
ACL tears are common orthopaedic injuries, frequently war-
ranting surgicalmanagement. Untreated or delayed treatment
of ACL tears can impact quality of life, leading to premature
kneeOA, chronic instability, irreparablemedialmeniscal tears,
and early chondral wear.25–28 Although history and physical
examination can raise the suspicion for ACL tear, MRI is often
performed to confirm the diagnosis of tear given the high
accuracy of MRI29 and the ability to identify concomitant
injuries. Thefindings of ACL tear onMRI include discontinuity
or nonvisualization of the ligament fibers, abnormal course or
contour of the ligament, and abnormal signal.30 Given the
frequencyof injury and clinical importance, theACL is the only
ligament around the knee that has been targeted with ML
approaches. Several articles address the use of AI to diagnose
ACL tears on MRI (►Table 2).

Štajduhar et al demonstrated the feasibility of using a
semiautomated model for the detection of ACL tears.31 Refer-
ence standard was established through consensus between
radiologists. From the original source data, the region of
interest containing the ACLwasmanually extracted on sagittal
proton-density (PD)-weighted fat-suppressed images by a
radiologist. The models experimented were composed of a
(1) feature extraction method with a (2) ML classification
system. Thehighest performingmodel used a histogramof the
oriented gradient feature extraction method coupled with a
support vector ML classification system. This model achieved
an area under the receiving operating characteristics curve
(AUC) of 0.894 and 0.943 in identifying an injured and
completely torn ACL, respectively.31

Subsequently, Bien et al developedMRNet, a CNN based on
mapping a 3D MRI series to a probability, for the purposes of
detecting ACL andmeniscus tears. This method demonstrated
similar specificity but lower sensitivity in the identification of
a tearwhencomparedwithacohortofgeneral radiologists and
orthopaedic surgeons.3 The authors defined an ACL tear as a
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low-grade partial tear, high-grade partial tear, or complete
tear.NormalACL andACLwith sprain,mucoiddegeneration, or
ganglion cysts were considered intact. The images used by the
CNN included sagittal T2-weighted, coronal T1-weighted, and
axial PD-weighted sequences. The reference standard was
established through consensus between three fellowship-
trained MSK radiologists.

Themodel achieved an AUC of 0.965, a sensitivity of 0.759,
and a specificity of 0.968 for the identification of an ACL tear.
The general radiologists achieved a sensitivity and specificity
of 0.906 and 0.933. The model was statistically significantly
less sensitive thangeneral radiologists in the identification of
an ACL tear. The authors also evaluated how using the model
can affect the diagnostic performance of general radiologists
with the diagnosis of ACL tears. When general radiologists
used the algorithm, there was a 4.8% increased specificity for
the identification of an ACL tear when compared with
radiologist performance alone, which was statistically
significant.3

Chang et al developed a CNN method that achieved a high
level ofaccuracy for thediagnosis ofcompleteACL tearsusing a
coronal PD-weighted sequence and a MSK radiologist’s inter-
pretation as the reference standard.32 Cases demonstrating an
ACL partial tear or mucoid degeneration were excluded. The
performance of three CNNswere evaluated. The CNNwith the
highest performance used an initial localization network to
crop the area of interest and also included dynamically sam-
pled cropped patches of anatomy that did not include the ACL.
The authors found that the diagnostic performance of the
model improvedwith an increasednumber of input slices. The
final model achieved a sensitivity and specificity of 1.00 and
0.933, respectively, for the identification of complete ACL
tears.32

Liu et al developed a fully automated deep learning–based
diagnosis system for the diagnosis of a completeACL tear that
achieved a similar level of specificity and sensitivity when
compared with a cohort of radiologists with varying levels of

training.33 Their deep learning–based diagnosis system was
composed of CNNs to (1) select theMR images containing the
ACL, (2) isolate the intercondylar notch region containing the
ACL, and (3) determine the presence of a tear. The images
used by the ACL tear diagnosis system included sagittal
PD-weighted and T2-weighted sequences. Using arthroscop-
ic knee surgery reports as the reference standard, the ACL
tear diagnosis system achieved a sensitivity and specificity of
0.96 and 0.96, and an AUC of 0.98. The clinical radiologists of
varying levels of experience, ranging from radiology resident
to fellowship-trained MSK radiologist, had a sensitivity and
specificity of 0.96 to 0.98 and 0.90 to 0.98, respectively, in the
diagnosis of a complete ACL tear. There was no statistically
significant difference in the diagnostic performancebetween
the ACL tear diagnosis system and radiologists in the diag-
nosis of a complete ACL tear.33

Meniscus

Meniscus Evaluation: MRI
The fibrocartilaginous meniscus is commonly injured, can
lead to accelerated cartilagewear, and is frequentlymanaged
surgically with the rise in popularity of meniscus-preserving
surgeries.34,35 MRI remains the noninvasive modality of
choice for the diagnosis of meniscal tears that are character-
ized by abnormal meniscal morphology and/or signal inten-
sity.36 Diagnostic performance of MRI when interpreted by
radiologists in terms of sensitivity and specificity is 93% and
88% formedialmeniscus tears and 79% and 96% for the lateral
meniscus.37 The literature reflects a long-standing interest in
automatic segmentation and diagnosis of meniscus tears
with several computer-assisted detection methods using
texture analysis or supervised image classifiers published;
however, no clinical applications have resulted to date.38–43

Most recently, several novel CNNs for meniscus pathology
detection and localization were developed and described in
the literature (►Table 3).

Table 2 Studies investigating performance of ML algorithms in detection of ACL tear

Lesion Study Reference
standard

Sequence Results Notes

Injury vs complete
ACL tear

Štajduhar
et al31

Radiology
consensus read

Sagittal: PD FS AUC
0.894 injured
0.943 complete tear

Feature extraction and
ML classification

No tear vs partial
or complete tear

Bien et al3 MSK radiology
consensus
read on a subset

Sagittal: T2
Coronal: T1
Axial: PD

AUC
0.965 for tear

Similar specificity but
lower sensitivity compared
with readers

No complete tear
vs complete tear

Liu et al33 Arthroscopy Sagittal: PD
Sagittal: T2

Sensitivity: 0.96
Specificity: 0.96
AUC: 0.98

No statistically significant
difference algorithm vs
readers of various training
levels

Normal vs
complete tear

Chang et al32 MSK radiologist
read

Coronal: PD Sensitivity: 1.00
Specificity: 0.933

Cases selected with normal
ACL versus complete tear.
All others excluded (partial
tear, mucoid degeneration)

Abbreviations: ACL, anterior cruciate ligament; AUC, area under the curve; FS, fat suppressed; ML, machine learning; MSK, musculoskeletal; PD,
proton density.
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Pedoia et al, in addition to evaluating for ACL tears, on the
same data set, used their two-stage approach for binary
detection of a meniscal “lesion” (present/absent) and then
severity scoring of that lesion (mild/moderate versus severe)
using the WORMs criteria.24 Notably, this study included
intrasubstance/degenerativemeniscus signal abnormality as
a “lesion” per the WORMs criteria. For binary meniscus
lesion detection, the CNN achieved a sensitivity of 81.98%
and a specificity of 89.81% with AUCs of 0.95, 0.84, and 0.89
on training, validation, and testing data sets, respectively.

Bien et al, in addition to usingMRNet to detect ACL tears as
described in the previous section, also classified menisci as
intact (normal, degenerative, or postsurgical changes with-
out tear) or torn (increased signal reaching the articular
surface on at least two slices or morphology change), and the
CNN performance was compared with that of radiologists.
The reference standard was a radiologist consensus read on
an internal validation set of 120 examinations from the
1,370-examination data set. The model achieved an AUC of
0.847 for meniscal tear, and the model’s specificity for
meniscal tear was lower than that of radiologists, 0.741
compared with 0.892.3

Couteaux et al used a CNN-based approach to classify
menisci as “healthy” versus torn and to categorize the
orientation and location of the meniscus tear if present.
This was performed on an annotated data set consisting of
sagittal-only single MR images manually cropped to include
themeniscus. This approach yielded aweighted AUC of 0.906
for the three tasks (tear detection, orientation, and anatomi-
cal location).44 Roblot et al also performed these three tasks
but on a larger data set, also using a CNN-based approach,
yielding a weighted AUC of 0.90.45

Tendons

Tendon injuries around the knee most commonly involve the
extensor mechanism. Although no research currently
addresses the use of ML in the diagnosis or management of

tendon injuries around the knee, Kapiński et al reported the
use of a CNN to assess the Achilles tendon. The CNN provided
automatic quantitative assessment of Achilles tendon healing,
classification of healthy versus injured tendon, and pathologic
tissue localization through the analysis of MR images.46

Peripheral Nerves

Lower extremity neuropathies are common, and the diagno-
sis is frequently challenging, made through a combination of
physical examination data as well as the results of electro-
diagnostic testing and magnetic resonance neurography
(MRN).47 MRN analysis involves manual segmentation or
manual 3D reconstruction and semiquantitative visual
assessment of the peripheral nerve through the measure-
ment of the cross-sectional area, and detection of morpho-
logical changes or signal intensity abnormalities that
indicate nerve pathology. Balsiger et al developed a CNN to
automatically segment the sciatic nerve through the tibial
and common peroneal bifurcation at the knee using MRN
images from healthy volunteers and those with diagnosed
sciatic neuropathy.48 This work represents an important
initial step in automated peripheral nerve segmentation
and quantitative analysis that potentially aid the radiologist
in the diagnosis of peripheral neuropathies.

Musculoskeletal Ultrasound

CNNs have been developed to automate lesion classification,
detection, and segmentation tasks with medical ultrasound.
Early progress was demonstrated in thyroid nodule detection
and classification, fetal biometry, breast lesion detection, and
prostate cancer detection and grading, to name a few.49 To
date,no literatureaddresses theuseofneural networks inMSK
ultrasound. Potential applications around the knee might
include the detection and classification of extensor mecha-
nism injury, assessment of tendon healing, or quantitative
analysis of knee joint effusions or synovitis.

Table 3 Studies investigating performance of CNNs in detection of meniscus teara

Lesion Study Reference
standard

Sequence Results Notes

WORMs score
meniscus lesions

Pedoia
et al24

MSK radiologist
read

Three-dimensional
FSE CUBE

Sens: 81.98%
Spec: 89.81%
AUC 0.89

WORMS categorizes
intrasubstance
degeneration as a lesion

No tear
(degenerative signal,
postoperative, normal)
vs tear

Bien et al3 MSK radiology
consensus read
on a subset

Sagittal T2
Coronal T1
Axial PD

AUC: 0.847
Specificity: 0.741

Algorithm specificity for
meniscal tear lower when
compared with readers

Normal vs tear Couteaux
et al44

Annotated
data set

Sagittal T2
single image

Weighted
AUC: 0.906

Weighted AUC included
presence/absence of tear,
orientation, and location

Normal vs tear Roblot
et al45

Annotated
data set

Sagittal T2
single image

AUC: 0.94 Presence/absence of tear,
orientation, and location
were assessed

Abbreviations: AUC, area under the curve; CNN, convolutional neural network; FSE, fast spin echo; MSK, musculoskeletal; PD, proton density;
WORMS, Whole-organ Magnetic Resonance Imaging Score.
aSegmentation literature excluded.
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Bone Tumors

Bone tumors commonly occur around the knee, particularly
in the distal femur and proximal tibia, less frequently in the
proximal fibula and patella.50 Radiology has significant
limitations in discrimination between malignant and benign
tumors and predicting those at highest risk for recurrence.
Thus automated or assisted diagnosis of bone tumors is
attractive. The ability to integrate clinical information,
pathology results, and risk factors could be very helpful in
identifying patients at greatest risk for incidental bone
tumors or for recurrence following treatment.

He et al developed a CNN to predict local recurrence of
giant cell bone tumors of the proximal tibia or distal femur
following curettage, using a combination of clinical data and
presurgical noncontrast MR features. Their method outper-
formed radiologists, demonstrating greater accuracy and
sensitivity in predicting tumors that recurred within 2 years
of operative treatment in 56 patients.51

Fractures

Missed fractures in the emergent setting account for 41 to
80% of all diagnostic errors.52 Lindsey et al targeted this
shortcoming by developing a CNN that improved the accu-
racy of fracture detection when radiographs are interpreted
by emergency medicine clinicians.52 This study focused on
wrist radiographs, and the reference standard was senior
orthopaedic surgeon radiograph interpretation for binary
fracture detection. On average, clinicians in this study dem-
onstrated a relative reduction in misinterpretation rate of
47% when using the CNN. There are no current published
studies using deep-learning methods for fracture detection
around the knee. This is a potential area of research and may
be particularly useful in detecting difficult to diagnose
fractures or injury patterns including tibial plateau fractures,
osteochondral fractures, stress fractures of the proximal
tibia, and vertical patellar fractures. Other potential appli-
cations include identification of patients at highest risk for
radiographically occult fractures based on patient character-
istics, mechanism of injury, and bone mineralization.

Discussion

The current literature indicates AI performance similar to
humans for the detection of cartilage lesions on MRI and
less variability than humans in the grading of kneeOA severity
on radiographs. For ACL tears, AI performswellwherehumans
do in determining full-thickness tear versus normal ACL, but it
struggles in discriminating ACL anatomical variation, sprain,
and mucoid degeneration from tear. In the evaluation of the
meniscus, AI specificity for meniscal tear is lower than that of
humans, higher specificity is reported when intrasubstance/
degenerative meniscus signal abnormality, and tears are con-
sidered equivalent lesions.

Most of the published literature to date that explores
interpretive applications of AI to the evaluation of knee
pathology focuses on cartilage and OA. Investigations into

the ability of AI systems to predict cartilage lesions (MRI) and
stage of OA (radiographs) have shown early promise, with
proof of concept established. This is not in small part due to
the public availability of large annotated imaging data sets
such as OAI and MOST. The potential benefits of AI in
cartilage evaluation include increased speed of diagnosis,
decreased costs associatedwith interpretation, and decrease
in reader variability. The integration of fully automated OA
severity grading on radiographs holds the potential to reduce
reader fatigue by freeing up the radiologist formore complex
or difficult to diagnose problems while interpreting knee
radiographs such as the presence of subtle fractures, malig-
nancy, or soft tissue abnormalities.

The incorporation of automatically applied objective
grading systems in terms of cartilage wear on MRI and
radiographic OA, rather than free-text verbal impressions,
could reduce inter- and intrareader variability and poten-
tially improve our process of tracking cartilage disease
progression.24 As neural network cartilage lesion detection
becomes more streamlined and widely accessible, the
opportunity to scale research and test multiple data sets
will allow more robust studies to take place, specifically
aimed at lesion detection andgrading. Although important to
initially establish AI system performance compared with
human radiologists, it will be useful to make comparisons
with a more robust reference standard with arthroscopic or
surgical data and incorporate patient outcomes data. A
combined AI system incorporating automated radiographic
or MRI segmentation, detection, and staging eventually
could be paired with an AI system incorporating clinical
data53,54 to provide more reliable outcome predictions for
patients. Although we are not there yet, AI may soon play a
useful role in the automated detection of cartilage lesions
and in the distinction between early stages of OA, difficult
tasks for radiologists in both MRI and radiography.

ACL tears are rarely a diagnostic challenge for the radiol-
ogist, and visual assessment of the ACL is not a particularly
time-consuming task. In ACL evaluation, AI algorithms may
be more helpful for prioritizing studies to be read or for
assisting diagnosis of ACL tear when interpretation by an
experienced radiologist is not immediately available.

Meniscus tears, depending on anatomical location, can be
diagnostically challenging as reflected in the published
numbers for MRI sensitivity and specificity. The few articles
that have addressed AI applications for meniscal tear detec-
tion and classification have very disparate methods in terms
of what is considered ameniscus tear, and the one study that
directly compared the algorithms versus human perfor-
mance found that radiologists outperformed the algorithm.

Current literature indicates the potential for AI algorithms
to increase accuracy and efficiency in the evaluation of knee
pathology. Many challenges remain, however, and more
work on a larger scale needs to be done before a statement
could be made on the practicality or reliability of such
models in a modern clinical practice. The contents of the
algorithms themselves as authored by individual research
groups remain somewhat of a mystery, limiting the ability
for the reproduction and validation of published results, a
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process uncommon in the radiology literature. Additionally,
the generalizability of these algorithms may be limited
because the training occurs on very homogeneous data sets.

ML algorithms are ultra-specialized in the sense that each
algorithm is designed for one very specific task, such as binary
ACL classification as torn or intact. Diagnostic interpretationof
a complete knee MRI for example, would require a litany of
separate algorithms. These algorithmsmust be trained for the
diagnosis of pathology that requires agreement on a reference
standard because most MSK radiologic diagnoses lack a true
gold standard. Some options include a consensus read of
multiple radiologists to establish “truth” or a surgically proven
lesion. All introduce an additional layer of complexity to
labeling large data sets.

Finally, these algorithms currently require immense, ano-
nymized, and usually annotated data sets of high-quality
medical imaging. Only institutions/entities with the resources
to build and manage these data sets will be able to achieve
substantial forward progress unless there is a push to make
data setspubliclyavailable ormulti-institutional collaboration
is encouraged. Additional questions inherent to relying on the
results ofML algorithms for medical decisionmaking have yet
to be fully addressed including issues surrounding medical
liability, public perception, and trust in removing the human
element from some aspects of medical image interpretation.4

Conclusions

Weare at the epicenter of a research explosion in the arena of
AI applications for medical image interpretation driven on
the health care side by increased utilization of medical
imaging and on the technology side by advances in AI
algorithms and processing power. Although the potential is
there, interpretive AI algorithms for the detection of knee
pathology are currently single task oriented, have not yet
delivered a clinical product, and significant limitations
remain. Exciting future directions include AI-aided diagnos-
tics, automated and standardized tracking of OA progression
or injury healing, incorporation of clinical data into the
image interpretation process, and the potential for AI to
extract clinically important imaging features from MRI or
radiographs that have yet to be defined.
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