Synlett 2020; 31(04): 363-368
DOI: 10.1055/s-0039-1691567
letter
© Georg Thieme Verlag Stuttgart · New York

Metal-Free Regioselective Alkylation of Imidazo[1,2-a]pyridines with N-Hydroxyphthalimide Esters under Organic Photoredox Catalysis

Bin Sun
a   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
c   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Tengwei Xu
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
c   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Liang Zhang
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
c   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Rui Zhu
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
c   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Jin Yang
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
c   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Min Xu
a   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
c   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Can Jin
a   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
c   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21606202) and Natural Science Foundation of Zhejiang Province (LY15B060007). We are also grateful to the College of Pharmaceutical Sciences, Zhejiang University of Technology and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals for the financial help.
Further Information

Publication History

Received: 14 November 2019

Accepted after revision: 29 December 2019

Publication Date:
14 January 2020 (online)


Abstract

A visible-light-induced direct C–H alkylation of imidazo[1,2-a]pyridines has been developed. It proceeds at room temperature by employing inexpensive Eosin Y as a photocatalyst and alkyl N-hydroxyphthalimide (NHP) esters as alkylation reagents. A variety of NHP esters derived from aliphatic carboxylic acids (primary, secondary, and tertiary) were tolerated in this protocol, giving the corresponding C-5-alkylated products in moderate to excellent yields. Mechanistic studies indicate that a radical decarboxylative coupling pathway was involved in this process.

Supporting Information

 
  • References and Notes

    • 1a Enguehard-Gueiffier C, Gueiffier A. Mini-Rev. Med. Chem. 2007; 7: 888
    • 1b Almirante L, Polo L, Mugnaini A, Provinciali E, Rugarli P, Biancotti A, Gamba A, Murmann W. J. Med. Chem. 1965; 8: 305
    • 1c Dymińska L. Bioorg. Med. Chem. 2015; 23: 6087
    • 1d Deep A, Bhatia RK, Kaur R, Kumar S, Jain UK, Singh H, Batra S, Kaushik D, Deb PK. Curr. Top. Med. Chem. 2017; 17: 238
    • 2a Bagdi AK, Santra S, Monir K, Hajra A. Chem. Commun. 2015; 51: 1555
    • 2b Ma L, Wang X, Yu W, Han B. Chem. Commun. 2011; 47: 11333
    • 2c Gao Y, Yin M, Wu W, Huang H, Jiang H. Adv. Synth. Catal. 2013; 355: 2263
    • 2d Zeng J, Tan YJ, Leow ML, Liu X.-W. Org. Lett. 2012; 14: 4386
    • 2e Huang H, Ji X, Tang X, Zhang M, Li X, Jiang H. Org. Lett. 2013; 15: 6254
    • 2f Palani T, Park K, Kumar MR, Jung HM, Lee S. Eur. J. Org. Chem. 2012; 5038
    • 3a Cao H, Lei S, Li N, Chen L, Liu J, Cai H, Qiu S, Tan J. Chem. Commun. 2015; 51: 1823
    • 3b Nitha PR, Joseph MM, Gopalan G, Maiti KK, Radhakrishnan KV, Das P. Org. Biomol. Chem. 2018; 16: 6430
    • 4a Samanta S, Mondal S, Santra S, Kibriya G, Hajra A. J. Org. Chem. 2016; 81: 10088
    • 4b Shakoor SM. A, Agarwal DS, Kumar A, Sakhuja R. Tetrahedron 2016; 72: 645
    • 5a Naresh G, Lakkaniga NR, Kharbanda A, Yan W, Frett B, Li H. Eur. J. Org. Chem. 2019; 770
    • 5b Patel OP. S, Nandwana NK, Sah AK, Kumar A. Org. Biomol. Chem. 2018; 16: 8620
    • 5c Mondal S, Samanta S, Singsardar M, Hajra A. Org. Lett. 2017; 19: 3751
    • 5d Kibriya G, Bagdi AK, Hajra A. J. Org. Chem. 2018; 83: 10619
    • 5e Zhu M, Han X, Fu W, Wang Z, Ji B, Hao X.-Q, Song M.-P, Xu C. J. Org. Chem. 2016; 81: 7282
    • 5f Su H, Wang L, Rao H, Xu H. Org. Lett. 2017; 19: 2226
    • 5g Kim H, Byeon M, Jeong E, Baek Y, Jeong SJ, Um K, Han SH, Han GU, Ko GH, Maeng C, Son J.-Y, Kim D, Kim SH, Lee K, Lee PH. Adv. Synth. Catal. 2019; 361: 1
    • 5h Yang Q, Li S, Wang J. Org. Chem. Front. 2018; 5: 577
    • 5i Lu S, Zhu X, Li K, Guo Y.-J, Wang M.-D, Zhao X.-M, Hao X.-Q, Song M.-P. J. Org. Chem. 2016; 81: 8370
    • 6a Yuan Y, Cao Y, Qiao J, Lin Y, Jiang X, Weng Y, Tang S, Lei A. Chin. J. Chem. 2019; 37: 49
    • 6b Gao Y.-C, Huang Z.-B, Xu L, Li Z.-D, Lai Z.-S, Tang R.-Y. Org. Biomol. Chem. 2019; 17: 2279
    • 6c Zhang J.-R, Zhan L.-Z, Wei L, Ning Y.-Y, Zhong X.-L, Lai J.-X, Xu L, Tang R.-Y. Adv. Synth. Catal. 2018; 360: 533
    • 6d Zhang J.-R, Liao Y.-Y, Deng J.-C, Feng K.-Y, Zhang M, Ning Y.-Y, Lin Z.-W, Tang R.-Y. Chem. Commun. 2017; 53: 7784
  • 7 Guo Y.-J, Lu S, Tian L.-L, Huang E.-L, Hao X.-Q, Zhu X, Shao T, Song M.-P. J. Org. Chem. 2018; 83: 338
  • 8 Yin G, Zhu M, Fu W. J. Fluorine Chem. 2017; 199: 14
  • 9 Singsardar M, Mondal S, Laru S, Hajra A. Org. Lett. 2019; 21: 5606
    • 10a Mondal S, Samanta S, Jana S, Hajra A. J. Org. Chem. 2017; 82: 4504
    • 10b Yu Y, Yuan Y, Liu H, He M, Yang M, Liu P, Yu B, Dong X, Lei A. Chem. Commun. 2019; 55: 1809
    • 11a Liu P, Gao Y, Gu W, Shen Z, Sun P. J. Org. Chem. 2015; 80: 11559
    • 11b Fu HY, Chen L, Doucet H. J. Org. Chem. 2012; 77: 4473
    • 11c Xue C, Han J, Zhao M, Wang L. Org. Lett. 2019; 21: 4402
    • 11d Rafique J, Saba S, Rosário AR, Braga AL. Chem. Eur. J. 2016; 22: 11854
    • 11e Ren Y, Xu B, Zhong Z, Pittman CU, Zhou A. Org. Chem. Front. 2019; 6: 2023
    • 11f Kim YJ, Kim DY. Tetrahedron Lett. 2019; 60: 739
    • 12a Jin S, Xie B, Lin S, Min C, Deng R, Yan Z. Org. Lett. 2019; 21: 3436
    • 12b Samanta S, Hajra A. J. Org. Chem. 2019; 84: 4363
    • 13a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 13b Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
    • 13c Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Acc. Chem. Res. 2016; 49: 1911
    • 13d Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 13e Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 13f Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 13g Shi L, Xia WJ. Chem. Soc. Rev. 2012; 41: 7687
    • 13h Zhao Y, Xia WJ. Chem. Soc. Rev. 2018; 47: 2591
    • 13i Wang J, Huang B, Yang C, Xia WJ. Chem. Commun. 2019; 55: 11103
    • 13j Cai S, Xiao Z, Shi Y, Gao SH. Chem. Eur. J. 2014; 20: 8677
    • 13k Xiao Z, Cai S, Shi Y, Yang B, Gao SH. Chem. Commun. 2014; 50: 5254
    • 13l Cai S, Xiao Z, Ou J, Shi Y, Gao SH. Org. Chem. Front. 2016; 3: 354
    • 14a Cheng W.-M, Shang R, Fu M.-C, Fu Y. Chem. Eur. J. 2017; 23: 2537
    • 14b Wang G.-Z, Shang R, Fu Y. Org. Lett. 2018; 20: 888
    • 14c Wang C, Guo M, Qi R, Shang Q, Liu Q, Wang S, Zhao L, Wang R, Xu Z. Angew. Chem. Int. Ed. 2018; 57: 15841
    • 14d Yao S, Zhang K, Zhou Q.-Q, Zhao Y, Shi D.-Q, Xiao W.-J. Chem. Commun. 2018; 54: 8096
    • 14e Ouyang X.-H, Li Y, Song R.-J, Li J.-H. Org. Lett. 2018; 20: 6659
    • 14f Yu L, Tang M.-L, Si C.-M, Meng Z, Liang Y, Han J, Sun X. Org. Lett. 2018; 20: 4579
    • 14g Xia Z.-H, Zhang C.-L, Gao Z.-H, Ye S. Org. Lett. 2018; 20: 3496
    • 14h Ren L, Cong H. Org. Lett. 2018; 20: 3225
    • 14i Yang J.-C, Zhang J.-Y, Zhang J.-J, Duan X.-H, Guo L.-N. J. Org. Chem. 2018; 83: 1598
    • 14j Zhao Y, Chen J.-R, Xiao W.-J. Org. Lett. 2018; 20: 224
    • 14k Hu D, Wang L, Li P. Org. Lett. 2017; 19: 2770
    • 14l Liu L, Pan N, Sheng W, Su L, Liu L, Dong J, Zhou Y, Yin S.-F. Adv. Synth. Catal. 2019; 361: 4126
    • 14m Lyu X-L, Huang S.-S, Song H.-J, Liu Y.-X, Wang Q.-M. Org. Lett. 2019; 21: 5728
    • 15a Sun B, Wang Y, Li D, Jin C, Su W. Org. Biomol. Chem. 2018; 16: 2902
    • 15b Sun B, Yin S, Zhuang X, Jin C, Su W. Org. Biomol. Chem. 2018; 16: 6017
    • 15c Sun B, Yan Z, Jin C, Su W. Synlett 2018; 29: 2432
    • 15d Jin C, Yan Z, Sun B, Yang J. Org. Lett. 2019; 21: 2064
    • 15e Sun B, Deng J, Li D, Jin C, Su W. Tetrahedron Lett. 2018; 59: 4364
    • 15f Jin C, Zhuang X, Sun B, Li D, Zhu R. Asian J. Org. Chem. 2019; 8: 1490
    • 15g Jin C, Zhang X, Sun B, Yan Z, Xu T. Synlett 2019; 30: 1585
    • 15h Yan Z, Sun B, Zhang X, Zhuang X, Yang J, Su W, Jin C. Chem. Asian J. 2019; 14: 3344
    • 15i Wang J, Sun B, Zhang L, Xu T, Xie Y, Jin C. Asian J. Org. Chem. 2019; 8: 1942
    • 15j Sun B, Yang J, Zhang L, Shi R, Zhang X, Xu T, Zhuang X, Zhu R, Yu C, Jin C. Asian J. Org. Chem. 2019; 8: 2058
    • 16a Pirenne V, Kurtay G, Voci S, Bouffier L, Sojic N, Robert F, Bassani DM, Landais Y. Org. Lett. 2018; 20: 4521
    • 16b Wang H, Zhang D, Bolm C. Chem. Eur. J. 2018; 24: 14942
    • 16c Tiwari DP, Dabral S, Wen J, Wiesenthal J, Terhorst S, Bolm C. Org. Lett. 2017; 19: 4295
    • 16d Sun D, Yin K, Zhang R. Chem. Commun. 2018; 54: 1335
  • 17 5-(tert-Butyl)-7-chloro-2-phenylimidazo[1,2-a]pyridine (3aa); Typical Procedure A 10 mL Schlenk-tube was charged with 7-chloro-2-phenylimidazo[1,2-a]pyridine (1a) (114 mg, 0.5 mmol), tert-butyl NHP ester 2a (247 mg, 1.0 mmol), Eosin Y (3 mg, 0.005 mmol), DMSO (2 mL), and TfOH (37 mg, 0.25 mmol). The tube was evacuated and backfilled with N2 (3×). The mixture was then irradiated by 3 W blue LEDs at r.t. for 48 h. The reaction mixture was then quenched with 1 M NaOH aq (15 mL) and extracted with CH2Cl2 (3 × 10 mL). The organic layer was dried with anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (EtOAc/PE, 1:20) to afford 3aa as a white solid. Yield: 116 mg (82%); mp 141.6–142.4 °C. 1H NMR (400 MHz, CDCl3): δ = 8.07 (s, 1 H), 7.96 (d, J = 7.2 Hz, 2 H), 7.58 (s, 1 H), 7.45 (t, J = 7.6 Hz, 2 H), 7.35 (t, J = 7.2 Hz, 1 H), 6.71 (s, 1 H), 1.57 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 147.1, 146.5, 145.7, 133.6, 131.5, 128.8, 128.2, 126.2, 114.3, 110.7, 108.9, 35.6, 27.6. HRMS (ESI): m/z [M + H]+ calcd for C17H18ClN2: 285.1153; found: 285.1163.