Synlett 2020; 31(03): 280-284
DOI: 10.1055/s-0039-1691538
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Phenanthridinones by Palladium-Catalyzed Cyclization of N-Aryl-2-aminopyridines with 2-Iodobenzoic Acids in Water

Xiaojuan Ding
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, P. R. of China   Email: duanjd@njtech.edu.cn   Email: guok@njtech.edu.cn
,
Lei Zhang
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, P. R. of China   Email: duanjd@njtech.edu.cn   Email: guok@njtech.edu.cn
,
Yiyang Mao
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, P. R. of China   Email: duanjd@njtech.edu.cn   Email: guok@njtech.edu.cn
,
Binsen Rong
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, P. R. of China   Email: duanjd@njtech.edu.cn   Email: guok@njtech.edu.cn
,
Ning Zhu
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, P. R. of China   Email: duanjd@njtech.edu.cn   Email: guok@njtech.edu.cn
,
Jindian Duan
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, P. R. of China   Email: duanjd@njtech.edu.cn   Email: guok@njtech.edu.cn
,
Kai Guo
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, P. R. of China   Email: duanjd@njtech.edu.cn   Email: guok@njtech.edu.cn
b   State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, P. R. of China
› Author Affiliations
Financial support for this study from the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (NO.XTE1826) and the Natural Science Research of Jiangsu Higher Education Institutions of China (19KJB150027) is gratefully acknowledged.
Further Information

Publication History

Received: 13 October 2019

Accepted after revision: 03 December 2019

Publication Date:
16 December 2019 (online)


Abstract

The first Pd-catalyzed cyclization of N-aryl-2-aminopyridines with 2-iodobenzoic acids for the synthesis of phenanthridinones through C–H bond activation under very low catalyst loadings (down to 0.1 mol% Pd) in water is reported. This protocol features a broad substrate scope and provides easy efficient access to various phenanthridinones.

Supporting Information

 
  • References and Notes

    • 1a Nakamura M, Aoyama A, Salim MT. A, Okamoto M, Baba M, Miyachi H, Hashimoto Y, Aoyama H. Bioorg. Med. Chem. 2010; 18: 2402
    • 1b Huang S.-H, Xiong M, Chen X.-P, Xiao Z.-Y, Zhao Y.-F, Huang Z.-Y. Oncol. Rep. 2008; 20: 567
    • 1c Patil S, Kamath S, Sanchez T, Neamati N, Schinazi RF, Buolamwini JK. Bioorg. Med. Chem. 2007; 15: 1212
    • 1d Aldinucci A, Gerlini G, Fossati S, Cipriani G, Ballerini C, Biagioli T, Pimpinelli N, Borgognoni L, Massacesi L, Moroni F, Chiarugi A. J. Immunol. 2007; 179: 305
    • 1e Legentil L, Benel L, Bertrand V, Lesur B, Delfourne E. J. Med. Chem. 2006; 49: 2979
    • 1f Ruchelman AL, Houghton PJ, Zhou N, Liu A, Liu LF, LaVoie E. J. Med. Chem. 2005; 48: 792
    • 1g Ruchelman AL, Zhu S, Zhou N, Liu A, Liu L, LaVoie E. Bioorg. Med. Chem. Lett. 2004; 14: 5585
    • 1h Chang Y.-C, Hsieh P.-W, Chang F.-R, Wu R.-R, Liaw C.-C, Lee K.-H, Wu Y.-C. Planta Med. 2003; 69: 148
    • 2a Rafiee F. Appl. Organomet. Chem. 2017; 31: e3820
    • 2b Rousseau G, Robert F, Schenk K, Landais Y. Org. Lett. 2008; 10: 4441
    • 2c Guo X, Xing Q, Lei K, Zhang-Negrerie D, Du Y, Zhao K. Adv. Synth. Catal. 2017; 359: 4393
    • 3a Cailly T, Fabis F, Rault S. Tetrahedron 2006; 62: 5862
    • 3b Yawer MA, Hussain I, Iqbal I, Spannenberg A, Langer P. Tetrahedron Lett. 2008; 49: 4467
    • 3c Dubost E, Magnelli R, Cailly T, Legay R, Fabis F, Rault S. Tetrahedron 2010; 66: 5008
    • 3d Tanimoto K, Nakagawa N, Takeda K, Kirihata M, Tanimori S. Tetrahedron Lett. 2013; 54: 3712
    • 3e Chen Y.-F, Wu Y.-S, Jhan Y.-H, Hsieh J.-C. Org. Chem. Front. 2014; 1: 253
    • 3f Gandeepan P, Rajamalli P, Cheng C.-H. Synthesis 2016; 48: 1872
    • 3g Nealmongkol P, Calmes J, Ruchirawat S, Thasana N. Tetrahedron 2017; 73: 735
    • 3h Chen Z, Wang X. Org. Biomol. Chem. 2017; 15: 5790
    • 4a Iwasaki H, Eguchi T, Tsutsui N, Ohno H, Tanaka T. J. Org. Chem. 2008; 73: 7145
    • 4b Bernini R, Cacchi S, Fabrizi G, Sferrazza A. Synthesis 2008; 729
    • 4c Yeung CS, Zhao X, Borduas N, Dong VM. Chem. Sci. 2010; 1: 331
    • 4d Ishida N, Nakanishi Y, Moriya T, Murakami M. Chem. Lett. 2011; 40: 1047
    • 4e Bhakuni BS, Kumar A, Balkrishna SJ, Sheikh JA, Konar S, Kumar S. Org. Lett. 2012; 14: 2838
    • 4f Zhang G, Zhao X, Yan Y, Ding C. Eur. J. Org. Chem. 2012; 669
    • 4g Yu Q, Zhang N, Tang Y, Lu H, Huang J, Wang S, Du Y, Zhao K. Synthesis 2012; 44: 2374
    • 4h Conde N, Churruca F, SanMartin R, Herrero MT, Domínguez E. Adv. Synth. Catal. 2015; 357: 1525
    • 4i Sharma S, Kumar M, Sharma S, Nayal OS, Kumar N, Singh B, Sharma U. Org. Biomol. Chem. 2016; 14: 8536
    • 4j Hu Q.-F, Gao T.-T, Shi Y.-J, Lei Q, Yu L.-T. RSC Adv. 2018; 8: 13879
    • 5a Liang D, Hu Z, Peng J, Huang J, Zhu Q. Chem. Commun. 2013; 49: 173
    • 5b Liang Z, Zhang J, Liu Z, Wang K, Zhang Y. Tetrahedron 2013; 69: 6519
    • 5c Rajeshkumar V, Lee T.-H, Chuang S.-C. Org. Lett. 2013; 15: 1468
    • 5d Wang S, Shao P, Du G, Xi C. J. Org. Chem. 2016; 81: 6672
    • 5e Rao DN, Rasheed S, Das P. Org. Lett. 2016; 18: 3142
    • 5f Shi R, Niu H, Lu L, Lei A. Chem. Commun. 2017; 53: 1908
    • 5g Ling F, Zhang C, Ai C, Lv Y, Zhong W. J. Org. Chem. 2018; 83: 5698
    • 5h Gao Y, Cai Z, Li S, Li G. Org. Lett. 2019; 21: 3663
    • 6a Gui Q, Yang Z, Chen X, Liu J, Tan Z, Guo R, Yu W. Synlett 2013; 24: 1016
    • 6b Hirata T, Takahashi I, Suzuki Y, Yoshida H, Hasegawa H, Kitagawa O. J. Org. Chem. 2016; 81: 318
    • 6c Chen W.-L, Jhang Y.-Y, Hsieh J.-C. Res. Chem. Intermed. 2017; 43: 3517
    • 6d Liang D, Yu W, Nguyen N, Deschamps JR, Imler GH, Li Y, MacKerell AD. Jr, Jiang C, Xue F. J. Org. Chem. 2017; 82: 3589
    • 6e Liang D, Sersen D, Yang C, Deschamps JR, Imler GH, Jiang C, Xue F. Org. Biomol. Chem. 2017; 15: 4390
    • 6f Moon Y, Jang E, Choi S, Hong S. Org. Lett. 2018; 20: 240
    • 6g Zhang S, Li L, Xue M, Zhang R, Xu K, Zeng C. Org. Lett. 2018; 20: 3443
    • 6h Kehl A, Breising VM, Schollmeyer D, Waldvogel SR. Chem. Eur. J. 2018; 24: 17230
    • 6i Usami K, Yamaguchi E, Tada N, Itoh A. Eur. J. Org. Chem. in press; DOI: 10.1002/ejoc.201900536.
  • 7 Yuan M, Chen L, Wang J, Chen S, Wang K, Xue Y, Yao G, Luo Z, Zhang Y. Org. Lett. 2015; 17: 346
  • 8 Li X, Pan J, Song S, Jiao N. Chem. Sci. 2016; 7: 5384
    • 9a Karthikeyan J, Cheng C.-H. Angew. Chem., Int. Ed. 2011; 50: 9880
    • 9b Mandal A, Selvakumar J, Dana S, Mukherjee U, Baidya M. Chem. Eur. J. 2018; 24: 3448
    • 10a Ferraccioli R, Carenzi D, Rombolà O, Catellani M. Org. Lett. 2004; 6: 4759
    • 10b Wang G.-W, Yuan T.-T, Li D.-D. Angew. Chem. Int. Ed. 2011; 50: 1380
    • 10c Banerji B, Chatterjee S, Chandrasekhar K, Nayan C, Killi SK. Eur. J. Org. Chem. 2017; 5214
    • 10d Saha R, Sekar G. J. Catal. 2018; 366: 176
    • 11a Lu C, Dubrovskiy AV, Larock RC. J. Org. Chem. 2012; 77: 8648
    • 11b Yang Y, Huang H, Wu L, Liang Y. Org. Biomol. Chem. 2014; 12: 5351
    • 11c Pimparkar S, Jeganmohan M. Chem. Commun. 2014; 50: 12116
    • 11d Peng X, Wang W, Jiang C, Sun D, Xu Z, Tung C.-H. Org. Lett. 2014; 16: 5354
    • 11e Feng M, Tang B, Wang N, Xu H, Jiang X. Angew. Chem. Int. Ed. 2015; 54: 14960
    • 11f Feng M, Tang B, Xu H, Jiang X. Org. Lett. 2016; 18: 4352
    • 11g Zhang T.-Y, Lin J.-B, Li Q.-Z, Kang J.-C, Pan J.-L, Hou S.-H, Chen C, Zhang S.-Y. Org. Lett. 2017; 19: 1764
    • 11h Thorat VH, Upadhyay NS, Murakami M, Cheng C.-H. Adv. Synth. Catal. 2018; 360: 284
    • 11i Zhao J, Li H, Li P, Wang L. J. Org. Chem. 2019; 84: 9007
    • 11j Meng Y.-Y, Si X.-J, Song Y.-Y, Zhou H.-M, Xu F. Chem. Commun. 2019; 55: 9507
  • 12 Yedage SL, Bhanage BM. J. Org. Chem. 2016; 81: 4103
  • 13 Senthilkumar N, Parthasarathy K, Gandeepan P, Cheng C.-H. Chem. Asian J. 2013; 8: 2175
    • 14a Karthikeyan J, Haridharan R, Cheng C.-H. Angew. Chem. Int. Ed. 2012; 51: 12343
    • 14b Manikandan TS, Ramesh R, Semeril D. Organometallics 2019; 38: 319
    • 15a Li D, Xu N, Zhang Y, Wang L. Chem. Commun. 2014; 50: 14862
    • 15b Yang W, Wang J, Wei Z, Zhang Q, Xu X. J. Org. Chem. 2016; 81: 1675
    • 15c Furuta T, Kitamura Y, Hashimoto A, Fujii S, Tanaka K, Kan T. Org. Lett. 2007; 9: 183
    • 15d Donati L, Michel S, Tillequin F, Porée F.-H. Org. Lett. 2010; 12: 156
    • 15e Donati L, Leproux P, Prost E, Michel S, Tillequin F, Gandon V, Porée F.-H. Chem. Eur. J. 2011; 17: 12809
    • 15f Liu H, Han W, Li C, Ma Z, Li R, Zheng X, Fu H, Chen H. Eur. J. Org. Chem. 2016; 389
    • 15g Chen X, Liu Y. ChemistrySelect 2018; 3: 7763
    • 15h Honeycutt AP, Hoover JM. Org. Lett. 2018; 20: 7216
    • 15i Takamatsu K, Hirano K, Miura M. Angew. Chem. Int. Ed. 2017; 56: 5353
  • 16 Phenanthridinones 3; General Procedure Pd(OAc)2 (4.5 mg, 0.02 mmol) was dissolved in CH2Cl2 (1 mL) and 10 μL of the solution was added to a Schlenk tube equipped with a Teflon-coated magnetic stirrer bar. The solvent was then evaporated under high vacuum. The appropriate N-aryl-2-aminopyridine 1 (0.20 mmol), 2-iodobenzoic acid 2 (0.26 mmol), and Ag2O (32 mg, 0.14 mmol) were added to the Schlenk tube. Water (1.0 mL) was added, the tube was placed in a preheated oil bath (120 °C), and the mixture was stirred for 3 h. When the reaction was complete, the reaction tube was allowed to cool to r.t. and EtOAc was added. The organic layer was separated, and the aqueous layer was washed with EtOAc. The filtrate was concentrated under reduced pressure, and the crude product was purified by flash column chromatography (silica gel). 5-Pyridin-2-ylphenanthridin-6(5H)-one (3a) White solid; yield: 50 mg (93%); mp 185–186 °C. 1H NMR (400 MHz, CDCl3): δ = 8.77 (d, J = 4.1 Hz, 1 H), 8.53 (d, J = 7.9 Hz, 1 H), 8.27–8.22 (m, 2 H), 7.97–7.93 (m, 1 H), 7.76–7.73 (m, 1 H), 7.57–7.53 (m, 1 H), 7.46–7.42 (m, 2 H), 7.28–7.21 (m, 2 H), 6.51 (d, J = 8.4 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 161.7, 151.9, 150.6, 139.3, 138.2, 134.2, 133.0, 129.1, 128.8, 128.1, 125.7, 124.8, 124.1, 123.1, 122.9, 121.9, 118.9, 116.4. HRMS (ESI-TOF): m/z [M + H]+ calcd for C18H13N2O: 273.1028; found: 273.1036.
  • 17 Chu J.-H, Lin P.-S, Lee Y.-M, Shen W.-T, Wu M.-J. Chem. Eur. J. 2011; 17: 13613
    • 18a Vicente J, Arcas A, Juliá-Hernández F, Bautista D. Angew. Chem. Int. Ed. 2011; 50: 6896
    • 18b Whitehurst WG, Blackwell JH, Hermann GN, Gaunt MJ. Angew. Chem. Int. Ed. 2019; 58: 9054