Synlett 2020; 31(01): 83-86
DOI: 10.1055/s-0039-1691493
letter
© Georg Thieme Verlag Stuttgart · New York

Air-Induced Disulfenylation of Alkenes: Facile Synthesis of Vicinal Dithioethers

Guodian Yu
,
Yingcong Ou
,
Danyao Chen
,
Yuanting Huang
,
Yan Yan
,
Qian Chen
This research was supported by the Science and Technology Planning Project of Guangdong Province (No. 2017A010103044), the Natural Science Foundation of Guangdong Province (No. 2017A030313071), the National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201911845133), and the 100 Young Talents Program of Guangdong University of Technology (No. 220413506).
Further Information

Publication History

Received: 10 September 2019

Accepted after revision: 05 November 2019

Publication Date:
19 November 2019 (online)


Abstract

A novel disulfenylation of alkenes with thiophenols and their corresponding disulfides by using air as the oxidant has been achieved. This transformation provides a facile and practical protocol for the synthesis of vicinal dithioethers under mild conditions.

Supporting Information

 
  • References and Notes

    • 1a Trost BM. Chem. Rev. 1978; 78: 363
    • 1b Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 1c Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
    • 2a Gendron F.-P, Halbfinger E, Fischer B, Duval M, D’Orléans-Juste P, Beaudoin AR. J. Med. Chem. 2000; 43: 2239
    • 2b La Regina G, Coluccia A, Brancale A, Piscitelli F, Gatti V, Maga G, Samuele A, Pannecouque C, Schols D, Balzarini J, Novellino E, Silvestri R. J. Med. Chem. 2011; 54: 1587
    • 2c La Regina G, Bai R, Rensen W, Coluccia A, Piscitelli F, Gatti V, Bolognesi A, Lavecchia A, Granata I, Porta A, Maresca B, Soriani A, Iannitto ML, Mariani M, Santoni A, Brancale A, Ferlini C, Dondio G, Varasi M, Mercurio C, Hamel E, Lavia P, Novellino E, Silvestri R. J. Med. Chem. 2011; 54: 8394
    • 2d Klečka M, Pohl R, Čejka J, Hocek M. Org. Biomol. Chem. 2013; 11: 5189
    • 2e Yonova IM, Osborne CA, Morrissette NS, Jarvo ER. J. Org. Chem. 2014; 79: 1947
    • 3a Yang X.-H, Davison RT, Dong VM. J. Am. Chem. Soc. 2018; 140: 10443
    • 3b Tao Z, Robb KA, Panger JL, Denmark SE. J. Am. Chem. Soc. 2018; 140: 15621
    • 3c Zhu F, Miller E, Zhang S.-q, Yi D, O’Neill S, Hong X, Walczak MA. J. Am. Chem. Soc. 2018; 140: 18140
    • 3d Wu J, Zhao Q, Wilson TC, Verhoog S, Lu L, Gouverneur V, Shen Q. Angew. Chem. Int. Ed. 2019; 58: 2413
    • 3e Yang X.-H, Davison RT, Nie S.-Z, Cruz FA, McGinnis TM, Dong VM. J. Am. Chem. Soc. 2019; 141: 3006
    • 3f Liu D, Ma H.-X, Fang P, Mei T.-S. Angew. Chem. Int. Ed. 2019; 58: 5033
    • 4a Usugi S.-i, Yorimitsu H, Shinokubo H, Oshima K. Org. Lett. 2004; 6: 601
    • 4b Yamagiwa N, Suto Y, Torisawa Y. Bioorg. Med. Chem. Lett. 2007; 17: 6197
    • 4c Yadav LD. S, Awasthi C. Tetrahedron Lett. 2009; 50: 3801
    • 4d Matsumoto K, Fujie S, Suga S, Nokami T, Yoshida J.-i. Chem. Commun. 2009; 5448
    • 4e Jin Z, Xu B, Hammond GB. Eur. J. Org. Chem. 2010; 168
    • 4f Wang X.-R, Chen F. Tetrahedron 2011; 67: 4547
    • 4g Li J, Li C, Ouyang L, Li C, Yang S, Wu W, Jiang H. Adv. Synth. Catal. 2018; 360: 1138
    • 4h He R, Chen X, Li Y, Liu Q, Liao C, Chen L, Huang Y. J. Org. Chem. 2019; 84: 8750
    • 5a Capacchione C, Manivannan R, Barone M, Beckerle K, Centore R, Oliva L, Proto A, Tuzi A, Spaniol TP, Okuda J. Organometallics 2005; 24: 2971
    • 5b Poulain S, Julien S, Duñach E. Tetrahedron Lett. 2005; 46: 7077
    • 5c Beckerle K, Manivannan R, Lian B, Meppelder GM, Raabe G, Spaniol TP, Ebeling H, Pelascini F, Mülhaupt R, Okuda J. Angew. Chem. Int. Ed. 2007; 46: 4790
    • 5d Cohen A, Yeori A, Goldberg I, Kol M. Inorg. Chem. 2007; 46: 8114
    • 5e Lian B, Beckerle K, Spaniol TP, Okuda J. Angew. Chem. Int. Ed. 2007; 46: 8507
    • 5f Meppelder GM, Beckerle K, Manivannan R, Lian B, Raabe G, Spaniol P, Okuda J. Chem. Asian J. 2008; 3: 1312
    • 5g Gall BT, Pelascini F, Ebeling H, Beckerle K, Okuda J, Mülhaupt R. Macromolecules 2008; 41: 1627
    • 5h Ishii A, Toda T, Nakata N, Matsuo T. J. Am. Chem. Soc. 2009; 131: 13566
    • 5i Mosberg MI, Yeomans L, Anand JP, Porter V, Sobczyk-Kojiro K, Traynor JR, Jutkiewicz EM. J. Med. Chem. 2014; 57: 3148
    • 5j Ishii A, Ikuma K, Nakata N, Nakamura K, Kuribayashi H, Takaoki K. Organometallics 2017; 36: 3954
    • 5k Nakata N, Nakamura K, Ishii A. Organometallics 2018; 37: 2640
  • 6 Chen Q, Yu G, Wang X, Ou Y, Huo Y. Green Chem. 2019; 21: 798
    • 7a Dénès F, Schiesser CH, Renaud P. Chem. Soc. Rev. 2013; 42: 7900
    • 7b Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
    • 7c Pan X.-Q, Zou J.-P, Yi W.-B, Zhang W. Tetrahedron 2015; 71: 7481
    • 8a Iwasaki M, Fujii T, Nakajima K, Nishihara Y. Angew. Chem. Int. Ed. 2014; 53: 13880
    • 8b Xi H, Deng B, Zong Z, Lu S, Li Z. Org. Lett. 2015; 17: 1180
    • 8c Wang H, Lu Q, Qian C, Liu C, Liu W, Chen K, Lei A. Angew. Chem. Int. Ed. 2016; 55: 1094
    • 8d Huo C, Wang Y, Yuan Y, Chen F, Tang J. Chem. Commun. 2016; 52: 7233
    • 8e Ni S, Zhang L, Zhang W, Mei H, Han J, Pan Y. J. Org. Chem. 2016; 81: 9470
    • 8f Du B, Wang Y, Mei H, Han J, Pan Y. Adv. Synth. Catal. 2017; 359: 1684
    • 8g Cui H, Wei W, Yang D, Zhang Y, Zhao H, Wang L, Wang H. Green Chem. 2017; 19: 3520
    • 8h Ye J.-H, Miao M, Huang H, Yan S.-S, Yin Z.-B, Zhou W.-J, Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15416
    • 8i Li C, Li J, Tan C, Wu W, Jiang H. Org. Chem. Front. 2018; 5: 3158
    • 8j Yuan Y, Chen Y, Tang S, Huang Z, Lei A. Sci. Adv. 2018; 4 eaat5312; DOI: 10.1126/sciadv.aat5312.
    • 8k Li H, Shan C, Tung C.-H, Xu Z. Chem. Sci. 2017; 8: 2610
    • 8l Li H, Cheng Z, Tung C.-H, Xu Z. ACS Catal. 2018; 8: 8237
    • 8m Huang S, Li H, Xie T, Wei F, Tung C.-H, Xu Z. Org. Chem. Front. 2019; 6: 1663
    • 9a Wallance TJ, Schriesheim A. J. Org. Chem. 1962; 27: 1514
    • 9b Wallance TJ, Schriesheim A, Bartok W. J. Org. Chem. 1963; 28: 1311
    • 9c Dong W.-L, Huang G.-Y, Li Z.-M, Zhao W.-G. Phosphorus, Sulfur Silicon Relat. Elem. 2009; 184: 2058
    • 9d Song S, Zhang Y, Yeerlan A, Zhu B, Liu J, Jiao N. Angew. Chem. Int. Ed. 2017; 56: 2487
    • 10a Chen Q, Huang Y, Wang X, Wen C, Yan X, Zeng J. Tetrahedron Lett. 2017; 58: 3928
    • 10b Chen Q, Wang X, Wen C, Huang Y, Yan X, Zeng J. RSC Adv. 2017; 7: 39758
    • 10c Wen C, Chen Q, Huang Y, Wang X, Yan X, Zeng J, Huo Y, Zhang K. RSC Adv. 2017; 7: 45416
    • 10d Chen Q, Huang Y, Wang X, Wu J, Yu G. Org. Biomol. Chem. 2018; 16: 1713
    • 10e Chen Q, Yu G, Wang X, Huang Y, Yan Y, Huo Y. Org. Biomol. Chem. 2018; 16: 4086
    • 10f Wen C, Wu J, Ou Y, Huang Y, Zhang K, Chen Q. Tetrahedron Lett. 2018; 59: 3609
    • 11a Guo S.-r, Yuan Y.-q, Xiang J.-n. Org. Lett. 2013; 15: 4654
    • 11b Du B, Jin B, Sun P. Org. Lett. 2014; 16: 3032
    • 11c Wang P.-F, Wang X.-Q, Dai J.-J, Feng Y.-S, Xu H.-J. Org. Lett. 2014; 16: 4586
    • 11d Yu J.-M, Cai C. Org. Biomol. Chem. 2018; 16: 490
  • 12 Tyson EL, Ament MS, Yoon TP. J. Org. Chem. 2013; 78: 2046
  • 13 Keshari T, Yadav VK, Srivastava VP, Yadav LD. S. Green Chem. 2014; 16: 3986
  • 14 Zhou S.-F, Pan X, Zhou Z.-H, Shoberu A, Zou J.-P. J. Org. Chem. 2015; 80: 3682
  • 15 1,1′-[(1-phenylethane-1,2-diyl)di(sulfanediyl)]bis(4-methylbenzene) (4a): Typical Procedure A 25 mL vial was charged with styrene (1a) (21 mg, 0.2 mmol), thiol 2a (5 mg, 0.04 mmol), and disulfide 3a (99 mg, 0.4 mmol) in CH2Cl2 (2 mL), then sealed under a N2 atmosphere. Air (7 mL) was introduced into the sealed vial and the mixture was stirred at rt for 24 h. After removal of the solvent, the residue was purified by flash column chromatography (silica gel, PE) to give a white solid; yield: 50 mg (71%); mp 67.2–68.5 °C. 1H NMR (400 MHz, CDCl3): δ = 7.29–7.17 (m, 5 H), 7.14 (d, J = 8.0 Hz, 2 H), 7.07–6.97 (m, 6 H), 4.15 (dd, J = 10.1, 4.9 Hz, 1 H), 3.42 (dd, J = 13.5, 4.9 Hz, 1 H), 3.27 (dd, J = 13.5, 10.2 Hz, 1 H), 2.29 (s, 3 H), 2.29 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 140.0, 137.9, 136.6, 133.5, 131.9, 130.7, 130.5, 129.80, 129.77, 128.6, 128.2, 127.8, 52.7, 40.2, 21.3, 21.2.