Synlett 2019; 30(13): 1541-1545
DOI: 10.1055/s-0039-1690108
letter
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Synthesis of 1-Substituted 1,2,3,4-Tetrahydroisoquinolines through 1,3-Dipolar Cycloaddition by a Chiral Phosphoric Acid

Yuan Jin
,
Yasuhiro Honma
,
Hisashi Morita
,
,
Grant-in-Aid for Scientific Research on Innovative Areas ‘Advanced Transformation Organocatalysis’ from MEXT, Japan, and JSPS KAKENHI Grant number 17H03060.
Further Information

Publication History

Received: 20 May 2019

Accepted after revision: 18 June 2019

Publication Date:
27 June 2019 (online)


Abstract

A new approach is described for the asymmetric synthesis of 1-substituted 1,2,3,4-tetrahydroisoquinolines that is based on the enantioselective 1,3-dipolar cycloaddition reaction of a nitrone and a vinyl ether in the presence of a chiral phosphoric acid that gives the chiral tetrahydroisoquinolines in high yields and with high enantioselectivities. 1H and 31P NMR analyses of the mixture of nitrone and chiral phosphoric acid suggest the formation of a 1:1 complex.

Supporting Information

 
  • References and Notes

    • 1a Herbert RB. In The Chemistry and Biology of Isoquinoline Alkaloids . Philipson JD, Roberts MF, Zenk MH. Springer; Berlin: 1985: 213
    • 1b Bentley KW. Nat. Prod. Rep. 1998; 341

      For reviews of asymmetric syntheses of 1,2,3,4-tetrahydroisoquinolines, see:
    • 2a Liu W, Liu S, Jin R, Guo H, Zhao J. Org. Chem. Front. 2015; 2: 288
    • 2b Gualandi A, Mengozzi L, Manoni E, Cozzi PG. Catal. Lett. 2015; 145: 398
    • 2c Chrzanowska M, Grajewska A, Rozwadowska MD. Chem. Rev. 2016; 116: 12369
  • 3 Jensen KB, Roberson M, Jørgensen KA. J. Org. Chem. 2000; 65: 9080

    • For selected examples of the reaction of vinyl ethers catalyzed by chiral Brønsted acid, see:
    • 4a Akiyama T, Morita H, Fuchibe K. J. Am. Chem. Soc. 2006; 128: 13070
    • 4b Mosey RA, Fisk JS, Friebe TL, Tepe JJ. Org. Lett. 2008; 10: 825
    • 4c Terada M, Tanaka H, Sorimachi K. J. Am. Chem. Soc. 2009; 131: 3430
    • 4d Lu C, Su X, Floreancig PE. J. Org. Chem. 2013; 78: 9366
  • 5 Jiao P, Nakashima D, Yamamoto H. Angew. Chem. Int. Ed. 2008; 47: 2411

    • For selected examples of enantioselective 1,3-dipolar cycloaddition reactions of nitrones and alkenes with organocatalysts, see:
    • 6a Jen WS, Wiener JJ. M, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 9874
    • 6b Karlsson S, Högberg H.-E. Eur. J. Org. Chem. 2003; 2782
    • 6c Chow SS, Nevalainen M, Evans CA, Johannes CW. Tetrahedron Lett. 2007; 48: 277
    • 6d Du W, Liu Y.-K, Yue L, Chen Y.-C. Synlett 2008; 2997
    • 6e Weselinski L, Slyk E, Jurczak J. Tetrahedron Lett. 2011; 52: 381
    • 6f Weseliński L, Kalinowska E, Jurczak J. Tetrahedron: Asymmetry 2012; 23: 264
    • 6g Selim KB, Beauchard A, Lhoste J, Martel A, Laurent MY, Dujardin G. Tetrahedron: Asymmetry 2012; 23: 1670
    • 6h Poulsen PH, Vergura S, Monleón A, Jørgensen DK. B, Jørgensen KA. J. Am. Chem. Soc. 2016; 138: 6412

      For selected examples of enantioselective syntheses of chiral 1-substituted 1,2,3,4-tetrahydroisoquinolines by 1,3-dipolar cycloaddition reaction, see:
    • 7a Viton F, Benardinelli G, Kündig EP. J. Am. Chem. Soc. 2002; 124: 4968
    • 7b Carmona D, Lamata MP, Viguri F, Rodríguez R, Oro LA, Lahoz FJ, Balana AI, Tejero T, Merino P. J. Am. Chem. Soc. 2005; 127: 13386
    • 7c Carmona D, Lamata MP, Viguri F, Rodríguez R, Fischer T, Lahoz FJ, Dobrinovitch IT, Oro LA. Adv. Synth. Catal. 2007; 349: 1751
  • 8 Seerden J.-PG, Boeren MM. M, Scheeren HW. Tetrahedron 1997; 53: 11843

    • For seminal papers on chiral phosphoric acid catalysis, see:
    • 9a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 9b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356 For selected reviews, see:
    • 9c Akiyama T. Chem. Rev. 2007; 107: 5744
    • 9d Terada M. Synthesis 2010; 1929
    • 9e Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 9f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2017; 117: 10608
    • 9g Merad J, Lalli G, Bernadat G, Maur J, Masson G. Chem. Eur. J. 2018; 24: 3925
  • 10 (2S,10bS)-2-tert-Butoxy-1,5,6,10b-tetrahydro-2H-isoxazolo[3,2-a]isoquinoline (4aa); Typical ProcedureUnder a N2 atmosphere, a mixture of nitrone 2a (0.15 mmol), MS 4Å (68 wt%, activated), and chiral phosphoric acid 1d (0.015 mmol, 10 mol%) in mesitylene (0.2 mL) was stirred at r.t. for 5 min. The mixture was then cooled to –10 °C and vinyl ether 3a (0.38 mmol, 2.5 equiv) was added. The mixture was stirred at –10 °C for 3 d. When the reaction was complete (TLC), it was quenched with sat. aq NaHCO3. The resulting mixture was extracted with EtOAc (×3) and the combined organic layer was washed with brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by preparative TLC [hexane–EtOAc–Et3N (100:25:3)] to give a colorless oil; yield: 35 mg [94%, exo/endo = 97:3; 84% ee (exo)]; [α]D 24 +88.8 (c 1.1, CHCl3).HPLC: Daicel Chiralpak IB column (4.6 × 250 mm), hexane–i-PrOH (100:1), 0.75 mL/min, λ = 244 nm; t major = 12.00 min, t minor = 9.9 min. 1H NMR (400 MHz, CDCl3): δ = 7.08–7.20 (m, 4 H), 5.57 (dd, J = 1.2, 5.6 Hz, 1 H), 4.76 (dd, J = 8.0, 8.4 Hz, 1 H), 3.28 (ddd, J = 4.8, 5.6, 10.4 Hz, 1 H), 3.14 (ddd, J = 5.2, 7.6, 12.8 Hz, 1 H), 2.81–2.99 (m, 2 H), 2.53 (ddd, J = 1.6, 6.8, 12.8 Hz, 1 H), 2.43 (ddd, J = 5.6, 8.8, 12.8 Hz, 1 H), 1.28 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 135.9, 133.8, 128.2, 127.5, 126.4 (2 peaks), 96.9, 74.6, 60.4, 49.5, 44.1, 29.0, 27.1.
  • 11 Details of solvent screening are summarized in the Supporting Information.
  • 12 Chiral phosphoric acids with electron-deficient substituents were also tested; see Supporting Information for details.
  • 13 For the variations of the concentration and the addition of molecular sieves, see Supporting Information for details.
  • 14 See Supporting Information for details.