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Abstract Platelets are known to be central regulators of haemostasis, inflammation and immune
response. Formed by megakaryocytes in the bone marrow and the lungs, platelets
express a broad range of adhesion receptors and release cytokines and platelet
microparticles which enable them to interact with both immune cells and pathogens.
In bacterial and viral infections, thrombophilia and thrombocytopenia are commonly
seen symptoms, indicating the close relationship between haemostasis and immune
defence. Indeed, platelets contribute both directly and via immune mediation to
pathogen clearance. In sterile inflammation, a pathogen-free process which is often
triggered by cell necrosis and autoimmune reactions, platelets are also of central
importance. Recently, platelet inflammasome has been extensively studied in this
context. Both sterile inflammation and infection are affected by the interactions of
platelets and innate immunity, notably the complement system. Although the general
elements of this interplay have been known for long, more and more insights into
disease-specific mechanisms could be gained recently. This review gives an outline of
the current findings in the field of platelet–immune cell interactions and points out
possible implications for clinical therapy.
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Zusammenfassung Thrombozyten sind bekanntlich zentrale Regulatoren von Blutstillung, Entzündung
und Immunantwort. Gebildet von Megakaryozyten im Knochenmark und in der Lunge,
exprimieren Plättchen eine breite Palette von Adhäsionsrezeptoren und setzen Cyto-
kine und Plättchenmikropartikel frei, die es ihnen ermöglichen, sowohl mit Immunzel-
len als auch mit Pathogenen in Wechselwirkung zu treten. Bei bakteriellen und viralen
Infektionen treten häufig Thrombophilie und Thrombozytopenie auf, was auf eine enge
Beziehung zwischen Hämostase und Immunabwehr hinweist. In der Tat tragen
Thrombozyten sowohl direkt als auch über die Immunmediation zur Pathogenclea-
rance bei. Bei der sterilen Entzündung, einem pathogenfreien Prozess, der häufig durch
Zellnekrose und Autoimmunreaktionen ausgelöst wird, sind Thrombozyten ebenfalls
von zentraler Bedeutung. In letzter Zeit wurde das Thrombozyten-Inflammasom in
diesem Zusammenhang ausführlich untersucht. Sowohl sterile Entzündungen als auch

received
April 17, 2018
accepted after revision
July 19, 2018

© 2018 Georg Thieme Verlag KG
Stuttgart · New York

DOI https://doi.org/
10.1055/s-0038-1669450.
ISSN 0720-9355.

Review Article186

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

mailto:harald.langer@med.uni-tuebingen.de
https://doi.org/10.1055/s-0038-1669450
https://doi.org/10.1055/s-0038-1669450


Introduction

Besides leukocytes and red blood cells, platelets constitute
one of the three main blood cell types. They derive from
megakaryocytes, large (50–100 µm in diameter), polyploid
(up to 64N) cells which are formed in the bone marrow from
hematopoietic stem cells. With an average diameter of 2 to
3 µm and a concentration of 150 to 450 � 109 per litre
blood, platelets play an essential role in primary haemo-
stasis, infection, modulation of immune response and tissue
remodelling.1–7 Although their different functions have
been intensively studied, the process of platelet formation
is recently attracting increasing interest as a detailed un-
derstanding of the factors, and mechanisms involved in
thrombopoiesis can be of great use for the upcoming field
of ex vivo platelet production.8 In fact, efforts have been
made to cultivate platelets for transfusions in the laborato-
ry. Most attempts use megakaryocytes derived from exper-
imentally generated human pluripotent stem cells to
produce platelets in vitro.9–11 Others follow the approach
to infuse ex-vivo–produced megakaryocytes to stimulate
platelet production in the lungs. However, low numbers of
produced platelets and reduced platelet function are still
obstacles to be overcome.12 The classical process of mega-
karyopoiesis includes several steps from multipotent pro-
genitor cells over bipotential megakaryocytic-erythroid
progenitor cells to committed megakaryocytic progenitors
cells.13 This development is induced by thrombopoietin
(TPO) and enhanced by the cytokines interleukin- (IL-) 3,
6, 9 and 11.14–16 In a process referred to as endomitosis,
megakaryocytes replicate their DNA several times without
any cell division (►Fig. 1). As a result, several sets of
chromosomes are present in megakaryocytes (between
4N and 64N).17 Megakaryocytes in their late stages of
development are then recruited to the bone marrow endo-
thelial sinus by an interaction of SDF-1 with its CXCR4
receptor.18 This classical model of MK migration has been
recently challenged. Using an advanced combination of in
vivo imaging techniques and computational simulations,
Stegner et al could prove that the vast majority of MKs
resided close to the blood vessels and showed very little
migration. Furthermore, no differences could be observed in
the localization of early- and late-stage MKs.19 Thus, the
principal theory that MKs migrate during their maturation
from the osteoblastic to the vessel niche must be
reconsidered.

However, recent reports indicated a second pathway of
megakaryocyte formation. Indeed, Sanjuan-Pla et al demon-
strated the existence of a platelet-biased subgroup of multi-
potent HSC which could be identified by the expression of
megakaryocyte-related von Willebrand factor mRNA
(vWFþ).20 Another study determined that only a small sub-
fraction of vWFþ-HSC showed coordinated megakaryocyte
gene expression. These stem-likeMk-committed progenitors
(SL-MkPs) belong phenotypically to the HSC compartment,
but they are restricted to megakaryocyte lineage. While
being in a quiescent state during homeostatic conditions,
these cells are activated under inflammatory conditions and
compensate the increased platelet consumption through a
replenishment of the megakaryocytic progenitor cell
pool.21,22 In direct vicinity of the blood vessels, megakaryo-
cytes form cytoplasmic processes (“pro-platelets”), which
are connected to each other by cytoplasmic bridges. Further-
more, pro-platelets are elongated, branched and, guided by a
gradient of sphingosine-1-phosphate (S1P), extended
through endothelial gaps into the bloodstream.23,24 Sup-
ported by the physiologic blood shear force, megakaryocytes
release barbell-formed pro-platelets and their predecessors,
discoid pre-platelets, into the blood system, where they
rapidly separate into platelets.13 Surprisingly, the last steps
of platelet formation must not absolutely take place in the
bone marrow. In fact, megakaryocytes and pro-platelets can
also be found in the bloodstream and, as recently suggested,
also in the lung sinus. Indeed, it is estimated that the
percentage of platelets produced in the lung is as high as
50% of the total platelet count.25

Platelets and Infections

From everyday clinical experience, we know that the platelet
count is altered in infections, autoimmune-mediated inflam-
mation and disseminated intravascular coagulation (DIC).26

These observations indicate the close relationship between
platelets and immune cells in inflammatory processes and
any host defence against bacterial and viral pathogens.27,28

Indeed, it becomes more and more evident that platelets
play an important role in bacterial and viral infections,
interacting both directly with pathogens and the responding
immune cells. This interplay is not only relevant for basic
science but also notably contributes to clinical pathologies. A
recently published study indicates that acute respiratory
infections with influenza types A and B or respiratory

Infektionen werden durch die Wechselwirkungen von Blutplättchen und angeborener
Immunität, insbesondere des Komplementsystems, beeinflusst. Obwohl die allge-
meinen Elemente dieses Zusammenspiels seit langem bekannt sind, konnten in letzter
Zeit mehr und mehr Einsichten in krankheitsspezifische Mechanismen gewonnen
werden. Dieser Artikel gibt einen Überblick über die aktuellen Ergebnisse auf dem
Gebiet der Wechselwirkungen zwischen Blutplättchen und Immunzellen und zeigt
mögliche Implikationen für die klinische Therapie auf.
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syncytial virus are strongly associatedwith the occurrence of
myocardial infarction.29 Indeed, during the first 3 days after
laboratory detection of the viral infection, the incidence of
myocardial infarctions was increased by six-fold compared
with control. A possible explanation proposed by the authors
of the study is an elevation of platelet activation due to the
viral infection, which might give rise to an thrombogenic
environment.29 Congruently, a small study indicated a rise in
platelet reactivity in blood samples from patients with viral
respiratory tract infections compared with those of a control
group.30 Another explanation of increased troponin levels
may, however, also be that a systemic reaction with in-
creased stress to the body can aggravate any pre-existing
coronary artery disease. Future studies will have to further
scrutinize any direct links between infections, thrombosis,
inflammation and coronary artery disease. Another study
suggested that immune complexes formed during influenza
A infection accounted for platelet activation.31 In the context
of bacterial infections, platelets were shown to be activated
by binding of bacterial surface antigens to platelet receptors
such as GPIbα,32 GPIIb/IIIa33 and toll-like receptor-2
(TLR2).34,35 Although the specific activating ligands vary
between the different bacterial strains, some studies sug-
gested the binding of IgG-coated bacteria to platelet FcγRIIA
receptor as a common pathway of platelet activation, also

requiring the engagement of αIIbβ3.36,37 A recently pub-
lished study could prove that ATP-activated P2 � 1 receptor
is an essential part of this activation pathway.38 Platelets are
activated by bacteria; however, they also contribute to the
defence against bacteria in different ways. For instance,
platelets were shown to encapsulate Staphylococcus aureus
isolated from sepsis patients and to inhibit bacterial
growth.39 In a recent study, Gaertner et al described platelet
migration as a novelmechanismof bacterial clearance.40 This
study demonstrated that platelets are able to migrate in an
actin/myosin-dependent matter on surfaces coated with
fibrin or fibrinogen in vitro and at the site of thrombus
formation in vivo. It also indicated that platelets mechani-
cally retracted parts of the surface they migrated on
(►Fig. 2). Interestingly, migrating platelets were shown to
form bundles with fibrin-bound bacteria, which led to
neutrophil recruitment, phagocytosis by neutrophils and
neutrophil extracellular traps (NET) formation.40 Enhanced
platelet–neutrophil interactions have also been reported
after platelet stimulation with bacterial lipopolysaccharides
(LPS).41 In a model of LPS-induced sepsis, platelets stimulat-
ed the recruitment of neutrophils via serotonin secretion,
which resulted in enhanced inflammation and impaired
clinical outcome.42 In fact, the role of platelets as a link
between pathogens and immune cells becomes more and

Fig. 1 Megakaryopoiesis and platelet production. Megakaryocytes are formed from pluripotent HSC, which under the influence of TPO develop
into CMP cells and bipotential MEP cells. The latter further differentiates into committed MPCs that later form the early diploid megakaryocytes.
During endomitosis, megakaryocytes become polyploid (up to 64N). The late stages of megakaryocytes are marked by the formation of
pseudopodia and their extension into the bloodstream, where platelets are finally released from pro-platelets. CLP, common lymphoid progenitor;
CMP, common myeloid progenitor; GMP, granulocyte–monocyte progenitors; HSC, human stem cells; MPCs, megakaryocyte progenitor cells;
MEP, megakaryocyte–erythrocyte progenitor; MK, megakaryocytes; SDF-1, stromal cell-derived factor 1; SL-MkPs, stem-like Mk-committed
progenitors; S1P, sphingosine-1-phosphate; TPO, thrombopoietin.
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more evident. Verschoor et al found that platelets recognized
bacteria opsonized by the complement factor C3 via their
GPIbα receptor, thereby promoting the shuttling of the
complex to dendritic cells in the spleen.28 This observation
is in line with earlier studies that platelets can interact with
antigen presenting DCs.27 Indeed, activated platelets have
been shown to induce the maturation of immature mono-
cyte-derived DCs via release of CD 40 ligand.43,44 Addition-
ally, DC-induced lymphocyte proliferation was markedly
enhanced in the presence of activated platelets.27 Further-
more, platelets have been shown to recruit DCs through a
MAC-1/JAM C and PSGL1/P-selectin dependent mecha-
nism.45 In linewith this, platelets stimulated invivo adhesion
of DCs to an injured carotid vessel wall.27 In an interesting
translational study, Duffau et al indicated that platelets
contributed to disease progression in systemic lupus eryth-
ematosus (SLE) via CD40L-induced activation of DC interfer-
on-α secretion.46 Thus, platelets contribute to maturation,

recruitment and activation of dendritic cells. Furthermore,
platelet-released PF4 was shown to attach to bacteria, which
facilitated anti-PF4-antibody binding and thereby stimulat-
ed granulocyte phagocytosis.47 Another study indicated that
platelets enhance the uptake and intracellular killing of S.
aureus by peritoneal macrophages, probably via a β1-defen-
sin–dependent mechanism,48 and that platelets are capable
of directly killing bacteria, though the exact mechanism has
not been further elucidated. However, other studies have
already uncovered several microbicidal substances released
by platelets, among them the proteins thrombocidin-1 and
-2,49 microbicidal chemokines termed kinocidins such as
CXCL43,50 and the defensins β1 and β2.39,51 Regarding these
various platelet functions, the key role of platelets in defence
against infections becomes evident. Indeed, a recent study by
Wuescher et al underlined the importance of platelets for the
clearance of bacterial infections. Using a model of diphthe-
ria-toxin–induced conditional platelet depletion in

Fig. 2 Platelets as mediators of immune response in infections. Platelets can recognize bacterial surface antigens through adhesion receptors
and pattern recognition receptors such as toll-like receptors. As a result, platelets secrete bothmicrobicide peptides and chemokines that trigger
innate immune response. Furthermore, they support pathogen clearance either by directing bacteria to phagocytic cells in the spleen or by
enhancing liver macrophage (Kupffer cells) function. Recently, the role of platelet migration for immune defence has been underlined, as
migrating platelets were able to encapsulate bacteria and to promote neutrophil response in the form of NET formation and phagocytosis.
Especially in bacterial sepsis, platelets were shown to be essential for an adequate immune response. Bct, bacteria; C3, complement component
3; CXCL4 (PF4), chemokine (C-X-C motif) ligand 4; DC, dendritic cell; FcγRIIA, Fcγ-receptor IIA; GPIbα, glycoprotein Ibα; GPIIb/IIIa (αIIbßIII),
glycoprotein IIb/IIIa; Tcd 1/2, thrombocidin ½; TLR4, toll-like receptor 4.
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transgenicmice, this group found that platelet-depletedmice
showed significantly reduced survival times in a S. aureus–
induced context of sepsis and, thus, a severely enhanced
bacterial burden.52 In line with these results, Wong et al
reported an essential role of platelets in the clearance of
Bacillus cereus infection.53 Interestingly, they could deter-
mine that platelets used their adhesion receptors GPIb and
GPIIb/IIIa to encapsulate Kupffer’s cells, intravascular liver
macrophages, which have captured bacteria, thereby proba-
bly isolating the pathogens and supporting Kupffer’s cell
activity. In the same study, GPIb-deficient mice showed a 10-
fold increase in liver cell death after infection comparedwith
a control group.53 In fact, in the context of acute and chronic
liver infections, several studies demonstrated a remarkable
influence of platelets on disease control. For instance, in the
setting of viral hepatitis, platelet-released serotonin signifi-
cantly decreased sinusoidal perfusion which impaired viral
control and delayed cytotoxic CD8þ-T cell response, thereby
promoting the development of a chronic viral hepatitis.54

Furthermore, it was shown in hepatitis B virus pathogenesis
that platelets adhere to liver sinusoids via CD44 and enabled
the arrest of effector CD8þ-T cells that cleared infected
hepatocytes by extending protrusions through endothelial
gaps.55 Concomitantly, another study demonstrated that,
during acute viral hepatitis, platelets recruit cytotoxic T
lymphocytes to the liver and, thus, contributed to progres-
sion of inflammation and liver damage.56 Platelets are an
important element in the host defence against the malaria–
causing parasite Plasmodium falciparum. Actually, in amodel
of malaria infection, platelet-deficient mice showed higher
parasitaemia levels and higher mortality rates than control
animals.57 Unexpectedly, it was shown that platelet-derived
PF4 could be internalized by parasite-infected red blood cells
via their Duffy antigen receptor for chemokines.58 Once in
contact with the intracellular parasite, PF4 induced the lysis
of the parasite digestive vacuolar membrane, which led to a
rapid elimination of the parasite.59 In reaction to these
results, the use of anti-platelet drugs in clinical treatment
of malaria patients was critically discussed.60 However, a
recent study could neither find any effect of platelet deple-
tion on parasitaemia nor find a direct elimination of intra-
erythrocytic parasites by platelets in vitro.61 Hence, future
studies will have to elucidate the role of platelets in malaria
infection.

Furthermore, platelets might also become themselves a
target of viral pathogens. In the case of dengue fever, patients
often suffer from severe thrombocytopenia and hemor-
rhages.62 In an elegant study, Simon et al could prove that
dengue virus directly adheres to platelet receptors and—
through ayet unknownmechanism—invades the cells, where
they stimulate the production and release of infectious viral
particles.63 Immune recognition of platelet-bound viral anti-
gens might contribute to an augmented platelet clearance
and thrombocytopenia. Interestingly, the same study also
demonstrated that binding of dengue virus was markedly
enhanced in thrombin-activated platelets. Congruently, Ojha
et al found that platelet activation was correlated with low
platelet counts in dengue patients and that activated plate-

lets showed high numbers of copies of dengue virus ge-
nome.64 Another severe manifestation of dengue fever is the
capillary leakage syndrome due to an increased vascular
permeability. It could be shown that platelet exposition to
dengue virus led to a rise of mitochondrial reactive oxygen
species production in platelets, which triggered platelet
inflammasome activation and IL-1β secretion, the latter
accounting for the increase in endothelial permeability.65

In general, elucidating the mechanisms of platelet activa-
tion and platelet response to bacterial and viral infections
might help complete our understanding of severe diseases
such as infective endocarditis (IE), DIC in sepsis or viral
hepatitis. In IE, low platelet counts have been associated
with increased 6-monthmortality.66 Furthermore, in a model
of experimental S. aureus endocarditis, bacterial susceptibility
to thrombin-inducedplateletmicrobicidalproteindetermined
disease progressionmarkers such as bacteraemia and valvular
tissue damage.67 Therefore, platelets seem to play an impor-
tant role in the clearance of IE. However, a recent study found
that platelets also contributed to NET-dependent bacterial
biofilm formation on injured heart valves in a Streptococcus
mutans endocarditis model.68 Thus, platelets have both bene-
ficial and detrimental effects on IE modulation. DIC is marked
by extensive platelet activation and microvascular thrombo-
sis.69 Recently, several studies were able to demonstrate that
platelets bound to neutrophils during sepsis and stimulated
the secretion of procoagulant NET, which promoted intravas-
cular coagulation.41,70

In conclusion, platelets have several strategies to cope
with invading pathogens. They releasemicrobicidal substan-
ces, bind and isolate the pathogen, and recruit phagocytic
immune cells. Although these reactions usually contribute to
pathogen clearance, platelets also have been shown to ag-
gravate diseases, for instance viral hepatitis, dengue fever or
DIC.

Platelets and Sterile Inflammation

The role of platelets in inflammation has been well investi-
gated. Platelets use a variety of receptors (CD40L, P-selectin)
and cytokines (PF4, RANTES, IL1β) to interact with leuko-
cytes such as granulocytes, lymphocytes, monocytes and
dendritic cells.2 Indeed, one key role of platelets is the
recruitment of phagocytic cells to lesion sites. Exposing P-
selectin on their surface, vessel-bound platelets slow down
monocytes and neutrophils at vascular lesions and then
establish firm adhesion to them via a CD11/18 (Mac1)-
dependent mechanism.71,72 Besides the sole recruitment
of immune cells, platelets also contribute to leukocyte acti-
vation. For instance, the P-selectin–dependent binding of
platelets to monocytes resulted in an upregulation of mono-
cyte activation markers.73 In neutrophils, platelet P-selectin
could be proved to induce cell activation and release of
NET.74 Furthermore, the platelet-released chemokines
RANTES and PF4 significantly stimulated the arrest of phago-
cytic cells on activated endothelium.75 Surprisingly, cocul-
ture of platelets with T lymphocytes led to decreased INFγ/
TNFα production and reduced lymphocyte activation.76
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Thus, platelets seem to both enhance and regulate immune
cell reaction.

The process of inflammation is not only essential for our
immune defence in microbial infections, but it also contrib-
utes to the induction of repair mechanisms and tissue
regeneration after mechanical or chemical tissue injury.77

This sterile, pathogen-independent inflammation plays a
central role in the genesis of a surprisingly broad spectrum
of diseases. Indeed, post-ischemic reperfusion (myocardial
infarct, stroke and acute renal injury), mechanical trauma,
crystal depositions (gout, pseudogout, silicosis and athero-
sclerosis), particles (asbestosis) and tumour cells can be
found among the triggers of sterile inflammation.78–81 In
these often chronic diseases, inflammation rather promotes
disease progression than preventing it, which makes it an
interesting target for clinical therapies (►Fig. 3). In general,
sterile inflammation is induced by necrosis, an uncontrolled
form of cell death, which leads to the extravasation of
proinflammatory cell contents such as ATP, mtDNA (from
mitochondria), uric acid, heat shock proteins (HSP) and S100
proteins from the cytosol as well as HMGB1, histones and

DNA from the nucleus.82 Referring to the pathogen-associat-
ed molecular patterns (PAMPs) expressed on microbes, this
group of inflammation-inducing cellular components has
been termed danger-associated molecular patterns (DAMPs).
ATP can be released from themitochondria of both apoptotic
and necrotic cells. During apoptosis, ATP secretion is medi-
ated by pannexin-1 channels and serves as chemoattractant
signal for phagocytic monocytes and macrophages.83,84 In-
terestingly, a recent study could demonstrate that extracel-
lular ATP stimulated an autocrine pannexin-1-channel–
dependent loop in dendritic cells, which enhanced their
migration to draining lymph nodes.85 Necrotic cell ATP
release has been determined to significantly induce NLP3
inflammasome activation and subsequent IL1β secre-
tion.86,87 Thus, ATP is essential for inflammatory cytokine
release and leukocyte migration in sterile inflammation.

Uric acid is produced through enzymatic degradation of
purinergic nucleotides both in intact and dying cells. How-
ever, cell necrosis leads to the extracellular release of uric
acid, where it has been shown to constitute one of the major
inductors of sterile inflammation.88HSP, andmost important

Fig. 3 Regulation of sterile inflammation by platelets via multiple inflammasome-dependent mechanisms. Sterile inflammation can be caused by the
uncontrolled release of cellular components during the process of cell necrosis. It contributes to the progression of autoimmune diseases, cardiovascular
diseases and tumour growth. Platelets expose different pattern recognition receptors which can detect damage-associated molecular patterns released
during cell injury such as heat shock proteins and DNA.Most of them trigger the activation of platelet inflammasome, which in turn promotes the release of
proinflammatory cytokines. Especially platelet HMBG1 was shown to play an essential role in immune cell recruitment, neutrophil response but also
thrombus formation. Thus, it might be a potential target in inflammatory thrombotic diseases such as arteriosclerosis and myocardial infarction. Other
platelet-released cytokines, among them interleukin 1β and 18, enhance endothelial cell permeability and adaptive immune cell response, which further
drives inflammation and disease progression. DAMP, danger-associated molecular pattern; EC, endothelial cell; IL 1β/18, interleukin 1β/18; HMGB1, high-
mobility group protein B1; HSP, heat shock protein; Lys, lysosome; NET, neutrophil extracellular traps; NLRP3, nucleotide-binding domain, leucine-rich-
containing family, pyrin domain-containing-3; P2XR, P2X receptor; RAGE, receptor for advanced glycation end products; TGFβ1, tumour growth factor β1;
TLR4/9, toll-like receptor 4/9.
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HSP 70, can also be found among the mediators released by
necrotic cells.89 Several studies indicated that members of
the HSP 70 family triggered dendritic cell activation and
consecutive T lymphocyte response, whichmight even result
in the development of autoimmunediseases.90,91HMGB1 is a
component of the cell nucleus and can be released during
necrosis, but not apoptosis.92 Furthermore, it promotes
inflammatory reaction and elevated HMGB1 levels have
been found in many inflammatory and autoimmune dis-
eases.93,94 Other elements of the DAMP group are nucleus-
derived extracellular histones. Indeed, these nuclear proteins
activate TLR2/4 signaling and subsequently induce sterile
inflammation, especially when they are bound to DNA.95

Recently, Kawai et al found that injection of histones led to
dose-dependent multiple organ injury in mice, which could
be reduced by anti-HMGB1 treatment.96 Extracellular DNA
released from the cell nucleus is present both in necrotic and
apoptotic cell death.97 Although bacterial DNA has been
identified as a ligand of PAMP-associated TLR9 receptor,
isolated endogenous DNA did not provoke an inflammatory
response.98,99 However, Urbonaviciute et al demonstrated
that endogenous DNA from apoptotic cells formed com-
plexeswithHMGB1,which havebeen able to activate antigen
presenting cells and to trigger cytokine release.100 DAMPs
may also be derived from extracellular sources, especially
during extracellular matrix degradation.80 Indeed, hyalur-
onan fragments produced during ECM degradation in acute
lung injury have been shown to initiate an inflammatory
response in antigen-presenting cells through a TLR2/4-de-
pendent mechanism.80

Immune cells are able to recognize DAMPs via extracellu-
lar (TLR2/4, C-type lectin receptors [CLR], receptor for ad-
vanced glycation end products [RAGE]) and intracellular
(NOD-like receptor [NLR], absent in melanoma 2 [AIM2])
receptors of the pattern recognition receptor (PRR) fami-
ly.101–103 Several receptors contribute to the recognition of
DAMPs. Toll-like receptors 2 and 4 recognize microbial
membrane components such as LPS and also endogenous
danger-associated molecules, among them are extracellular
histones and HMGB1.104 Therefore, they are powerful regu-
lators of both sterile and infection-triggered inflammation.
For instance, recent studies indicated amajor contribution of
TLR2/4 to the auto-inflammatory processes of hyperoxia-
induced retinal vessel regression or human male infertility
caused by sterile inflammation.105,106

During the last decade, the CLR family has come into the
focus of research on sterile inflammation receptors. In fact,
members of this family have been shown to sense DAMPs
such as uric acid, F-actin and SAP130 and thus effectively
detect necrotic cells.107–109 Interestingly, activation of CLRs
by cell death released SAP130-induced inflammation and
neutrophil recruitment, whereas stimulation by uric acid
markedly reduced neutrophil activation and inhibited in-
flammation.107,109Hence, CLR family shows complementary
effects on sterile inflammation.

RAGE acts as a receptor for various DAMPs, among them
are HMGB1, S100 and amyloid β.110,111 Furthermore, the role
of RAGE in sterile inflammation is well established. For

instance, RAGE-induced inflammatory response inhibited
hepatocyte regeneration after massive liver injury.112 In a
model of myocardial ischemia, RAGE significantly enhanced
ischemia/reperfusion injury.113 Recently, Bangert et al un-
covered that the interplay of HMGB1 and RAGE essentially
contributed to autoimmune myocarditis and inflammatory
cardiomyopathy, thereby indicating the receptor as a novel
therapeutic target.114

Nod-like receptors such as NLRP 3 and AIM2 are key
players of sterile inflammation, since they form, together
with an adaptor protein (ASC) and caspase-1, a complex
called inflammasome, which upon activation stimulates se-
cretion of the proinflammatory cytokines IL-1β, IL18 and
HMGB1.115,116 Indeed, NLRP 3 inflammasome stimulation by
cholesterol crystals has been proved to significantly induce
arteriosclerotic plaque formation.117 AIM2 has been origi-
nally identified as a receptor for cytosolic DNA.103 However,
recent studies indicated that AIM2 inflammasome also plays
a key role in the induction of sterile inflammation, for
instance after acute ischemic brain injury.118

In addition to classic immune cells, platelets were shown
to contribute to sterile inflammation.119 Indeed, platelets
express PRRs such as TLR2, 4 and 9,which are known to sense
DAMPs released during tissue injury.120,121 Interestingly, Yu
et al could demonstrate that tumour cells activate platelet
TLR4 via secretion of the proinflammatory HMGB1, thereby
inducing platelet recruitment and platelet release of the
metastasis-promoting factor TGFβ1.122 The physiologic
mechanisms involved in HMGB1-induced cell activation
have not been well understood until recently. However,
recently it was uncovered that in a model of retinal ischemic
reperfusion injury, HMGB1 binding led to the activation of
NLPR3 inflammasome and consequently to the release of IL-
1β.123 Concomitantly, platelets were shown to release the
proinflammatory IL18 through an inflammasome-depen-
dent mechanism.124 Thus, platelets seem to be part of the
sterile inflammatory process. Remarkably, it is well docu-
mented that platelets are able to secrete HMGB1 upon
activation.125,126 As HGMB1 has a chemoattractant and
cytokine-stimulating effect on leukocytes, this indicates a
possible link between platelets and immune cell regula-
tion.127 Indeed, platelets can attract monocytes via a
HMGB1-TLR4–dependent pathway and promote downregu-
lation of monocyte apoptosis through the interaction of
platelet HMGB1 with monocyte RAGE.128 Furthermore,
binding of platelet-derived HMBG1 to neutrophil RAGE
was shown to trigger the release of NETs.129 However,
HMGB1 has not only an effect on leukocyte recruitment
but also influences platelet activation and thrombosis. For
instance, HMGB1 leads to the activation and aggregation of
platelets by ligation of platelet TLR4, but not TLR2 and
RAGE.130 Interestingly, another study using activated plate-
lets indicated that HMGB1 interacts primarily with platelet
RAGE, but also documented increased levels of HMGB1 in
coronary artery thrombi.131 In linewith this, platelet HMGB1
has the ability to increase thrombus formation (predomi-
nantly via TLR4).132 In models of FeCl3-induced mesenteric
artery thrombosis and trauma/haemorrhagic shock,
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deficiency of platelet HMGB1 led to prolonged thrombus
formation times and reduced small vessel thrombosis. Addi-
tionally, loss of platelet HMGB1 significantly diminished
inflammatory reaction after trauma in the form of NET
formation and proinflammatory cytokine levels.132 In a
model of deep vein thrombosis, platelets were identified as
the most important source of HMGB1, thus contributing
essentially to thrombus formation, leukocyte recruitment
and immune cell activation.133 Closing the circle, a recent
study demonstrated that platelet inflammasome, among
others, a down-stream effector of the HMGB1 signaling
cascade, plays an important role in platelet activation and
aggregation.134 Another recently published study even
linked the effects of HMGB1 on immune cells and thrombus
formation. Using a model of deep vein thrombosis, Dyer et al
confirmed the prothrombotic and NET-stimulatory effect of
platelet HMGB1. In addition, this group showed that inhibi-
tion of NET formation significantly impaired the effect of
HMGB1 on thrombus formation, which hints at a neutrophil-
dependent mechanism of deep vein thrombosis.135 In a
clinical approach, a recent study proved that aspirin therapy
in high cardiovascular risk patients diminished expression of
HMGB1 in platelets, indicating anothermechanism of aspirin
drug efficacy in cardiovascular diseases.136 Further studies
have to further question whether platelets could be used as
possible targets for therapies in sterile inflammatory
diseases.

Summing up, the role of platelets in sterile inflammation
has to be added to our common knowledge of platelet–
immune cell interactions. DAMPs are released during both
necrotic and apoptotic cell death and can be sensed by
platelet PRRs. Subsequently, platelet inflammasome activa-
tion leads to the release of inflammatory mediators such as
HMGB1, which introduce the activation of immune cells and
stimulate thrombus formation via neutrophil-dependent
NET secretion. These new insights into platelet functions
extend the range of platelet-mediated diseases from autoim-
mune diseases to post-ischemic injury.

Platelets and Cancer

Platelets are not only an important element of the immune
response against infectious microorganisms, but also mod-
ulate tumour development. In a recent study, elevated
platelet levels have been identified as a strong risk marker
for cancer, especially in male patients.137 Furthermore,
malignant neoplasms are often associated with an elevated
risk for thrombosis and thrombophlebitis.138 In fact, cancer
cells stimulate platelet activation through the release of
potent mediators such as HMGB1, tissue factor, ADP and
thromboxane.122,139–142 Activated platelets adhere to can-
cer cells in the bloodstream and facilitate their arrest and
migration through the vessel wall, thereby promoting
tumour metastasis.143,144 In addition, the activated plate-
lets shield metastatic cancer cells from immune cell recog-
nition and NK-mediated cell lysis.145 Recently, platelets
have been also shown to suppress T cell response against
cancer cells via TGF-β.146 Finally, platelet granules contain

pro- and antiangiogenic factors, which are released upon
tumour-dependent platelet activation.147 However, their
influence on tumour angiogenesis has not been fully un-
derstood yet.

Platelets and Platelet Microparticles

Microparticles (MP) are defined as plasma membrane
vesicles with an average size of 0.1 to 1 µm, which can be
released by a broad variety of cells during activation, cell
stress or apoptosis. Although leukocytes, endothelial cells,
erythrocytes and megakaryocytes are also known to shed
MPs, platelets constitute themajor source (70–90%) ofMPs in
the bloodstream. Platelet microparticles (PMPs) have been
shown to contribute both to physiological and pathological
processes.148 For instance, during haemostatic clot forma-
tion, PMPs significantly enhanced fibrin clot stability, where-
as lack of PMPs strongly prolonged the time required for
thrombin generation.149 Indeed, patientswith a deficiency in
PMP production (Castaman’s syndrome) suffer from pro-
longed bleeding times and haemorrhages.150 Interestingly,
Ponomareva et al determined that PMPs differed in size,
structure and density according to the platelet-activating
stimulus.151 In line with this, a recent study showed that a
subgroup of PMPs containsmitochondria and thatmitochon-
drial membrane degradation by soluble phospholipase A2
provoked an inflammatory response.152 Another study dem-
onstrated that PMPs stimulated inflammation in rheumatoid
arthritis, probably via IL1-mediated activation of fibroblast-
like synoviocytes.153 In cancer patients, elevated PMP levels
have been associated with metastasis and higher tumour
aggression.154 However, a recent study indicated that PMPs
were able to transfer miRNA into solid tumour cells, which
led to tumour cell apoptosis and inhibition of tumour
growth.155 Thus, the role of PMP in cancer progression
remains to be clarified, yet. Moreover, PMPs might also
influence tissue regeneration. For instance, platelet-derived
MPs have been shown to induce proliferation and tube
formation in human umbilical vein endothelial cells (HUVEC)
in vitro.156 Furthermore, PMP injections significantly en-
hanced angiogenesis in an in vivo model of chronic myocar-
dial ischemia.157 Together, platelet-derived particles are
complex mediators of processes such as inflammation, can-
cer progression and tissue regeneration and will be of great
interest to future research.

Crosstalk Platelets—Complement

The name of the complement system already anticipates its
functions—indeed, with more than 30 enzymes and inacti-
vated precursor proteins involved, the complex cascade con-
tributes to the amplification of most immune responses to
invading pathogens and promotes tissue regeneration and cell
clearance after injury.158,159 It is therefore not surprising that
platelets also interact with parts of the complement system in
various physiological and pathological processes. In general,
complement activation can be triggered either by surface-
bound IgGand IgMantibodies via the C1qrs complex (classical
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pathway) or by bacterial carbohydrate antigens (MBL-MASPs–
dependent lectin pathway) and bacterial LPS (via C3bB in the
alternative pathway).160 All three pathways result in a com-
mon trunk, in which the most abundant complement C3 is
cleaved into the chemoattractant anaphylatoxin C3a and the
opsonizing C3b. Furthermore, C5 is cleaved into C5a, another
anaphylatoxin, and C5b, which together with C6, 7, 8 and 9
forms the cell lysis inducingmembrane attackcomplex (MAC).
The complement components are in close contact with cells of
innate and adaptive immunity.161,162 Activated platelets have
beenshownto influence this complexnetworkbycontributing
to complement activation.163 For instance, activated platelets
were able to bind properdin, a positive regulator of alternative
pathway activation, and thereby promote the formation of
alternative pathway convertase (C3bBb and C3(H2O)Bb) on
their surface, which further stimulated the complement cas-
cade.164 Concomitantly, another study suggested that platelet
P-selectin serves as a receptor for C3b, thus initiating the
formation of C3-convertase and of the MAC on platelets.163 In
addition, it was shown that platelets secreted chondroitin
sulfate that bound C1q and activated classical complement

pathway.165 Further amplification of the classical pathway
might be effectuated by the exposure of negatively charged
molecules such as phosphatidylserine on the surface of plate-
lets and platelet-derived MPs.166–168 Yet, platelets are able to
suppress complement activation via the release of C1 inhib-
itors.169 Interestingly, it could be demonstrated that during
low-shear stress, platelets rather promoted complement acti-
vation, whereas high stress led to enhanced production of
complement-inhibiting factors.170 Besides these platelet
effects on complement activation, complement elements in-
fluence platelets vice versa (►Fig. 4). In fact, platelet activation
and aggregation can be triggered by complement fac-
tors.171,172 The complement components C1q, C3, C4 and C9
are able to bind to the surface of activated platelets, respec-
tively.173 In linewith this, plateletswere shown to express C1q
receptors on their surface and C1q multimers triggered plate-
let activation and aggregation.174,175 Furthermore, platelet–
neutrophil interactionswere significantly decreased after pre-
incubation of platelets with C1q, indicating a further aspect of
this tightly regulated immune reaction.176 Interestingly, in
atherogenesis, C1q-deficienyprovokeda three-fold increase in

Fig. 4 Mutual stimulations of platelets and the complement cascade. Activated platelets trigger the activation of the complement system by
binding complement factors on their surface. Additionally, they expose negatively charged phospholipids and release chondroitin sulfate, which
both enhance complement activation. Conversely, complement factors may induce platelet activation and aggregation. Platelets protect
themselves from excessive complement activation on their surface through the expression of control proteins such as CD 55 and factor H. During
infection, the complement–platelet crosstalk helps direct C3-bound bacteria to immune cells in the spleen and stimulates complement release
by platelets. Bct, bacteria; C3/5, complement component ⅗; C1qR, complement component C1q receptor; ChS, chondroitin sulfate; DC,
dendritic cell; MAC, membrane attack complex; PS, phosphatidylserine.
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lesion size compared with a control group in a model of early
arteriosclerosis.177 Other platelet complement receptors are
C3aR and C5aR, which, once activated by the anaphylatoxins
C3a and C5a, promote platelet aggregation, activation and
serotonin release.178–181 Surprisingly, blockade of C5a recep-
tors had an inhibiting effect on arteriosclerotic lesion develop-
ment in ApoE(�/ � ) mice, whereas C3 deficiency resulted in
significantly enhanced arteriosclerosis.182,183 Recently, it was
demonstrated that platelet expression of C3aR and C5aR is
elevated inpatientswithcoronaryarterydisease.184Regarding
the procoagulant effects of C3a and C5a on platelets, it is now
tempting to speculate that complement-mediated platelet
activation might also contribute to the increase of cardiac
events after viral respiratory infection. However, someaspects
of platelet complement receptors remain unclear, for instance
the recently discovered role of PAR¼ in the binding of C4a.185

Furthermore, it is important to note that platelets also express
multiple complement control proteins (CCP), among them are
CD55,CD59and factorH, topreventovershooting complement
activation on their surface.186 In atypical haemolytic uremic
syndrome (aHUS), one or several CCPs aremutatedordeficient
(mostly factor H), which leads to complement activation and
MAC formation on platelets. As a result, platelets are activated
and show facilitated aggregation, thereby inducing thrombo-
philia and microthrombosis.187 Similarly, in paroxysmal noc-
turnal haemoglobinuria, deficiency in GPI anchoring of
proteins on the cell membrane prevents the expression of
complement regulatory proteins CD55 and CD59 on platelets,
which results in complement-induced platelet activation and
thrombosis.188 Indeed, the interplay of platelets and the
complement system was demonstrated to be relevant for
several diseases associated with sterile inflammation. In SLE,
antiphospholipid antibodies such as anti-cardiolipin antibod-
ies, bound to platelets, activated them and enhanced deposi-
tion of C4d, a split product of C4b, on platelet surface.189

Interestingly, C4d-deposition on platelets was associatedwith
deepvein thrombosis, higher all-causemortality and stroke in
SLEpatients.189,190 In addition, deficiencyof theVWF-cleaving
protease ADAMTS13 led to complement activation and depo-
sition on platelets bound to VWF, which probably further
promoted platelet aggregation.191 Platelet complement inter-
actions have been shown to play a central role as well in
immune defence against bacterial infections, for example via
C3b-opsonized bacteria and GPIb.28 Another recent study
could prove that platelets and megakaryocytes stored C3 in
their granules and that platelet activation by heat-treated
Escherichia coli, but not LPS, triggered the translocation of
C3 to the platelet surface.192 These results suggest that plate-
letsmight contribute to immunedefence through activationof
the complement system after pathogen recognition. Taken
together, the interactions of platelets and the complement
system are essential both for sterile and infection-triggered
inflammation, which makes them an interesting target for
therapies in various diseases such as sepsis, arteriosclerosis,
autoimmune diseases and thrombotic microangiopathy.

In conclusion, platelets show an intensive interplay with
elements of the complement system, which is marked by
mutual activation and regulation. Platelets have been dem-

onstrated to facilitate the activation of both the classical and
alternative complement pathway through the binding of
complement components on their surface or the release of
complement-inducing elements. However, activated plate-
lets also expose complement receptors, which, upon ligation,
initiate further platelet activation and aggregation. In various
autoimmune diseases, dysregulation of platelet–comple-
ment interactions provokes overshooting platelet activation,
and as a consequence thrombotic disorders.

Future Directions

Much progress has been made in research addressing platelet
functions beyond haemostasis and there are several interest-
ing findings which might serve as starting points for future
research. In the field of ex vivo platelet production, recent
stem-cell–based approaches provide an ex vivo model of
megakaryopoiesis and allow the study of thrombopoiesis in
the laboratory, although there are still some obstacles such as
low numbers of produced platelets to overcome.11,193 Future
research might find a solution for these problems, thereby
enabling the in vitro production of platelet supply for trans-
fusions. Another rapidly growing area of interest will be the
research on platelets and inflammasome in sterile inflamma-
tion. Indeed, the discovery of a platelet inflammasomeand the
release of HMGB1 by platelets make them a potential thera-
peutic target in auto-inflammatory diseases and post-ische-
mic injuries.113,194 Other translational therapies might target
the interaction of platelets with immune cells, such as anti-
bodies directed against P-selectin.195 Furthermore, inflamma-
tory reactions contribute to platelet activation, which triggers
a vicious circle of inflammation and thrombosis. Inhibitors of
these interactions might serve as powerful antithrombotics
without impairing haemostasis.

Concluding Remarks

The classical view of platelets as cells restricted to haemo-
stasis has been left. Indeed, numerous studies have demon-
strated how platelets tightly regulate inflammation through
recruitment and activation of immune cells, release of
proinflammatory factors and direct interactions with invad-
ing pathogens. However, it becomes more and more obvious
that platelet functions are closely connected to each other.
During inflammation, immune cells and complement factors
are able to induce platelet activation and aggregation. Thus,
platelets and immune cells form a complex network which
enables efficient clearance of invading pathogens and death
cells.

Although it is often difficult to determine the relevance of
platelet–immune cell interactions to disease development
and progression, the spectrum of possibly involved patholo-
gies grows rapidly. Therefore, understanding the basic ele-
ments of this interplay is nowmore important than ever. The
progresses made in in vitro platelet production might facili-
tate future research on the field of platelet interactions.
Especially in sterile inflammation, therapies targeting the
activation of platelets by leukocytes or elements of the
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complement system and vice versa might be essential for the
treatment of both cardiovascular and autoimmune diseases.
However, further studies are required to clearly distinct
between beneficial and pathogenic platelet mechanisms in
the context of diseases.
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